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Abstract

Background: In self-organized systems, the concept of flow hierarchy is a useful

way to characterize the movement of information throughout a network.

Hierarchical network organizations are shown to arise when there is a cost of

maintaining links in the network. A similar constraint exists in metabolic

networks, where costs come from reduced efficiency of nonspecific enzymes or

from producing unnecessary enzymes. Previous analyses of bacterial metabolic

networks have been used to predict the minimal nutrients that a bacterium needs

to grow, its mutualistic relationships with other bacteria, and its major ecological

niche. Using flow hierarchy, we can also infer the tradeoffs between growth rate

and metabolic efficiency that bacteria make given their environmental constraints.

Results: Using a comparative approach on 2,935 bacterial metabolic networks,

we show that flow hierarchy in bacterial metabolic networks tracks a fundamental

tradeoff between growth rate and biomass production, and reflects a bacterium’s

realized ecological strategy. Additionally, by inferring the ancestral metabolic

networks, we find that hierarchy decreases with distance from the root of the

tree, suggesting the important pressure of increased growth rate relative to

efficiency in the face of competition.

Conclusions: Just as hierarchical character is an important structural property in

efficiently engineered systems, it also evolves in self-organized bacterial metabolic

networks, reflects the life-history strategies of those bacteria, and plays an

important role in network organization and efficiency.
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Background3

In characterizing bacteria, we seek to understand both their internal processes and4

how they interact with other species and their environments. Techniques in cell and5

molecular biology have been very helpful in revealing the inner workings of bacte-6

ria, but do not address the ecological context in which bacteria develop and live.7

Increasingly, metagenomic techniques are being used to simultaneously sequence all8

of the bacteria present in a given environment. However, these techniques can only9

provide limited information about particular species, where they are found, their10

relative abundances, and co-occurrence patterns.11

By studying the structure and evolution of a bacterium’s metabolic network, we12

can move beyond correlational profiles to understand both the underlying pressures13

that have driven its evolution as well as the ecological role it occupies. A bacterium’s14

ability to reproduce depends on the efficiency of its metabolism, which we can15

study as a network of metabolites linked together by the enzymes that transform16

one metabolite into another [1]. The structure of these networks varies across the17

bacterial kingdom and reflects the environmental pressures that guide bacterial18

evolution. Thus, a bacterium’s metabolic network can be used to predict the minimal19

nutrients that it needs to grow, its mutualistic relationships with other bacteria, and20

its major ecological niche [2][3][4]. In describing metabolic networks, two types of21

hierarchies can be helpful: flow hierarchy and containment hierarchy.22

Previous study of the hierarchical nature of metabolic networks has tended to23

focus on containment hierarchy, which represents the nodes in a network as being24

contained within modules, which themselves are contained within other modules,25

and so on, in a recursive fashion. For example, a containment hierarchy may be used26

to represent the organization of a firm, with divisions, departments, teams and in-27

dividual employees. Applied to metabolic networks, such modules correspond to28

known pathways [11][12], and modular hierarchy has been hypothesized to increase29

evolvability of metabolism [13]. Simulations of Boolean logic networks have sug-30

gested that modularity evolves in changing environments, and it has been hypothe-31

sized that this would be reflected in bacterial metabolic networks[14][15]. However32

this has not been borne out [16]; differences in modularity of metabolic networks33

have been found to be moderately correlated with the phylogenetic divergence of34
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the organisms, and there is a general trend of loss of modularity over evolutionary35

time due to the addition of peripheral pathways during niche specialization [17].36

In this work, we focus on the heretofore neglected type of hierarchy: flow hierarchy.37

While containment hierarchy represents the organization of a network as a series38

of modules, flow hierarchy characterizes the way information moves throughout the39

network. Information is acquired at the lowest level of the hierarchy and transmitted40

to higher levels, where it is aggregated and passed upward; at the same time orders41

come from the top of the hierarchical network and are passed down to lower levels.42

Flow hierarchy is used to describe networks in many fields, particularly in the43

study of information accrual networks. In engineering, information accrual networks44

are used in the design of control systems, and in the social sciences, they are used to45

study the organization of firms [5][6]. To use the example of the firm, flow hierarchy46

could be used to represent the movement of orders and responsibilities throughout47

the firm, as low-level employees report upwards to supervisors who aggregate reports48

for department heads and so on, while orders flow downward from decision makers49

to executors. As bacteria synthesize the complex molecules needed for survival, they50

reduce the overall entropy within the cell. Given the thermodynamic equivalence of51

entropy reduction and information accrual, this reduction can also be viewed as an52

increase of information. Thus we can use the metabolic network graph to study the53

flow of information through the cell.54

Although flow hierarchy (hereafter referred to as hierarchy) has not been well stud-55

ied in metabolic networks, it has been identified in a variety of other self-organized56

networks, including food webs, neural networks, and the transcription factor net-57

work in D. melanogaster, where the degrees of hierarchy were significantly higher58

than would be expected in a random network with the same degree distribution [7].59

In studying hierarchy in metabolic networks, we are able not only to learn that60

hierarchy appears higher than would be expected by a random configuration, but61

also to assess adaptive benefits that hierarchy provides.62

These findings show that hierarchy is common among self-organized networks,63

but they do not explain when hierarchical network organization would provide a64

selective advantage. A number of comparative approaches have been used to make65

inferences about the forces guiding the development of networks in other disci-66

plines, and from them we can deduce some of the adaptive benefits that hierarchy67
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provides. Simulated evolution experiments of Boolean logic networks have shown68

that the cost of maintaining links between nodes is the driving force in the emer-69

gence of hierarchy [19]. Hierarchical characteristics have also been shown to predict70

the costs of maintaining information-sharing relationships in emergent social net-71

works and reflect the degree of market variability that supply chains may be able to72

withstand [21]. We know that bacterial metabolic networks face similar constraints.73

Maintaining catalytic abilities between metabolites incurs a cost either as a trade-74

off between specificity and efficiency, or from production and replication of unused75

enzymes [20][22]. We show that the strength of these constraints is correlated with76

degree of hierarchy in metabolic networks.77

To measure flow hierarchy quantitatively, researchers commonly use the global78

reaching centrality (GRC), defined as the average difference between the maximum79

local reaching centrality (i.e. fraction of nodes in the network accessible by each node80

of the network) and the local reaching centrality [23]. In essence, GRC is a measure81

of heterogeneity in the flow of information throughout a network. For example, a82

dictatorial firm where the boss exerts great influence over the entire company while83

individual employees have little sway would have a higher GRC than a consulting84

firm run by a group of partners, each of whom oversees a small group of highly85

collaborative employees. Other, less widely used measures of flow hierarchy are an86

eigenvector centrality based method, the fraction of edges participating in cycles,87

or by decomposition into treeness, feedfowardness, and orderability [7][8][9].88

Studying the evolution of containment hierarchy can tell us about the environ-89

mental contingencies that inform the evolution of metabolic networks (e.g. resource90

availability, temperature, environmental variation, etc). However, by studying flow91

hierarchy we can also infer the different growth strategies a bacterium may pursue,92

furthering our understanding of how it fills its ecological niche [13]. We employ93

the reverse ecology principle to understand how the hierarchical character of a94

metabolic network reflects the life-history strategy of a bacterium in relationship to95

the growth-yield tradeoff, as well as its environmental niche. As bacteria first adapt96

to new habitats they may develop novel metabolic functions, leading to an increase97

in hierarchy, since the new metabolic functions are added to the periphery of the98

network.99
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As those ecosystems evolve, however, some bacteria may adopt higher-growth100

rate strategies in response to increased competition, at the expense of efficiency101

and consequently metabolic network hierarchy. Since only some bacteria adopt such102

high-growth rate strategies, while others maintain higher degrees of hierarchy and103

efficiency, variance in hierarchy increases overall. Though both hierarchy and mod-104

ularity correlate with bacterial specialization, we find that, contrary to the Boolean105

network simulations, there is little evolutionary relationship between the two, and106

that there is more conservation of hierarchy than modularity over time.107

108

Results and Discussion109

Networks110

Networks were reconstructed from 2,935 bacteria species in the KEGG database.111

These networks were robust to misannotation of enzymes. In random perturbations112

of the metabolic network for E. coli with 10% of the reactions removed, 95% the113

networks had hierarchy scores within 12% of the true network, and with 10% of114

reactions reversed, within 6% of the true network.115

Network sizes ranged from 76 to 1496 metabolites, with a mean of 848. The116

smallest was the obligate insect parasite Nasuia deltocephalinicola and the largest117

was the soil bacterium Burkholderia lata.118

Hierarchy119

Hierarchy scores for the metabolic networks were calculated using the GRC hierar-120

chy score [23]. The mean degree of hierarchy was 0.279, and ranged from 0.065, for121

the insect symbiote Candidatus Nasuia deltocephalinicola, to 0.385 for a Blattabac-122

terium endosymbiont of Nauphoeta cinerea, an insect endosymbiote. The hierarchy123

score for E. coli strains was 0.269 (Figure 1). For comparison with a random net-124

work and real world networks, GRC hierarchy scores for an Erdős-Rényi random125

graph is 0.058, a scale-free network 0.127, and a tree 0.997, an estuary food web126

0.814, and the neuronal network of C. elegans [23].127

Relationship to environment and growth rate128

There is a fundamental ecological trade off between growth rate and yield, which is a129

result of the underlying efficiencies of the reactions. Bacteria that have a metabolism130

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2017. ; https://doi.org/10.1101/118299doi: bioRxiv preprint 

https://doi.org/10.1101/118299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Goodman and Feldman Page 6 of 15

that produces the maximal growth rate per amount of carbon taken up will have131

suboptimal biomass production, and vice versa.132

This tradeoff is representative of fundamentally divergent ecological strategies that133

bacteria use [24]. Furthermore, the tradeoffs between growth and yield are repre-134

sented in the constraints on the metabolic network, such that high-yield strategies135

lead to more hierarchical networks. There is a tradeoff between enzyme specificity136

and efficiency, so when yield is favored there will be higher costs of maintaining137

edges in the network, which leads to hierarchy [25] [20]. Rapidly growing bacte-138

ria have more metabolic cycles which allow for metabolic flexibility at the cost of139

wasted energy, and these cycles decrease hierarchy [26]. The cost of maintaining140

unused enzymes in the genome is higher when efficiency is paramount [22].141

Using a dataset of 111 bacteria with known growth rates, we see that the hier-142

archical character of the network correlates inversely with growth rate, Spearman143

ρ = −0.31, p < 0.0007, fig 2. Furthermore, there is evidence that carbon efficiency144

constraints on bacteria differs greatly by environment, and that the evolutionary dy-145

namics of carbon usage niche specialization are stronger within populations [27][28].146

When we control for the bacterial environment, we see a correlation of ρ = −0.41,147

which is significantly greater than 0 (p < 0.0001, and significantly greater than the148

correlation when not controlling for the environment p < 0.003). Bacteria with hier-149

archy score greater than the median hierarchy score grow at a rate of 0.64 doublings150

per hour, compared to 1.44 doublings per hour for bacteria with hierarchy score less151

than the median, i.e. bacteria with the less hierarchical metabolic networks grow152

2.25 times faster than those with more hierarchical networks (p < 0.0002).153

Thus the hierarchical character of the metabolic networks reflects the growth154

rate of the organisms and their environmental niche. These constraints of edge155

weight and tradeoffs between hierachical and ahierachical networks in metabolism156

are similar to those made in social networks and supply chains [20] [21].157

Relationship to other network properties158

In addition to measuring hierarchy, we evaluated a number of other network statis-159

tics. We computed node count, edge count, modularity (as evaluated by the Girvan-160

Newman algorithm [29]), clustering coefficient, full diameter, effective diameter,161

number of strongly connected components, proportion of the nodes in the largest162
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strongly connected component, and Luo Hierarchy score, an alternative metric of163

hierarchy that measures the proportion of edges that do not participate in any cy-164

cles. Edge and node count correlated most strongly with genetic distance. However,165

after these basic structural properties, the statistics that correlated most highly166

with genetic distance were the Girvan-Newman modularity score and the GRC hi-167

erarchy score (Table 1). We also computed the partial correlation for each variable168

with genetic distance, controlling for the others, and found that the GRC metric169

had the highest partial correlation.170

Hierarchy Over Time171

The hierarchy of the KEGG bacteria and reconstructed ancestors seems to first172

increase, and then decrease with distance from the root of the tree (Figure 3).173

Interestingly, with the dataset of 2,935 from the latest KEGG database, the cor-174

relation of modularity and distance from the root of the tree found by Kreimer et175

al. [17] is actually reversed. Modularity appears to increase rather than decrease176

with distance from the root, (Figure 4). This correlation remains positive when177

restricting analysis to the species used by Kreimer et al..178

As bacteria specialize to niches in a given ecosystem, they take on different179

metabolic strategies, which are reflected in the hierarchical profile of the metabolic180

network. This difference in strategies is consistent with the rise and fall of hierarchy181

over the evolutionary trajectory. As microbes first adapt to new environments or182

habitats (niche sensu Grinnell) they must gain novel metabolic functions, which are183

added as pathways in the periphery in the network and which increases the hier-184

archical character [30]. As complex relationships develop within the habitats, and185

bacteria adapt to different resource use profiles and competitive strategies (niche186

sensu Elton), the hierarchical profile of the metabolic network diversifies. Thus, the187

decrease in hierarchy over evolutionary time is caused by more bacteria specializing188

in a rapid-growth strategy, but the increasing variance in hierarchy reflects the fact189

that not all bacteria adopt this strategy. In studying the adaptive strategies chosen190

by different bacteria, we may be able to make inferences about the bacteria and191

their environments, as well as the interplay between evolutionary and ecological192

dynamics.193
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Correlation of Modularity and Hierarchy194

Hierarchy and modularity are global properties of metabolic networks. Both cor-195

relate with bacterial specialization and both change with distance from the root196

of the phylogenetic tree. Using the method of phylogenetic independent contrasts197

to look for correlation independent of phylogenetic structure, we found a mod-198

erate inverse correlation between modularity and hierarchy (Pearson correlation199

r = −0.18, p < 10−15), suggesting little evolutionary relationship between modu-200

larity and hierarchy [31]. Interestingly, simulated Boolean networks demonstrate a201

positive correlation between modularity and hierarchy [19].202

Conclusion203

Characterizing the hierarchical structure of metabolic networks is useful in un-204

derstanding the constraints under which these networks evolve. Hierarchy corre-205

lates with phylogenetic divergence, as would be expected for a trait subject to206

natural selection. This correlation is similar to the correlation of phylogenetic dis-207

tance and modularity, suggesting that the hierarchical organization of networks,208

like modular organization, is important for function. However, modularity should209

be viewed as complementary to, rather than supplanted by, hierarchy when analyz-210

ing the global organization of metabolic networks. Both structural properties are211

conserved across phylogenies and evolve together. A better understanding of the212

character of metabolic networks is valuable in the growing field of ‘reverse ecol-213

ogy,’ in which the observed networks can be used to make inferences on possible214

environments [2][32][33].215

By algorithmically reconstructing the metabolic networks, we are able to perform216

a larger-scale analysis than has previously been reported. Although the reaction217

annotations in KEGG may be prone to errors or omissions, we find that the GRC218

hierarchy metric is robust to small amounts of reaction omissions or reversals. By219

expanding the scope of the analysis, we find that modularity is actually inversely220

correlated with distance from the root of the tree, contrary to what has been found221

in previous studies of a more limited set of bacteria.222

From reconstructed ancestral metabolic networks, we are able to infer how hierar-223

chy evolves in networks over time, and understand the interplay between evolution-224

ary and ecological dynamics. Hierarchy shows an increase followed by a decrease225
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across the phylogenetic tree, which is reflective of the adaptive process of bacteria,226

first to novel fundamental niches, and then to a realized niche. The net trend in227

decreasing hierarchy reflects a dominance of fast-growth, low-efficiency strategy.228

Methods229

Hierarchy Metric230

Hierarchy scores were calculated using the global reaching centrality metric devel-231

oped by Mones et al., which is based on the local reaching centrality [23]. The232

local reaching centrality (LRC) of a node in a network is the fraction of the nodes233

of the network that can be reached starting at the focal node. More precisely, if234

the metabolic network is represented as a graph, G = (V,E) it can be said that v235

reaches v′ if there exists a series of edges (v, vi), (vi, vj)...(vj , v
′) ∈ E. Let R(v) be236

the set of nodes v′ ∈ V where v′ is reachable from v. Then the LRC of v is |R(v)|−1
|V |−1 .237

The GRC is then 1
|V |−1

∑
v∈V maxv′∈V LRC(v′)− LRC(v)238

Modularity Metric239

The modularity metric was calculated using the SNAP package [34]. The modularity240

of a network is the optimal partitioning of the nodes into clusters to maximize241

Q = 1
4m

∑
ij

(
Aij − kikj

2m Iij

)
. Where m is the number of edges in the network, Aij242

is the adjacency matrix, i.e. Aij is 1 if there is an enzyme that converts metabolite243

i into metabolite j. ki is the number of reactions that metabolite i participates in,244

and Iij = 1 if i and j are in the same module, and −1 otherwise. Since finding the245

global optimal of Q is an NP-hard problem, we use the method developed by Girvan246

and Newman, which partitions the network by iteratively removing the edge with247

the highest betweenness centrality [29].248

Robustness of Reconstruction249

The KEGG database is large, with heavy manual curation; however, this does not250

mean that the data are always perfect. A reaction may be favorable in one direction251

in a model organism in laboratory conditions, but might proceed in the opposite252

direction or become bidirectional in different environments or species. It is also253

possible that reactions are missing from the database, or that an enzyme placed254

in an orthology group based on the study of one species may catalyze a different255

reaction in other species. To evaluate robustness to errors in the KEGG database,256
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we examined the network for the well-studied bacterium, E. coli. We performed 100257

replicates dropping or reversing 10% of the reactions, evaluated the hierarchy scores258

of these networks, and calculated the spread of the central 95% of hierarchy scores.259

Reconstruction of Genetic Distance260

Following the methods often used in bacterial comparative genomics [35][3][36], for261

each of the 2,935 species, the 16s ribosomal sequence from KEGG was aligned to262

the Greenegenes database using PyNast, resulting in multiple sequence alignments263

for the 2,935 species [37][38]. The genetic distances between all pairs of bacterial264

species were computed using the Kimura distance metric [39].265

Reconstruction of Networks266

For each bacterial species, a network of metabolites was inferred based on the en-267

zymes present in the genome, the reactions known to be catalyzed by the enzymes268

present or orthologous enzymes, and a database of reaction substrates and prod-269

ucts. The KEGG database of the genomic content of the 2,935 bacterial genomes270

was used to identify which enzyme classes were present in each genome and which re-271

actions were present [40]. The reaction information from KEGG was supplemented272

by a the bioreaction database from Stelzer et al. which excludes currency metabo-273

lites, improves on predictions of directionality of reactions, and, for reactions with274

multiple substrates and products, provides carbon tracking of which substrates are275

converted to which products [41]. Using this reaction information, networks were276

constructed with metabolites as nodes, and a directed edge was placed between277

metabolites if there was a reaction that converted one metabolite to another. If re-278

actions were reversible, then bi-directional edges were added between the substrates279

and products.280

Ancestral Networks281

To construct the ancestral networks, a phylogenetic tree was reconstructed using282

RAxML 8.2.9 and the 16-state GTR nucleotide substitution model with gamma283

rate heterogeneity [42]. The branch-length weighted average bootstrap support of284

the partitions over 300 trees was 85.4. Using the maximum likelihood estimate of the285

best tree, at each interior node of the phylogenetic tree, a genome was constructed286

using the Fitch small parsimony algorithm. In cases where the presence or absence287
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of a gene was equally parsimonious, the gene was randomly selected to be included.288

These ancestral genomes were then used to reconstruct ancestral networks, just as289

the networks were constructed on the leaves of the tree.290

Niche strategies291

Growth rate data for 113 bacterial species and environmental annotations for those292

bacteria, which for 68 species were gathered from NCBI, and manual curation fol-293

lowing literature review was used for the remaining 45 [43][4]. Due to their low294

number, the two aquatic species in the data set were excluded from further anal-295

ysis. Correlations were calculated as Spearman’s ρ. To calculate correlation con-296

trolling for environment, ρ was calculated within each environment, and a species297

weighted-average across environments was computed. Due to several bacteria hav-298

ing the same growth rates, p-values were calculated using permutation tests rather299

than the Student’s t-distribution approximation. Significance tests were performed300

with 100,000 permutations each. For the overall ρ, permutations were done across301

all bacteria. To test the strength of the habitat-controlled correlation, growth rates302

were permuted within habitat classes and the species-weighted ρ was computed for303

each permutation. To test the effect of controlling for the environment, habitat la-304

bels were permuted and the difference between the species weighted ρ and overall305

ρ was computed.306
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Correlation Partial Correlation

Node Count 0.26∗∗∗ 0.03∗∗∗

Edge Count 0.27∗∗∗ -0.02∗

Modularity 0.28∗∗∗ 0.05∗∗∗

GRC Hierarchy 0.28∗∗∗ 0.17∗∗∗

Luo Hierarchy 0.22∗∗∗ -0.06∗∗∗

Largest SCC Fraction 0.30∗∗∗ 0.12∗∗∗

Cluster Coefficient 0.13∗∗∗ 0.03∗∗∗

Full Diameter 0.23∗∗∗ 0.06∗∗∗

Effective Diameter 0.20∗∗∗ 0.01

SCC Count 0.14∗∗∗ 0.02∗∗

Mean Degree 0.24∗∗∗ -0.04∗∗∗

Table 1 Correlation of network statistics with phylogenetic distances, and partial correlation of
network statistic with phylogenetic distance, controlling for the other variables. The correlation
and partial correlation of GRC Hierarchy metric with genetic distance is higher than all other
non-trivial metrics. ∗∗∗: p value < 0.001, ∗∗: p value < 0.01, ∗: p value < 0.05.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2017. ; https://doi.org/10.1101/118299doi: bioRxiv preprint 

https://doi.org/10.1101/118299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Goodman and Feldman Page 16 of 15
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1 Histogram of GRC hierarchy scores of the 2,935 bacteria in the425

KEGG database. Mean degree of hierarchy is 0.279, ranging from426

0.065 for the insect symbiote Candidatus Nasuia deltocephalinicola427

to 0.385 for a Blattabacterium endosymbiont of Nauphoeta cinerea,428

an insect endosymbiont. The hierarchy score for E. coli strains is 0.269. 17429

2 The relationship between hierarchical character and growth rate re-430

flects fundamental tradeoffs between growth and yield and is informa-431

tive about the ecological niche the bacteria occupy. Overall, growth432

rate is inversely correlated with hierarchy (Spearman’s rank correla-433

tion, ρ = −0.31, p = 0.00065). When controlling for bacterial envi-434

ronment the trend becomes stronger (ρ = −0.41, p = 0.0001). The435

outlier in the facultative parasite pane is Borrelia burgdorferi, which436

is an obligate parasite that alternates between insect and vertebrate437

hosts, and thus is similar to the obligate parasites. The particular438

strain also lacks a number of enzymes in its glycolysis pathway that439

are present in other B. burgdorferi strains that have hierarchy scores440

of 0.183± 0.002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18441

3 Hierarchy has a slight overall decrease with phylogenetic distance442

(Spearman’s rank correlation, ρ = −0.06, p < 10−6). Hierarchy ap-443

pears to increase and then decrease further from the root of the tree. 19444

4 Modularity increases with phylogenetic distance (Spearman’s rank445

correlation, ρ = 0.31, p < 10−15). . . . . . . . . . . . . . . . . . . . . 20446
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Figure 1 Histogram of GRC hierarchy scores of the 2,935 bacteria in the KEGG database. Mean
degree of hierarchy is 0.279, ranging from 0.065 for the insect symbiote Candidatus Nasuia
deltocephalinicola to 0.385 for a Blattabacterium endosymbiont of Nauphoeta cinerea, an insect
endosymbiont. The hierarchy score for E. coli strains is 0.269.
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Figure 2 The relationship between hierarchical character and growth rate reflects fundamental
tradeoffs between growth and yield and is informative about the ecological niche the bacteria
occupy. Overall, growth rate is inversely correlated with hierarchy (Spearman’s rank correlation,
ρ = −0.31, p = 0.00065). When controlling for bacterial environment the trend becomes stronger
(ρ = −0.41, p = 0.0001). The outlier in the facultative parasite pane is Borrelia burgdorferi, which
is an obligate parasite that alternates between insect and vertebrate hosts, and thus is similar to
the obligate parasites. The particular strain also lacks a number of enzymes in its glycolysis
pathway that are present in other B. burgdorferi strains that have hierarchy scores of
0.183± 0.002.
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Figure 3 Hierarchy has a slight overall decrease with phylogenetic distance (Spearman’s rank
correlation, ρ = −0.06, p < 10−6). Hierarchy appears to increase and then decrease further from
the root of the tree.
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Figure 4 Modularity increases with phylogenetic distance (Spearman’s rank correlation, ρ = 0.31,
p < 10−15).
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