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ABSTRACT 18 

 19 

Social network analysis has provided important insight into many population 20 

processes in wild animals. Constructing social networks requires quantifying the 21 

relationship between each pair of individuals in the population. Researchers often 22 

use association indices to convert observations into a measure of propensity for 23 

individuals to be seen together. At its simplest, this measure is just the probability of 24 

observing both individuals together given that one has been seen (the simple ratio 25 

index). However, this probability becomes more challenging to calculate if the 26 

detection rate for individuals is imperfect. We first evaluate the performance of 27 

existing association indices at estimating true association rates under scenarios 28 

where (i) only a proportion of all groups are observed (group location errors), (ii) 29 

not all individuals are observed despite being present (individual location errors), 30 
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 2 

and (iii) a combination of the two. Commonly-used methods aimed at dealing with 31 

incomplete observations perform poorly because they are based on arbitrary 32 

observation probabilities. We then derive complete indices that can be calibrated 33 

for the different types of observation probabilities to generate accurate estimates of 34 

association rates. These are provided in an R package that readily interfaces with 35 

existing routines. We conclude that using calibration data is an important step when 36 

constructing animal social networks, and that in their absence, researchers should 37 

use a simple estimator and explicitly consider the impact of this on their findings. 38 

 39 

KEYWORDS 40 

Affiliations, Animal social networks, Interactions, Social network analysis, Social 41 

structure 42 

 43 

 44 

INTRODUCTION 45 

 46 

A foundation of animal social network analysis is estimating the frequency that two 47 

individuals associate or interact. Social networks are typically a description of 48 

interconnections that are formed by relationships (edges) among multiple 49 

individuals (nodes). Social network analysis is a set of tools that can be used to 50 

describe the patterns formed by these interconnections or evaluate these against 51 

hypotheses (Farine & Whitehead, 2015; Whitehead, 2008). One feature of social 52 

network analysis that is perhaps unique to studies on animal populations is that 53 

researchers rarely have a complete record of all interactions or all associations (but 54 

see Boogert, Farine, & Spencer, 2014; Farine, Spencer, & Boogert, 2015; Strandburg-55 

Peshkin, Farine, Couzin, & Crofoot, 2015). Thus, relationships are often imperfectly 56 

sampled, which can introduce uncertainty in the social network. To account for 57 

variation in sampling effort and observation frequency, Cairns and Schwager (1987) 58 

outlined commonly-used association indices. These indices convert the number of 59 

observations of pairs of individuals seen associating or interaction into an 60 
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 3 

association rate, representing their propensity to associate or their probability of 61 

being observed together.  62 

 63 

Incomplete sampling of animal interactions or associations can occur due to a range 64 

of different reasons. We can classify datasets as having two possible types of missing 65 

data (Cairns & Schwager, 1987): (i) single or few observers can only collect data on 66 

one or a few groups at a time and miss many simultaneous associations or 67 

interactions occurring elsewhere, and (ii) individuals are difficult to observe or 68 

identify and missed even when they are present. In type (i), while a number of pairs 69 

of individuals (also known as dyads) are being observed together in one or more 70 

groups, the status of other individuals in the population is unobserved. In type (ii), 71 

when one or more groups are being observed they are incompletely sampled, 72 

resulting in data that suggests that certain dyads were not interacting or associating 73 

even when they were and could have been observed doing so. In both cases, the 74 

relationships inferred from the observed data is likely to be influenced by the 75 

amount of data that was missed. However, the propensity for each type of missing 76 

observations to impact our estimates of association or interaction rates and social 77 

network structure remains to be properly explored. 78 

 79 

Properly controlling for missed observations is one of the most important steps in 80 

social network analysis. Using simulated data, Franks, Ruxton, and James (2010) 81 

identified the impact of missing observations when constructing social networks. 82 

They found that missing observations between known individuals was more 83 

problematic than missing individuals altogether, and concluded that social network 84 

sampling should maximize the amount of data collected about known individuals 85 

rather than maximizing the number of individuals sampled. One reason for this is 86 

because a key component of social networks, weak edges, are often 87 

disproportionately likely to be missed, and leaving these out can have profound 88 

implications on the structure of the social network (Granovetter, 1973). These 89 

findings are also supported by the work of M. J. Silk, Jackson, Croft, Colhoun, and 90 

Bearhop (2015) who explored the effect of completely missing individuals in the 91 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2017. ; https://doi.org/10.1101/117044doi: bioRxiv preprint 

https://doi.org/10.1101/117044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

social network. They found that, with adequate sampling, having as few as 30% of 92 

individuals known can be enough to produce informative networks for hypothesis 93 

testing. 94 

 95 

Missing observations that could have been recorded can have large impacts on the 96 

social network that is generated, and these impacts are made worse when particular 97 

individuals are missed more often than others. Farine and Whitehead (2015) 98 

recently demonstrated how small differences in the likelihood of observing 99 

individuals of different classes can introduce systematic biases in their social 100 

network. They first simulated observations of individuals associating with preferred 101 

and avoided associates. They then introduced a small observation bias, in this case 102 

reducing the probability of observing one of two classes of individuals to 80% by 103 

removing 20% of the observations of those individuals. This resulted in a significant 104 

effect of class on degree (the sum of the association strengths in the nodes with 105 

intact data was higher than in the nodes where data had been removed). This means 106 

that the social network estimated for the individuals in this population is incorrect. 107 

 108 

In this paper, we theoretically re-evaluate existing association indices and derive 109 

new measures to deal with missing observations of groups, missing individuals in 110 

groups, and the combination of these. We show that the extent that existing 111 

association indices adjust estimates of association strength is entirely arbitrary, and 112 

are as likely to over-correct any bias that might occur as they are to reduce it. 113 

Existing association indices can also perform poorly at estimating relative 114 

association strengths, which has implications for many social network studies. We 115 

then derive improved association indices that enable researchers to correct 116 

properly for the biases arising from group location error and individual 117 

identification error, and discuss how to collect appropriate calibration data. Finally, 118 

we provide an R package “assocInd” that allows researchers to calculate accurate 119 

association indices for pairs of individuals from their observation data, and to 120 

simulate the effects of different types of errors on estimates of associations. 121 

 122 
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 123 

THE SIMPLE RATIO AND THE HALF-WEIGHT INDEX 124 

 125 

In many cases we wish to calculate an association index that estimates the 126 

proportion of time any two individuals, a and b, spend associated. Association 127 

indices typically range from 0 (the two individuals were never observed together) 128 

to 1 (the individuals are always seen together), and the association rates are used as 129 

a proxy to quantify the propensity for pairs of individuals to interact (Farine, 2015; 130 

Whitehead & Dufault, 1999), although the assumption that individuals interact in 131 

proportion to their association rate should be considered on a case-by-case basis 132 

(Castles et al., 2014). Association data is frequently collected by repeatedly sampling 133 

the population, and recording whom is observed in the same group in each sampling 134 

period. For any two individuals we can then calculate: 135 

x the number of sampling periods with a and b observed associated 136 

ya the number of sampling periods with just a identified 137 

yb the number of sampling periods with just b identified 138 

yab the number of sampling periods with a and b identified but not associated 139 

yNull the number of sampling periods with neither a nor b identified 140 

 141 

In an ideal scenario, every individual is seen and correctly identified in every 142 

sampling period, such as in many captive populations, or at least we have the 143 

situation where yNull = 0. Intuitively, in the ideal scenario researchers can validly use 144 

the simple ratio index (SRI), � ��� � �� � ��� � ��⁄ , as an estimate of the proportion 145 

of time A and B spend together. However, when errors arise from missing 146 

observations of individuals or groups, it is less clear that the simple ratio is 147 

appropriate. The most commonly-used approach for correcting association indices 148 

to account for missing observations is to reduce the weighting given to observations 149 

of just one individual (because we have a lower confidence in these). Because 150 

missing observations are widespread in behavioural research, many researchers use 151 

the half-weight index (HWI): � ��
�
��� � ��� � ��� � �	⁄ . This index is believed to 152 
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correct for the biases arising from such error, in particular when individuals are 153 

relatively more likely to be detected when they are apart than when they are 154 

together. When investigating the performance of association indices, Cairns and 155 

Schwager (1987) found that the HWI resulted in lower bias and lower error for a 156 

given estimate than the simple ratio when observations were missed. However, 157 

whilst this has served as useful justification for many researchers, it is also 158 

important to note that Cairns and Schwager (1987) reported up to 4 times greater 159 

error in the HWI than what they achieved using a maximum likelihood function (see 160 

also below). Further, they noted  a number limitations of association indices arising 161 

from hidden assumptions. 162 

 163 

Here we revisit some of the assumptions of the half-weight index. Notably, we show 164 

that the extent to which the half weight index adjusts estimates of association is 165 

entirely arbitrary, and is as likely to “overcorrect” any bias that might occur as it is 166 

to reduce that bias. Note that an alternative variant to the HWI, the twice-weight 167 

index (TWI) � �2��� � ��� � ��� � ��⁄ , is a monotonic function of the HWI and thus 168 

we do not investigate it in this paper. Ginsberg and Young (1992) previously raised 169 

the issue that the HWI and TWI use arbitrary weightings, and predicted that 170 

association indices will continue to be widely used. Indeed, the HWI is still the most 171 

commonly-used index in animal social network studies.  172 

 173 

To address the need to properly correct for biases arising from group location error 174 

and individual identification error, we derive improved association indices that can 175 

be calibrated independently for each study. We start by addressing the impact of 176 

group location error before moving on to the effect of individual identification error, 177 

and finally the combination of the two. 178 

 179 

 180 

 181 

 182 

 183 
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CORRECTING FOR GROUP LOCATION ERROR 184 

 185 

Here we start with the assumption that if you see a in a group but do not see b in 186 

that group, you know a is not with b, and vice versa. This assumption will be valid if 187 

there is no individual identification error, i.e. all the individuals in a group that is 188 

located by the researcher will always be identified. However, uncertainty remains 189 

for all of the sampling periods in which we did not see a or b, since we do not know 190 

if they were together during such periods. 191 

 192 

Let us denote the event that a and b are together in a sampling period as ab and the 193 

event that they are not together as !ab. The aim is to estimate the association 194 

between a and b, aab = p(ab). We start by developing a maximum likelihood 195 

estimator (MLE) for aab. In any given sampling period, the probability we see only 196 

individual a (i.e. not b), is given by: 197 

 198 

P(see a, not see b) = p(see a| !ab) (1 – p(see b|!ab)) (1- aab) 199 

 200 

Note that p(!ab) = 1- p(ab) = 1 – aab. The probability of seeing a and b in different 201 

groups is given by: 202 

 203 

P(see a, see b) = p(see a| !ab) p(see b|!ab) (1- aab) 204 

 205 

The probability of seeing a and b together in a group is: 206 

 207 

P(see ab) = p(see ab|ab) aab 208 

 209 

And the probability of seeing neither a nor b is: 210 

 211 

P(not see a, not see b) = (1 - p(see a| !ab)) (1 – p(see b|!ab)) (1- aab) + (1 – p(not 212 

see ab| ab) aab 213 

 214 
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From this we can derive the log-likelihood, L, for the data obtained: 215 

L=ya[log(P(see a|ab)) + log([1-P(see b|!ab)]) +log(1- aab)]  216 

+ yb[log(P(see b|!ab)) + log([1-P(see a|!ab)]) +log(1- aab)] 217 

+ yab[log(P(see a|!ab)) + log(P(see b|!ab)) +log(1- aab)] 218 

+x[log(P(see ab|ab)) + log(aab)] 219 

+ yNull log[(1-P(see a|!ab))(1-P(see b|!ab))(1- aab) + (1-P(see ab|ab))aab] 220 

 221 

This simplifies to: 222 

 223 

L= (ya+ yb + yab) log(1- aab) + x log(aab) + ya [log(1-A) + log(B)] + yb[log(1-224 

B)+log(A)] + yab[log(1-A) + log(1-B)] + x log(1-C) + yNull log[AB(1- aab) + C aab] 225 

 226 

where A = P(!see a|!ab); B = P(!see b|!ab); C = P(!see ab|ab). We can find the 227 

maximum likelihood estimator, ���
  by solving: 228 

 229 

������

� � ��� � �� � ����1 � ���
 � ����
 � ����� � � ������ � ���1 � ���
 � � 0 

 230 

In practice A (the probability of not seeing a when a and b are not together), B (the 231 

probability of not seeing b when a and b are not together), and C (the probability of 232 

not seeing a or b when they are together) will not be known. Thus, to estimate an 233 

accurate value for the association strength between two individuals requires 234 

validation data at the level of individuals. However, progress can be made by making 235 

different assumptions about the relationship between A, B and C. First, if C = AB, the 236 

MLE is: 237 

  238 

���
 � ���� � �� � ��� � �� 

 239 

which is the simple ratio index. So, if the probability of failing to see a and b together 240 

is the same as the probability of failing to see both when they are apart, then the SRI 241 
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 9 

is valid. Note also that the simple ratio is valid as an MLE if yNull = 0, as intuition 242 

suggests.  243 

 244 

Alternatively, we could assume that � � ���1 � ��, where failing to observe a 245 

group containing a and b is more (� � 0) or less (� � 0) likely than failing to 246 

observe both the group containing a and the group containing b when a and b are 247 

not together. In this case the MLE is given by the solution to: 248 

 249 

� ��� � �� � ����1 � ���
 � ����
 � ����� �����
 � 1 � 0 

 250 

which can be re-arranged to form a quadratic:  251 

 252 

������
 � � ��� � ������ � ������
 � � � 0,  253 

 254 

where �� is the number of directly informative sampling periods, i.e. �� � �� � �� �255 

��� � �, and T is the total number of sampling periods, i.e. � � � � �����. The MLE is 256 

given by the lower root of this equation, i.e. 257 

 258 

���
 � ���� � ������ � ��� � ���� � ������ � ���� � 4����2��  

 259 

We term this index the group location error corrected index (GLECI). As expected, 260 

the GLECI reduces to the simple ratio index ���
 � �/� when ����� � 0. The standard 261 

error (see Appendix for derivation) can be calculated as for a proportion, 262 

�����1 � ���� ��⁄ , but with an effective sample size of: 263 

 264 

�� � �� � ����� �����1 � ��������� � 1��  

 265 
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 10

assuming sampling periods are sufficiently spaced in time and/or space to assume 266 

they are independent. 267 

 268 

 269 

CORRECTING FOR INDIVIDUAL IDENTIFICATION ERROR 270 

 271 

Here we assume that there is no group location error, but define the probability of 272 

failing to identify an individual in a group that has been under observation, i.e. the 273 

individual observation error rate, as  . We suspect this scenario will be rare, as 274 

individual identification error will usually be accompanied by group location error 275 

(see next section). However, we consider the case in order to analyse the effect of 276 

the two types of error. We get the following probabilities: 277 

 278 

!�"## �, "## $� � �1 �  ���1 � ���� 

!�"## �$� � �1 �  �����  

!�%&' "## �, %&' "## $� �  � 

!�"## �, %&' "## $� � � �1 �  � 

 279 

Therefore the likelihood for the data can be obtained as: 280 

� � ���(2 log�1 �  � � ,&-�1 � ����. � �(2 log�1 �  � � ,&-�����. � �	���(2 log� �.
� ��� � ���(log� � � log�1 �  �. 

 281 

And the MLE found as follows: 282 

������

� ����1 � ���
 � ����
 � 0 

 283 

����� � �����
 � � � 0 

���
 � ���� � � 

 284 
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In this case the MLE ���
  is a simple proportion, using only the x and ���  counts 285 

taken to the informative data, and requiring no calibration data. The terms ��  and ��  286 

are not used, in contrast to the simple ratio and half weight indices, since they are 287 

known to be unreliable in this scenario: if only a is recorded, it is possible that b was 288 

associated with a and has been missed through individual identification error. We 289 

call this index the very simple ratio index (vSRI). The standard error (see Appendix 290 

for derivation) is calculated for a proportion as usual with �����1 � ���� ��⁄ , with 291 

an effective sample size of �� � ��� � �, assuming sampling periods are sufficiently 292 

spaced in time and/or space to assume they are independent. 293 

 294 

 295 

GENERAL ERROR MODEL 296 

 297 

In practice, both types of error are likely to occur in a given sampling procedure. To 298 

model this situation, we define a model with a more general relationship between 299 

the errors in each count. We define: 300 

 301 

!�"## �, "## $� � �1 �/�|!��	�1 �/�|!��	�1 � ���� 

!�"## �$� � �1 �/�|���/�|���/��|��	���  

!�%&' "## �, %&' "## $� �/��|�� ��� �/�|!��/�|!�� �1 � ���� 

!�"## �, %&' "## $� � /�|�� ��� � �1 �/�|!��	 /�|!�� �1 � ���� 

 302 

where /�|!��  is the probability of missing a, given a is not with b; /�|��  is the 303 

probability of missing a, but not b, given a is with b; and /��|�� is the probability of 304 

missing a and b given they are together. 305 

 306 

Note that the group location error scenario is the special case with /�|!��� �; 307 

/�|!��=B; /��|��� � � �1 � ���� � �1 � �� /�|!��/�|!��; /�|!���/�|!��� 0. The 308 
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individual identification error scenario is given by /�|!���/�|!���  ; /�|!���/�|!���309 

  �1 �  �; /��|���  �. 310 

 311 

Let us assume that the probability of missing both a and b when they are in the same 312 

group is �1 � �� x the probability of missing a and b when they are not together 313 

(where � � �1). The probability both a and b will be missed when they are 314 

together is therefore: 315 

 316 

 /��|��� �1 � ��  /�|!��/�|!��  317 

 318 

The probability of at least one of a or b being missed is /́� 1 � !�"## �$|�$�. Let us 319 

set /��|��� 2 /́, where 0 � 2 3 1. Since /́�/�|���/�|���/��|��  320 

 321 

 /�|���/�|��� �1 � 2� /́ 322 

/�|���/�|��� �1 � 2��1 � �� /�|!��/�|!��2  

 323 

If we assume that /�|�� �/�|���/�|��	⁄ � /�|!�� �/�|!���/�|!��	⁄ ,  this gives us: 324 

 325 

/�|��� �1 � 2��1 � �� /�|!��
�/�|!��2�/�|!���/�|!��	  

 326 

where 2 determines the relative importance of group location error relative to 327 

individual identification error, with the group location error model given when 328 

2 � 1. We can now refine the probabilities given above: 329 

 330 

!�"## �, "## $� � �1 �/�|!��	�1 �/�|!��	�1 � ���� 

!�"## �$� � �1 � �1 � �� /�|!��/�|!�� 2⁄ 	���  

!�%&' "## �, %&' "## $� � �1 � �� /�|!��/�|!�� ��� �/�|!��/�|!�� �1 � ���� 
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!�"## �, %&' "## $�
� /�|!�� 4�1 � 2��1 � �� /�|!��/�|!��2�/�|!���/�|!��	 ��� � �1 �/�|!��	�1
� ����5 

 331 

Giving a log likelihood of: 332 

 333 

� � �� 6,&-�/�|!��	
� ,&- 4�1 � 2��1 � �� /�|!��/�|!��2�/�|!���/�|!��	 ��� � �1 �/�|!��	�1 � ����57
� �� 6,&-�/�|!��	
� ,&- 4�1 � 2��1 � �� /�|!��/�|!��2�/�|!���/�|!��	 ��� � �1 �/�|!��	�1 � ����57
� ���8,&-�1 �/�|!��	 � ,&-�1 �/�|!��	 � ,&-�1 � ����9
� �8,&-�1 � �1 � �� /�|!��/�|!��	 � ,&-�����9
� �	���,&-8�1 � �� /�|!��/�|!�� ��� �/�|!��/�|!�� �1 � ����9 

 334 

To obtain the MLE, ���
 , we need to solve the equation: 335 

������

�
�� :�1 � 2��1 � �� /�|!��/�|!��2�/�|!���/�|!��	 � �1 �/�|!��	;

�1 � 2��1 � �� /�|!��/�|!��2�/�|!���/�|!��	 ��� � �1 �/�|!��	�1 � ����

�
�� :�1 � 2��1 � �� /�|!��/�|!��2�/�|!���/�|!��	 � �1 �/�|!��	;

�1 � 2��1 � �� /�|!��/�|!��2�/�|!���/�|!��	 ��� � �1 �/�|!��	�1 � ���� � ���1 � ���


� ����
 � �	��� <�1 � �� /�|!��/�|!���/�|!��/�|!��=
�1 � �� /�|!��/�|!�� ���
 �/�|!��/�|!�� �1 � ���
 � � 0 
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 336 

To generate an estimate of association using this function firstly requires values for 337 

� (the group location error term) and 2 (the error components importance term). 338 

These could reasonably be calibrated at the population level, i.e. we could assume 339 

that these quantities are constant across all dyads. However, the estimate also 340 

requires estimates for /�|!��  and /�|!�� which require calibration data at the level of 341 

individuals, making this approach infeasible in most cases. Nonetheless, we might 342 

obtain an approximate solution, ���> if we substitute a population averaged estimate 343 

(averaged across all dyads, or those dyads for which data is available) /�/�|!���344 

/�|!��: 345 

 346 

��� � ��� ��1 � 2� 2⁄ ��1 � �� / �2�1�/���1 � 2� 2⁄ ��1 � �� / ���> � 2�1�/��1 � ���> � � ���1 � ���> � ����>
� �	��������> � 1 � 0 

 347 

The calibration measures required to solve this equation are �, 2 and /, and can be 348 

solved using a non-linear equation solver. We call the solution to this equation, ���> , 349 

the combined errors index (CEI). In our R package, we provide a function that 350 

calculates the CEI in the R statistical environment (R Development Core Team, 351 

2015), using the uniroot function in the rootSolve package (Soetaert & Herman, 352 

2009). Note that by setting 2 � 1, we reduce the model to the group location error 353 

model, giving ���>  as the GLECI. We can also reduce the model to the individual 354 

identification error model by setting /�|���/�|���/ �1�/� and /��|���/�, giving 355 

us 2 � / �2�/�⁄  and � � 0. Thus ���>  reduces to the vSRI. 356 

 357 

 358 

COMPARISON OF INDEX PERFORMANCE 359 

 360 

In this section we examine how the SRI, HWI, GLECI, vSRI and CECI perform under 361 

scenarios where there is group location error, individual identification error, and a 362 
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combination of the two. In simple cases we do this by first deriving expressions for 363 

the expected value of each index, and then dividing by the value it is intended to 364 

estimate, ?(���. ���⁄ , thus showing us the circumstances under which ���  is biased 365 

upwards or downwards. However, we also recognise that in many circumstances 366 

only the relative sizes of ���  within the social network may be required, e.g. if 367 

estimating scale free node-based or network metrics. Consequently, we also derive 368 

�?(���. ?(���.⁄ � ���� ���⁄ �⁄  to determine the circumstances under which each index 369 

tends to overestimate or underestimate ratios of association values. Here u and v 370 

denote a different dyad, so  �?(���. ?(���.⁄ � ���� ���⁄ �⁄  measures the bias when 371 

index ���  is used to estimate the relative strength of two associations. 372 

In each case we also use simulations to illustrate the performance of the indices for 373 

a given set of values, investigate bias where we were unable to do so analytically, 374 

and examine the performance of Wald 95% confidence intervals calculated from the 375 

standard errors presented above. For each scenario, we simulated 10,000 datasets 376 

consisting of 1000 independent sampling periods for two individuals a and b, in the 377 

R statistical environment (R Development Core Team, 2015). We start by allocating 378 

the probability ��� � 0.5 that a and b were associating in a given sampling period. 379 

We then repeated all simulations with ��� � 0.25 and ��� � 0.75, and the results 380 

we qualitatively similar, so here we present the results for ��� � 0.5 only. We then 381 

simulated the observation process according to the models described above, to yield 382 

values for �� , �� , ���, � and �	���  which we used to calculate the value of each of the 383 

target association indices. For each scenario, we repeated the simulation for a range 384 

of values of group location and individual identification errors. For the scenario 385 

including only group location error, we ran simulations for a range of values of 386 

� �  C�0.9, �0.8, … ,2.5G with A = B = 0.5, where A = P(!see a|!ab) and B = P(!see 387 

b|!ab). For the scenario including only individual identification error, we ran 388 

simulations for a range of values of  �  C0,0.05, … ,0.95G. For the scenario with both 389 

types of error, we varied � �  C�0.9, �0.8, … ,0.9G, /�  C0.1, 0.3,0.5G and 390 

2 �  C0.1, 0.3,0.5G, excluding impossible cases where�1 � �� /� 2⁄ � 1, since this 391 

would mean there is a negative probability of observing a and b together. In each 392 
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case we recorded the mean value for each association index, in order to detect bias, 393 

and the proportion of times the Wald 95% confidence intervals (calculated as 394 

±1.96xSE) contain the true value for ��� . 395 

However, recall that the CECI relies on an approximation, /�/�|!���/�|!�� , which 396 

replaces the individual specific error rates with population level ones. The 397 

simulations described above only test the performance of the CE when this 398 

approximation holds in the data, i.e. when error rates are the same across all 399 

individuals. Consequently, we re-ran simulations to test the performance of the CECI 400 

when there was individual variation in error rate. In each case we set the population 401 

mean error, /, arbitrarily to 0.5, but drew individual errors from a normal 402 

distribution with standard deviation I � C0,0.2, … 2.0G, discarding and resampling 403 

values that were < 0 or > 1, and likewise for /�|!�� . We then conducted the 404 

simulations as described above with 2 � 0.5. 405 

Group location error only 406 

We find that the GLECI is an unbiased estimator of ���  (see Table 1 and Fig. 1) 407 

across a range of group location errors �. By contrast, the simple ratio is biased 408 

upwards when � � 0 (i.e. when a and b are less likely to be missed when associated 409 

than both are to be missed when apart) and biased downwards when � � 0.  The 410 

commonly used HWI shifts the estimate of ���  upwards, such that it is biased 411 

upwards when ���1 � �� � �� � �� 2⁄  and biased downwards when ���1 � �� �412 

�� � �� 2⁄ . Consequently the HWI is only unbiased when the probability of seeing a 413 

and b together is equal to the average of the probability of seeing each of them 414 

apart.  In our terminology, this is denoted �1 � �� � ��1 � �� � �1 � ��	 2⁄ , 415 

giving � � �� � �� 2⁄ . Thus under this scenario, the HWI assumes that the 416 

probability of missing a and b when they are together is equal to half the probability 417 

of missing either a or b when they are apart. This seems to us to be an arbitrary a 418 

priori assumption, without the functionality to adjust the assumption using 419 

supporting calibration data. 420 
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The vSRI performs very poorly when only group location error is present, 421 

overestimating ���whilst � � �A � B � 2AB� ��⁄ . This is because it excludes ��  and 422 

��  from the denominator on the assumption that these data are uninformative, 423 

whereas in this scenario these are cases where we know that a and b were not 424 

associating. As � increases, an increasing number of cases where a and b were 425 

associating are erroneously assigned to �	��� . Thus, exclusion of �	��� from the index 426 

eventually offsets the positive bias (when � � �A � B � 2AB� ��⁄ ) resulting from 427 

exclusion of ��  and ��  from the denominator. The vSRI is therefore not a useful 428 

index as it contains assumptions that are unlikely to be met in the majority of 429 

studies. 430 

The GLECI is generally unbiased because �	��� is included in the index in such a way 431 

that excludes this positive bias. Importantly, the 95% confidence intervals for the 432 

GLECI contained the true value of ���in close to 95% of cases, showing they perform 433 

validly in this scenario (see Fig 1b). In contrast, the 95% confidence intervals 434 

associated with the simple ratio, half weight index and IIEC index only performed 435 

acceptably for a very narrow range of values of �. Furthermore, the GLECI (and CEI 436 

index with 2 � 1) is the only index of those considered that is unbiased when 437 

estimating the ratio of two associations (see Table 1). This suggests that the SRI, 438 

HWI and IIECI are not suitable for estimating either the relative or absolute strength 439 

of associations when group location error is believed to be present, and that, ideally 440 

the GLECI should be used if calibration data can be obtained.  441 

Note that the simulations assumed that the researcher has an accurate estimate of � 442 

with which to calculate the GLECI (see below). In reality the better the estimate of � 443 

is, the better the estimate of ���  will be, but even a rough estimate of � will be 444 

preferable to no calibration at all. Furthermore, we assume that the probability of 445 

missing a and b when they are together will be �1 � �� x that of missing both a and 446 

b when they are separate (� � �1 � ����). Further work may conclude that this 447 

relationship does not generally hold, in which case the GLECI might be suitably 448 

modified to use a different calibration statistic. Nonetheless, the relationship posited 449 

here requires weaker a priori assumptions to be made about the data than the 450 
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commonly used half weight index, which assumes that C = (A+B)/2. We show that 451 

when this assumption is even slightly wrong, the half weight index will be a poor 452 

estimate of ��� . 453 

One possible option to resolve the half weight index is to generalize it to be an M 454 

weight index (MWI): � �
��� � ��� � ��� � ��⁄ . The M weight index assumes that 455 

the probability of seeing a and b together is equal to M x of the sum of the 456 

probability of seeing each of them each apart. Equivalently, missing a and b when 457 

they are together is M x more likely than missing them both when they are apart. 458 

Thus the MWI could be calibrated to the data analogously to the GLECI, but each 459 

index assumes a different relationship among the observation errors in the 460 

population.  461 

When calibration data cannot be obtained, there is a strong case for preferring the 462 

simple ratio index. Use of the SRI results in biases that are more likely to be 463 

qualitatively predictable in the absence of calibration data, than biases resulting 464 

from the HWI or IIECI (see Table 1). For instance, when a researcher suspects that, 465 

in general, missing two individuals when they are together is more likely than 466 

missing both when they are apart, they can expect i) SRI values to be 467 

underestimates of ���; ii) for this underestimation to be more pronounced for 468 

smaller values of ���  and for less commonly seen individuals; and iii) for bigger 469 

ratios between real associations to be overestimated relative to smaller ratios. Thus 470 

a researcher can assess whether these inaccuracies are likely have any great bearing 471 

on their conclusions in their specific case. In contrast, using the HWI we cannot 472 

easily make such qualitative predictions unless we are in a position to judge the 473 

relative size of ���1 � �� versus �� � �� 2⁄ ; and, for the IIECI, � versus 474 

�A � B � 2AB� ��⁄ . Making such judgments empirically is likely to be at least as 475 

challenging as acquiring the calibration data required calculating the GLECI or a 476 

calibrated MWI. Consequently, if only group location error is present and calibration 477 

data cannot be obtained, we recommend use of the SRI, with careful consideration 478 

of how the biases identified above might affect the interpretation of the study. 479 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2017. ; https://doi.org/10.1101/117044doi: bioRxiv preprint 

https://doi.org/10.1101/117044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

Table 1: Biases in different association measures arising from group location error. 480 

*signifies no bias inferred from simulations. 481 

��� ������ ���⁄  �����/���� ���� ���⁄ 	⁄  

SRI 
1 � 
��1 ��	�1 � 
��1 � ����	 
• Unbiased when � � 0 

• Underestimates ��� when � � 0: effect 

more pronounced for smaller values of ��� 

and less commonly seen individuals 

• Overestimates ��� when � � 0: effect more 

pronounced for smaller values of ��� and 

less commonly seen individuals 


1 � 
��1 ��	�
1 � ���1 � �	
�	�
1 � ���1 � �	�
1 � 
��1 � ����	� 

• When � � 0 bigger ratios 

exaggerated and biased in favour 

of the ���for pairs of individuals 

more commonly seen 

• When � � 0 smaller ratios 

exaggerated and biased in favour 

of the ���for pairs of individuals 

less commonly seen 

HWI 
1 � 
��1 ��	��1 � ���	�1 � �
 � �	 2⁄ 	 � 
1 � 
��1 ��	����  

• Unbiased when 
��1 � �	 � �
 ��	 2⁄  

• Underestimates ��� when 
��1 � �	 ��
 � �	 2⁄ : effect is more pronounced for 

smaller values of ��� 

• Overestimates ��� when 
��1 � �	 ��
 � �	 2⁄ : effect is more pronounced for 

smaller values of ��� 

• No straightforward relationship between 

bias and the frequency with which a and b 

are seen 

� 
1 � 
��1 � �	�
��1 � ���	�1 � �� � �	 2⁄ 	�
1 � ���1 � �	���� ��
� 
1 � ���1 � �	�
��1 � ���	�1 � �
 � �	 2⁄ 	�
1 � 
��1 � �	���� ��

 

• Unbiased when 
��1 � �	 ��
 � �	 2⁄  

• Otherwise difficult to predict the 

pattern of bias in the data 

IIECI 
1 � 
��1 ��	��1 � 
	�1 � �	 � ����
 � � � 2
� � 
��	 
• Unbiased when � � �A � B � 2AB	 
�⁄ , i.e. 

the ratio of the probability of missing only 

one of a or b to the probability of missing 

both, when a and b are apart. 

• Underestimates ��� when 

� 
1 � 
��1 � �	�
" �1 � �	�1 � �	������ � � � 2�� � ���	#�
� 
1 � ���1 � �	�
" �1 � 
	�1 � �	�����
 � � � 2
� � 
��	#�

 

• Unbiased when � � �A � B � 2AB	 
�⁄  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2017. ; https://doi.org/10.1101/117044doi: bioRxiv preprint 

https://doi.org/10.1101/117044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

� � �A � B � 2AB	 
�⁄  

• Overestimates ��� when � � �A � B � 2AB	 
�⁄   

• Otherwise difficult to predict the 

pattern of bias in the data 

GLECI / 

CECI 
1 

• Unbiased for this error model* 

1 

• Unbiased for this error model* 

 482 

 483 

Figure 1: a) Bias in different association indices as a function of group location 484 

error (�) when applied to simulated data; b) performance of 95% Wald confidence 485 

intervals as a function of �. Similar results were obtained for a true association 486 

value of 0.25 and 0.75. 487 
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Individual identification error only 488 

When only individual identification error is present we find that the IIECI is an 489 

unbiased estimator of ��� , whereas the simple ratio and half weight indices are 490 

biased downwards whenever  � 0 (see Table 2 and Figure 2). This is because as   491 

increases, more and more cases where a and b are associating are erroneously 492 

attributed to ��  or �� . Since ��  and ��  are included in the denominator for the SRI 493 

and HWI, this results in an under-estimation of ��� . The effect is reduced in the HWI 494 

since ��  and ��  have a reduced weighting in this index. However, this is not 495 

sufficient to ensure that the HWI is valid for even small individual identification 496 

error rates. The GLECI was not included separately in these simulations since in this 497 

scenario �1 � �� � �  �, so � � 0, meaning the GLECI reduces to the simple ratio. 498 

Consequently, we can see that the GLECI also performs badly at estimating absolute 499 

association values when there is individual identification error but no group 500 

location error. 501 

The 95% confidence intervals for the vSRI contained the true value of ���in close to 502 

95% of cases, showing they perform validly under a scenario of only individual 503 

identification error (see Fig 2b). This dropped slightly with very high error rates, as 504 

a result of the effective sample size decreasing as most data is attributed to �� , ��or 505 

�	��� (not that with small sample sizes Wald confidence intervals are likely to be 506 

anti-conservative: too narrow). In contrast, the 95% confidence intervals associated 507 

with the SRI (and hence the GLECI) and HWI performed very badly with even small 508 

individual identification error rates. Consequently, if a researcher is interested in 509 

estimating the absolute values of ���  and only individual identification error is likely 510 

to be present (we anticipate this scenario to be rare), we recommend use of the 511 

vSRI, which requires no calibration data. 512 

In contrast to the group location error only, all association indices gave unbiased 513 

estimates of the relative size of associations between pairs of individuals (see Table 514 

2). This means that if the research aims are purely in the scale free properties of a 515 

system, such as the relative position of individuals in a social network (Aplin, Firth, 516 
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et al., 2015; Wilson, Krause, Dingemanse, & Krause, 2013), any of the indices 517 

considered will be sufficient. However, if there is also a risk of group location error, 518 

and appropriate calibration data cannot be obtained (see next section), we 519 

recommend use of the SRI to estimate relative associations due to the advantages in 520 

interpreting this index in the presence of group location error (see above).  521 

 522 

Figure 2: a) Bias in different association indices as a function of individual 523 

identification error (�) when applied to simulated data; b) performance of 95% 524 

Wald confidence intervals as a function of �. Similar results were obtained for a true 525 

association value of 0.25 and 0.75. 526 
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Table 2: Biases in different association measures arising from individual 527 

identification error 528 

��� ������ ���⁄  �����/���� ���� ���⁄ 	⁄  

SRI 1 � $�2 � $	 1 

HWI 1 � $ 1 

IIECI/ CECI 1 1 

GLECI 1 � $�2 � $	 1 

 529 

 530 

Combined errors 531 

We find that the CECI is an unbiased estimator of ���  across the possible range of 532 

values for /, � and 2 when we assumed /�|!���/ for all individuals (see Fig S1 in 533 

ESM). Furthermore, the CECI was also an unbiased estimator of ���  when /�|!��  was 534 

allowed to vary across the population regardless of the magnitude of variation in 535 

/�|!�� (see Fig S2 in ESM). In contrast, the SRI, HWI, IIECI and GLECI were biased in 536 

a manner that was dependent on the combination of values for /, � and 2. When 2 537 

was close to 1, the pattern of bias was similar to when only group location error was 538 

present. In other words, when it is unlikely that only one of a and b will be missed 539 

when they are in the same group, bias is similar to when we have only group 540 

location error. As 2 became smaller (more likely that only one of a and b will be 541 

missed when they are in the same group) all four indices start to underestimate ���  542 

at a lower value of �. The effects of both 2 and � are magnified more as / gets 543 

larger. Consequently, if individual identification errors are likely to be common in 544 

addition to group location error, we suggest calibration data is acquired to estimate 545 

/, � and 2 and the CECI is used. The pattern of bias in the other indices will be 546 

difficult to predict qualitatively unless the risk of individual identification error is 547 

known to be small. Consequently, if calibration data cannot be obtained under such 548 

circumstances we suggest extra efforts are made to minimise individual 549 
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identification error, and the SRI be used with the understanding that it will provide 550 

noisy estimates of ��� . 551 

When we assume observation error is homogeneous across the population, the 95% 552 

confidence intervals for the CECI tend to contain the true value of ���in >95% of 553 

cases (see Fig S3). This suggests that, at large sample sizes at least, the Wald 554 

confidence intervals are slightly too wide. However, given that Wald confidence 555 

intervals are always an approximation and are widely used in statistics, this is a 556 

minor concern. However, when observation error varied greatly across the 557 

population, the 95% confidence intervals became far too narrow (see Fig S4), as a 558 

result of the extra uncertainty that is unaccounted for in the derivation of the 559 

standard error. Correcting the standard errors for this uncertainty does not seem 560 

straightforward, though further work could address this if the CECI proves to be 561 

useful and becomes widely adopted. Therefore, we suggest that the standard errors 562 

and confidence intervals for the CECI be trusted as approximately valid if the 563 

variation in observation rate is believed to be small, and not be trusted if that 564 

variation is believed to be large. 565 

Our recommendations for the choice of association index are shown as a flowchart 566 

in Fig. 3. The indices and their standard errors are shown in Table 3. 567 

 568 

OBTAINING CALIBRATION DATA 569 

Here we suggest some initial ideas for obtaining calibration data that can be used to 570 

estimate the calibration parameters derived above. These suggestions can almost 571 

certainly be improved upon, by taking account of what data collection protocols are 572 

feasible in specific circumstances perhaps by deriving maximum likelihood 573 

estimates of calibration parameters given the data yielded by each such protocol. 574 

Here we limit ourselves to providing relatively simple intuitive ways of estimating 575 

calibration parameters. Whilst not optimal, our analysis above suggests that these 576 

methods are nonetheless likely to be an improvement on the unsupported use of a 577 

non-calibrated index such as the HWI. 578 
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Table 3: Summary of the indices considered in this paper. *Standard errors 579 

presented assume sampling periods are sufficiently spaced to be considered 580 

approximately independent, and that any calibration measures are known without 581 

error. See Supplementary Information for derivations of standard errors. 582 

Index name Formula for ��� Standard 

error* 

Effective sample size 

(Ne) 

Calibration 

measures 

required 

Simple ratio 

index   (SRI) 

% �&� � &� � &�� � %	⁄  

'(���1 � (��	)
  

&� � &� � &�� � % None 

Half weight 

index (HWI) 
% *�

�
�&� � &�	 � &�� � %+⁄  &� � &� � &�� � % None 

M weight 

index (MRI) 

% �,�&� � &�	 � &�� � %	⁄  &� � &� � &�� � % M 

Group 

location error 

corrected 

index (GLECI) 

� ��%� � &����� ���	�-�%� � &����� � ��	� � 4�/%��2�/
&� � &� � &�� � %
� &���� �(���1 � (��	��(�� � 1	�  

� 

Very simple 

ratio index 

(vSRI) 

% �&�� � %	⁄  &�� � % None 

Combined 

error 

corrected 

index (CECI) 

Not available in closed form (see assocInd package for R code to generate 

this index and standard error) 

0, � and 1 

 583 

 584 
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 585 

Figure 3: Flowchart with our suggested strategy for selecting an association index. 586 

 587 

One way a researcher might obtain estimates of calibration parameters is to collect 588 

data that can be assumed to be approximately error free for a subset of individuals, 589 

whilst simultaneously collecting association data using their standard protocol. This 590 

could be done by focal follows of a sample of individuals conducted by one 591 

researcher, whilst another collects data using the association data collection 592 

protocol. Alternatively some individuals could be tagged with GPS or proximity 593 

loggers (Kays, Crofoot, Jetz, & Wikelski, 2015; Krause et al., 2013) able to record 594 

encounters between individuals with more precision.  595 

 596 

First we suggest that a researcher assess whether or not individual identification 597 

error is present and important. This could be done by calculating the proportion of 598 

sampling periods in which each individual included in the error free dataset was 599 
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present in a group that was located using the standard protocol but not recorded as 600 

being present. If this proportion is 0 or close to 0 for most individuals, we suggest 601 

individual identification error be ignored, and the GLECI or MWI can be used. 602 

Otherwise, the CECI should be used (unless group location error is believed not to 603 

be present, in which case the vSRI should be used, which does not require 604 

calibration). 605 

 606 

If individual identification error is not present or negligible, the researcher needs to 607 

choose between the GLECI and MWI and then estimate the relevant calibration 608 

parameter (� or m). For any two individuals a and b in the error free sample, we 609 

know in which sampling periods they were together and in which they were not 610 

together. This enables the researcher to calculate �	���|��, the number of times a and 611 

b were not recorded by the association protocol during the calibration data 612 

collection period, when a and b were known to be together. C, the probability a and 613 

b will be missed when they are together, can be estimated as �	���|�� ���⁄  where ���  614 

is the number of sampling periods that a and b were known to be together. A can 615 

then be estimated as the proportion of sampling periods in which a was not 616 

recorded by the association protocol and known not to be with b. B can be estimated 617 

in an analogous manner.  618 

 619 

This process can be repeated for every combination of two individuals in the error 620 

free sample. The researcher can then use plots of these data to choose between the 621 

GLECI and MWI. If the assumptions of the GLECI hold, we would expect C to have a 622 

linear relationship with AB, with a slope of �1 � ��, whereas if the assumptions of 623 

the MWI hold, we would expect C to have a linear relationship with (A+B) with a 624 

slope of 1/m. We suggest the researcher make each plot to decide which assumption 625 

is most realistic, and thus chose between the GLECI and MWI. If the GLECI is chosen, 626 

they can then fit a linear regression (constrained to pass through the origin) of C 627 

against AB and take � = slope-1. If the MWI is chosen, they can then fit a linear 628 
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regression (constrained to pass through the origin) of C against A+B and take m = 629 

1/slope. 630 

 631 

The CECI requires estimates of �, 2 and /. / can be estimated as the population 632 

average of /�|!��. To this end, we suggest for each dyad of individuals a and b, where 633 

a is an individual for which we have error free data, we calculate L�|!��  the number 634 

of sampling periods in which the standard sampling protocol missed individual a 635 

and we know (from the error free sample) that a and b were not together. We can 636 

then estimate /�|!��� L�|!�� �!��⁄ , where �!��  is the number of sampling periods 637 

that a and b were known not to be together. / can then be estimated as the average 638 

of both /�|!�� across all dyads containing at least one individual in the error free 639 

dataset. Next the researcher can estimate �, using the relationship /��|���640 

�1 � ��  /�|!��/�|!�� in the same manner as suggested for estimating � for the 641 

GLECI above.  642 

 643 

To estimate 2 a researcher can use the relationship: 644 

/�|��� �1 � 2��1 � �� /�|!��
�/�|!��2�/�|!���/�|!��	  

 645 

For each dyad of individuals for which we have error-free data a researcher can 646 

obtain an estimate of /�|��� L�|�� ���⁄ , where L�|��  is the number of sampling 647 

periods in which the standard sampling protocol missed individual a and we know 648 

(from the error free sample) that a and b were together, and where ���  is the 649 

number of sampling periods that a and b were known to be together. Using the 650 

estimates of /�|!�� and /�|!�� obtained above, the researcher can then obtain an 651 

estimate of /�|!��
�/�|!�� �/�|!���/�|!��	M . /�|��  can be likewise be estimated as 652 

L�|�� ���⁄ , and /�|!��
�/�|!�� �/�|!���/�|!��	M  estimated as for individual a. The 653 

researcher can then fit a linear regression (constrained to go through the origin) 654 

with the set of /�|�� and /�|��  as the dependent variable and the set of 655 

/�|!��
�/�|!�� �/�|!���/�|!��	M  and /�|!��

�/�|!�� �/�|!���/�|!��	M  as the independent 656 
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variable. Since the slope of the regression will estimate  �1 � 2��1 � �� 2⁄ , we can 657 

estimate  2 � �1 � �� �",&!# � 1 � ��⁄ . 658 

 659 

A second way we suggest a researcher might obtain estimates of calibration 660 

parameters is to have two researchers or research teams independently collecting 661 

association data using their standard protocol, for a portion of the data collection 662 

period. For example, this might be done by having the second researcher (denoted 663 

Y) collect data a short time after the first (denoted X), on a short enough time scale 664 

that group composition is unlikely to have changed. Here we suggest a procedure 665 

for obtaining calibration statistics for the CECI since this reduces down to the IIECI 666 

or GLECI when the calibration data reveals the relevant component of error to be 667 

absent. 668 

 669 

We suggest that researchers first obtain estimates of  /�|!�� . Ideally we wish to 670 

estimate L��|!�� �!��⁄ , the proportion of events that X missed a given a and b were 671 

together. We suggest researchers do this by calculating the proportion of sampling 672 

periods X missed a given that Y recorded a and b in different groups (which we 673 

denote Y!ab), i.e. L��|�!�� ��!��⁄ . We can repeat this procedure, reversing the role of 674 

X and Y to obtain L��|�!�� ��!��⁄ . We can then take the mean as our estimate, i.e. 675 

/�|!��� L��|�!�� 2��!��⁄ � L��|�!�� 2��!��⁄ . / can then be estimated as the 676 

population average of /�|!��  as above. 677 

 678 

Researchers can then obtain estimates of /�|�� , the probability that individual a is 679 

missed when it is in a group with individual b. Again, we have potentially two 680 

estimates of this for each combination of a and b. First we have L��|��� ����⁄ , the 681 

proportion of sampling periods in which researcher X missed individual a given 682 

researcher Y recorded a and b together, and conversely we have L��|��� ����⁄ . We 683 

suggest /�|��  be estimated as the average of these, i.e. /�|��� L��|��� 2����⁄ �684 

L��|��� 2����⁄ . We suggest this be done for all combinations of a and b for which a 685 

and b were frequently seen together, in order to obtain estimates of � and 2. � can 686 
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be estimated using the relationship /��|��� �1 � ��  /�|!��/�|!��  in the same 687 

manner as suggested for estimating � for the GLECI above. 2 can be estimated as 688 

above by fitting a linear regression (constrained to go through the origin) with the 689 

set of /�|��  and /�|��  as the dependent variable and the set of 690 

/�|!��
�/�|!�� �/�|!���/�|!��	M  and /�|!��

�/�|!�� �/�|!���/�|!��	M  as the independent 691 

variable yielding the estimate  2 � �1 � �� �",&!# � 1 � ��⁄ . 692 

 693 

DISCUSSION 694 

 695 

Studies of animal social networks have shed new light on many ecological and 696 

evolutionary processes. For example, the structure of the social environment can 697 

shape how information (Aplin, Farine, et al., 2015; Aplin, Farine, Morand-Ferron, & 698 

Sheldon, 2012; Farine, Aplin, Sheldon, & Hoppitt, 2015) and diseases (K.L. 699 

VanderWaal, Atwill, Isbell, & McCowan, 2013; K. L. VanderWaal et al., in press) 700 

spread in wild populations. Further, they have provided important insights into the 701 

role of the social environment on shaping selection (Farine & Sheldon, 2015; 702 

Formica et al., 2011; McDonald, 2007; Oh & Badyaev, 2010; J.B. Silk, Alberts, & 703 

Altmann, 2003; J. B. Silk et al., 2010; Wey, Burger, Ebensperger, & Hayes, 2013). 704 

However, studies have used varying approaches to quantify the relationships among 705 

individuals. Whilst care is generally taken to ensure that the chosen approach has 706 

biological relevance, the underlying assumptions behind the approach used are 707 

almost never explicitly considered. The results of our study into different 708 

association indices suggests that many commonly-used approaches should be 709 

avoided as they do not accurately estimate the (absolute or relative) strengths of 710 

social bonds, which has implications on estimates of social structure and social 711 

processes occurring through social networks. 712 

 713 

Ideally, studies of animal social networks would capture information about all 714 

individuals in the study population at once. Realistically, this is unlikely to be 715 

possible in all but a very select number of studies. Thus, before constructing a social 716 
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network from a given set of data, we suggest that the following questions should be 717 

addressed: 718 

 719 

(1) How much data has been collected on each dyad? 720 

(2) Are all individuals sampled equally? 721 

(3) What proportion of the population is observed in each sample? 722 

(4) Are there any mistakes in the observations? 723 

 724 

The issues surrounding question 1 have now been relatively well outlined in the 725 

literature (Farine & Strandburg-Peshkin, 2015; Franks et al., 2010; Lusseau, 726 

Whitehead, & Gero, 2008; M. J. Silk et al., 2015; Whitehead, 2008). In general, these 727 

studies have found that collecting enough data on each dyad (at least 20 728 

observations per dyad) is important for accurately estimating global social network 729 

structure. In the current study, we address issues arising from questions 2 and 3, 730 

and how better indices can reduce the potential impact that missing observations 731 

can have on both the absolute and relative estimates of association strengths among 732 

individuals. Question 4 represents an area requiring some further investigation. 733 

 734 

Our study suggests that a critical step in the study of animal social networks will be 735 

the collection of calibration data. Currently-used association indices are all based on 736 

arbitrary rates of missing observations. For example, the half-weight index assumes 737 

that the probability of missing individuals a and b when they are together is exactly 738 

half the probability of missing either individual when they are apart. Importantly, 739 

we have shown that when this is not true, the HWI does not result in a ‘better 740 

approximation’ of the real association rate when compared to the simple ratio index. 741 

Thus, we recommend avoiding the use of the HWI, and instead using the SRI when 742 

no calibration data is available (see Figure 3). In reality, it is likely that the rates of 743 

observation could be estimated from parameters of the observation data, such as 744 

the average group size, the average number of individuals observed in a sampling 745 

period, and the average number of groups sampled. Whether these can be used to 746 

parameterize the M-weighted index warrants further investigation. 747 
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 748 

Several extensions of association indices have been proposed to deal with other 749 

issues arising when sampling populations. Godde, Humbert, Cote, Reale, and 750 

Whitehead (2013) suggest a method to correct for the fact that individuals that 751 

prefer large groups are more likely to be observed together. This involves 752 

normalizing the association index values by the two individual’s combined 753 

gregariousness (the sum of their association indices to others). To deal with other 754 

potentially confounding influences on association patterns (such as home-range 755 

overlap) when attempting to estimate true association rates, Whitehead and James 756 

(2015) propose regressing association indices against other input parameters. Our 757 

proposed indices work equally well with both of these approaches as they are 758 

simply new ways of defining the association value for pairs of individuals. The above 759 

two studies highlight how patterns of affiliation can be affected by a range of 760 

different factors. Thus, even if good calibration data can be obtained to estimate 761 

accurate relationship strengths, it will always be important to use null models when 762 

conduction hypothesis testing with animal social networks (Farine in review).  763 

 764 

We encourage further investigation into methods for collecting informative 765 

calibration data alongside the social network data. One potential avenue could be to 766 

use mark-recapture techniques that explicitly investigate detection probabilities, 767 

and these could be conditioned on having observed one or more particular 768 

individuals. There are also increasing numbers of studies that are collecting 769 

complete datasets from groups or populations of animals, and these could provide 770 

very useful data for testing different approaches to collect calibration data. A 771 

particular challenge that will arise is that social network analysis has proved 772 

particularly useful in species or communities that exhibit fission-fusion dynamics 773 

(Aureli et al., 2008; Couzin, 2006; M. J. Silk, Croft, Tregenza, & Bearhop, 2014). Here, 774 

the rate of turnover in group membership can be very rapid (for example group 775 

membership in great tits, Parus major, can be close to random after just 10 minutes, 776 

Farine, Firth, et al., 2015). Similarly, when using focal observations—following a 777 

single individuals and recording its interactions with others—the concept of a 778 
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‘group’ is unclear, and we do not yet have a definition for out to estimate the group 779 

location error. This is because all individuals can be observed, but only interactions 780 

among a subset of edges (those connected to the focal) are recorded. Thus, in such 781 

systems, more research is required to find robust approaches for collecting 782 

calibration data. 783 

 784 

In all of our simulations, and more generally in the assumptions of how well any 785 

analysis captures reality, our estimates of accuracy are a ‘best-case scenario’. In 786 

reality, most datasets will also contain erroneous observations. At best, these are 787 

simply individuals wrongly assigned into a group in which they did not occur. If 788 

such individuals (and their erroneous associates) are observed many times, then the 789 

resulting association strength will be low, and the error will be reasonably well 790 

dealt with by using weighted social networks. However, the impact of incorrectly 791 

assigning one individual identity for another could be significantly greater, 792 

especially as such errors are unlikely to be randomly distributed throughout the 793 

dataset (i.e. certain pairs of individuals are more likely to be confounded than 794 

others). No association index will be able to correct for such errors. However, the 795 

relative effect that incorrect assignments of identity have on different approaches to 796 

estimate social network structure warrants further investigation. 797 

 798 

Our paper makes it clear that we should avoid blindly using association indices 799 

without proper consideration of the assumptions that they entail. We also 800 

recommend discontinuing the use of the HWI, which Cairns and Schwager (1987) 801 

already 30 years ago identified as being problematic because of the many 802 

assumptions it makes. Instead, we recommend using properly calibrated association 803 

indices wherever possible, and using the SRI if no appropriate calibration data or 804 

estimates of rates of detectability are available. Whichever approach is used, we 805 

hope that our paper will at least encourage researchers to carefully and explicitly 806 

consider their choice of approach for estimating association strengths among 807 

individuals in their study population.  808 

 809 
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