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Abstract: 28 

Current T-cell epitope prediction tools are a valuable resource in designing targeted immunogenicity 29 

experiments. They typically focus on, and are able to, accurately predict peptide binding and presentation by 30 

major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells. However, 31 

recognition of the peptide-MHC complex by a T-cell receptor is often not included in these tools. We developed 32 

a classification approach based on random forest classifiers to predict recognition of a peptide by a T-cell and 33 

discover patterns that contribute to recognition. We considered two approaches to solve this problem: (1) 34 

distinguishing between two sets of T-cell receptors that each bind to a known peptide and (2) retrieving T-cell 35 

receptors that bind to a given peptide from a large pool of T-cell receptors. Evaluation of the models on two 36 

HIV-1, B*08-restricted epitopes reveals good performance and hints towards structural CDR3 features that can 37 

determine peptide immunogenicity. These results are of particularly importance as they show that prediction of 38 

T-cell epitope and T-cell epitope recognition based on sequence data is a feasible approach. In addition, the 39 

validity of our models not only serves as a proof of concept for the prediction of immunogenic T-cell epitopes 40 

but also paves the way for more general and high performing models.  41 
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Introduction 42 

Immunoinformatics strives to computationally explore the increasingly large amounts of available 43 

immunological data by providing researchers with the necessary tools to gain novel insights into key processes 44 

of the immune system. The necessity of such immunoinformatics tools becomes particularly apparent in light of 45 

the huge complexity that underlies essential immunological processes. As the immune system has to be able to 46 

recognize a vast repertoire of non-self epitopes, it has adopted several strategies to cope with the wide range of 47 

pathogens and pathogen-derived epitopes it might come into contact with. To mount an adequate defence, the 48 

activation of the adaptive immune system requires recognition of these pathogen-derived epitopes by TCRs. 49 

Epitopes from within the cell and the extracellular environment are respectively bound by MHC class I and 50 

MHC class II molecules (Jensen 2007). The peptide-MHC (pMHC) complex is subsequently presented on the 51 

surface of the cell, where it can be recognized by the TCR of circulating CD8+ T-cells (for MHC-I) or CD4+ T-52 

cells (for MHC-II) (Rossjohn et al. 2015). A cascade of downstream immunological pathways will then be 53 

triggered within the T-cell with the goal of eliminating the invading pathogen from which the epitope was 54 

derived. TCRs are able to bind such a wide variety of pMHC complexes due to the genetic recombination of the 55 

V and J regions in the TCR’s α chain and the V, D and J regions in the TCR’s ß chain (Krangel 2009). These 56 

recombination events results in an estimated 1015 possible different TCRs (Turner et al. 2006). 57 

Both antigen processing and presentation by MHC molecules are well-studied processes and have been 58 

documented in detail for both MHC class I and MHC class II molecules. A range of immunoinformatics tools 59 

have addressed the fundamental question of which peptides will be presented by a certain MHC molecule (Soria-60 

Guerra et al. 2015). Several of these tools are able to predict putative epitopes with high accuracy. Furthermore, 61 

they often account for biologically relevant pre-processing steps such as proteasomal cleavage of proteins and 62 

transport of peptides into the endoplasmic reticulum by TAP transporters (Stranzl et al. 2010). Despite the 63 

diversity of possible pMHC combinations, these tools offer researchers a reliable way of setting up focused 64 

immunogenicity experiments by reducing the number of peptides that need to be experimentally tested (7-11). 65 

The success of these prediction tools stems from both our intimate understanding of the underlying biochemical 66 

processes as well as from the large amounts of pMHC affinity data that are available in public repositories such 67 

as the Immune Epitope Database (www.iedb.org) (Vita et al. 2015). However, it is important to note that while it 68 

is required that immunogenic peptides are presented to T-cells by an MHC molecule, this is not sufficient to 69 

warrant recognition by a TCR and subsequently elicit an immune response. Although these pMHC prediction 70 

methods claim to predict T-cell epitopes, they do so without any knowledge or contribution from the T-cell 71 
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repertoire. These prediction tools are mainly able to differentiate between MHC-bound peptides, which could 72 

potentially be recognized by a TCR, and those peptides that are not bound by the specific MHC molecule under 73 

investigation. However, no such prediction tools exist for TCR-sequences and a given MHC-bound peptide and 74 

it is a concern if such predictions are even possible given the complexity of the recognition and the lower 75 

quantity of data. 76 

Previous research has demonstrated that there is a differential contribution of the amino acid position in the 77 

epitope to its immunogenicity (Calis et al. 2013). As the CDR3 region of the TCR is known to interact with the 78 

MHC presented peptide (Jorgensen et al. 1992), it is to be expected that structural determinants within this 79 

region also contribute significantly to peptide recognition. In this study, we demonstrate the feasibility of 80 

constructing accurate TCR-epitope recognition predictors based on the amino acid sequence of the TCR protein. 81 

We explore the patterns underlying the interaction between peptides and TCRs, focusing on those patterns within 82 

the CDR3 region that determine epitope recognition.  83 
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Results 84 

Data on peptide-TCR interactions was collected from Costa et al. (2015) for two well-defined and dominant 85 

HLA-B*08-restricted HIV-1 epitopes. Control data, consisting of CD8+, HLA-B*08-restricted TCRβ sequences, 86 

was retrieved from the ImmuneACCESS database. For each dataset, the following descriptive statistics were 87 

calculated: total number of TCRβ sequences, unique CDR3 sequences, V/J families and V/J genes and the 88 

Shannon-Wiener diversity of CDR3 sequences, V/J families and V/J genes (table 1). Higher Shannon-Wiener 89 

diversity values reflect a more uniform population and/or a population with more unique samples. CDR3 90 

sequences are the most diverse component in all datasets, followed by V gene diversity, J gene diversity, V 91 

family diversity and finally J family diversity. While the majority of CDR3 sequences that occur in a given 92 

dataset are unique, some CDR3 sequences do frequently reoccur, though the number of reoccurring CDR3 93 

sequences is several orders of magnitudes lower. The negative control set is always the most diverse when 94 

comparing diversity between datasets, except for J family diversity, where the usage is slightly more uniformly 95 

spread across the data for the negative control TCRs than the epitope-specific TCRs. These results indicate a 96 

slightly restricted diversity of the epitope-specific TCR datasets when compared to the negative control set 97 

(figure 1).  98 

A highly performant classifier to distinguish two target epitopes 99 

To test whether it is feasible to predict binding between a CD8+ T-cell’s TCRß and an epitope, we first tested a 100 

‘one-versus-one’, random forest classifier scheme where the classifier attempts to predict which of the two HIV 101 

epitopes a TCR sequence is most likely to be bound in a mutually exclusive way. The input features were 102 

derived from the V and J genes as well as the CDR3 sequence of the ß chain of the TCR. The performance of 103 

this classifier was evaluated within a repeated subsampling validation approach in which part of the data is used 104 

as an independent test set for the trained classifier. This validation showed that the average classifier had a mean 105 

accuracy of 75.90% ± 5.45%, a mean AUC of 0.84 ± 0.05 and a mean PR of 0.81 ± 0.06 (FLKEKGGL) and 0.89 106 

± 0.04 (EIYKRWII) on independent test data. The high accuracy indicates that, in general, there is a high rate of 107 

both true positives and true negatives; in essence, the classifier is able to correctly assign to which peptide a 108 

given TCR will bind. As AUC values range from 1 (perfect prediction) to 0 (completely wrong prediction), with 109 

a value of 0.5 representing completely randomly assigned labels, the resulting average AUC value demonstrates 110 

that the classifier performs significantly better than random (one sample t-test; p < 0.001) (figure 2a). Finally, the 111 

mean PR, ranging between 0 (no true positives among predicted positives) and 1 (only true positives among 112 
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predicted positives), demonstrates that the averaged classifier is able to retain a high predictive quality even 113 

under increasing numbers of predicted positives (figure 2b, 2c). 114 

Features with high discriminatory power within the classifier can be supposed to play prominent roles within the 115 

biological recognition process between peptide and TCR. We thus investigated which features were most 116 

important during the model’s classification process. Despite the high number of features included in the 117 

classifier due to the positional encoding employed, only a limited number of features were assigned a large 118 

importance within the classification scheme (figure 2d). High-scoring features included averaged 119 

physicochemical properties (basicity, helicity, hydrophobicity) as well as physicochemical properties of the 120 

amino acids located slightly upwards of the centre of the CDR3 region (position 1 and 2). The only feature 121 

directly linked to a single amino acid is the overall arginine count within the CDR3. A notable absence of 122 

features encoding for single amino acids or V/J genes was observed among highly discriminatory features, even 123 

though they make up the bulk of the generated features.  124 

Epitope-specific TCRs can be picked out of a large TCR background 125 

Evaluation of the ‘one-versus-one’ classifier scheme shows that differentiating between two peptides based on 126 

TCRβ sequence derived features is a feasible task. However, the scope of such a classifier remains limited in its 127 

applicability. To explore to which extend TCRβ sequence information can support sequence based TCR epitope 128 

predictors, we generalized the problem to identifying TCRβs that bind a given peptide from a larger set of 129 

TCRβs. This ‘one-versus-many’ scheme was applied and tested for both the FLKEKGGL and EIYKRWII 130 

peptide using non-epitope specific HLA-B*08-restricted, CD8+ TCR sequences as a negative control. While it is 131 

not known whether any of these control T-cell receptor sequences are capable of recognizing either B*08-132 

FLKEKGGL or B*08-EIYKRWII, the upper limit of the expected abundance of T-cells that recognize a specific 133 

HLA-peptide combination has been estimated at 100 cells per million naïve T-cells (Jenkins and Moon 2012). 134 

As such, we assume that very few to none of these TCRßs are capable of interacting in a functionally relevant 135 

way with either of two HIV epitopes.  136 

On the FLKEKGGL as well as the EIYKRWII peptide, the same pipeline was applied. TCRβ sequence features 137 

were generated in the same way as in the ‘one-versus-one’ classifier scheme. The performance of a classifier 138 

trained following the ‘one-versus-many’ scheme was evaluated within a repeated subsampling validation 139 

approach. Evaluation of the classifier revealed a mean accuracy of 93.78% ± 0.66%, a mean AUC of 0.80 ± 0.05 140 

and a mean PR of 0.52 ± 0.06 for the EIYKRWII peptide. For the FLKEKGGL peptide, a mean accuracy of 141 

94.45% ± 0.72%, a mean AUC 0.82 ± 0.05 of and a mean PR 0.61 ± 0.07 of were obtained. Evaluation metrics 142 
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again indicate that both classifiers perform significantly better than random based on the AUC value (p < 0.001 143 

for both the EIYKRWII and FLKEKGGL peptide) (figure 3a, 3b) and reach similar performance levels as the 144 

‘one-versus-one’ approach. The accuracy seemingly increases for the ‘one-versus-many’ classifiers as a 145 

consequence of class imbalance in the dataset (10 negative cases for every positive case) and is thus only 146 

marginally higher than the base accuracy of 0.91. PR values drop rapidly in comparison to the ‘one-versus-one’ 147 

scheme, likely also due to the class imbalance (figure 3c, 3d). With a higher number of negative classes, it 148 

becomes increasingly more difficult to retain a high predictive quality of the positive class and a low number of 149 

false positive predictions already severely affects precision. Given the increased complexity of the task, the 150 

slight drop in performance of the ‘one-versus-many’ classifiers is not completely unexpected. However, ‘one-151 

versus-many’ classifiers are able to retain a high level performance level and reinforce the feasibility of creating 152 

more complex TCR epitope predictors. Differences in performance between the two ‘one-versus-many’ 153 

classifiers are likely to be a consequence of the number of patterns captured by the classifier that underlie 154 

recognition of the p-MHC by the TCR chain under investigation. 155 

Discriminatory features are similar in the one-versus-one or one-versus-many setting 156 

To further explore the patterns captured by the classifier, highly discriminatory features were extracted from the 157 

classifier. Discriminatory features for the EIYKRWII peptide are focused on basicity and hydrophobicity, 158 

reflecting a similar pattern of features as found for the ‘one-versus-one’ scheme (figure 3e). Average basicity of 159 

the CDR3 amino acid sequence and basicity/hydrophobicity of amino acids near the centre of the CDR3 160 

sequence seem to play the important roles next to the isoelectric point of the CDR3 sequence. The number of 161 

arginines within the CDR3 sequence was again found to be a discriminatory feature and potentially provides a 162 

more specific insight into the structural dimension of the interaction characteristics. While the FLKEKGGL 163 

peptide based classifier also relies heavily on hydrophobicity derived features of the CDR3 region to 164 

discriminate between binding and non-binding TCRs, helicity derived features seem to replace basicity derived 165 

features in importance. Similarly as to the most important features for the EIYKRWII peptide, these 166 

physicochemical properties seem to be concentrated near the centre of the CDR3 sequence (figure 3f). The 167 

CDR3 sequence’s length seems to be another important contributing factor together with the number of lysines 168 

in the CDR3 sequence. Overall, important features for both ‘one-versus-many’ based classifiers match well with 169 

those found for the ‘one-versus-one’ classifier, indicating that classifiers are able to faithfully retrieve important 170 

epitope-recognition patterns, even in different contexts. 171 

More TCR training samples result in a more performant classifier 172 
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Finally, to investigate the influence of the size of the training data on the performance both the ‘one-versus-one’ 173 

and ‘one-versus-many’ classifiers, models were trained with and without independent test data on increasing 174 

training data sizes. Regardless of the size of the training data, classifiers always performed with perfect accuracy 175 

if no independent test data was used, as can be expected from classification frameworks (figure 4, 5). In contrast, 176 

classifiers with independent test data benefited from increases in training data size and are likely to improve 177 

even further given a sufficiently large body of training data. As such, at least within the context of these 178 

classification schemes, the performance is likely to benefit from increases in experimental data.   179 
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Discussion 180 

In this paper, we set out to examine the feasibility of predicting epitope specificity from the sequence patterns 181 

contained within the TCR. Based on training data collected for 2 HIV-1 derived, B*08-restricted peptides, we 182 

trained random forest classifiers utilizing two different schemes to test whether TCR epitope prediction based on 183 

sequence level data is a feasible task. In the first, ‘one-versus-one’, scheme, the classifier was tasked to assign 184 

TCRs to either of two possible peptides. In the second, ‘one-versus-many’, scheme, classifiers were trained to 185 

find TCRs that bind to one specific peptide. In order to examine the properties that define the recognition of 186 

immunogenic peptides by a TCR, structural features were encoded representing the CDR3 amino acid sequence 187 

of the TCR ß-chain as well as its respective V and J region. 188 

As this is, to the best of our knowledge, the first attempt to tackle this problem at the TCR sequence level, it is 189 

not possible to compare its performance with other pre-existing classifiers. However, multiple performance 190 

evaluations indicate that the different classifiers performed reasonably well. The best performing scheme was the 191 

‘one-versus-one’ scheme. However, the applications of this one-versus-one classifier are limited as it can only 192 

distinguish between the TCR sequences that bind one of two epitopes. Indeed, the importance of this classifier 193 

lies not in its immediate practical applicability, but rather in the framework it provides for future TCR-peptide 194 

recognition models and the insights that might be gained from these models. We can suppose that, given enough 195 

data for a large number of epitopes, this binary classifier can be expanded into a framework to predict the target 196 

epitope for any TCR sequence.  197 

To demonstrate a more practical application, we incorporated negative control data from a large set of HLA-198 

B*08-restricted TCRβs into ‘one-versus-many’ classification schemes. During these more difficult ‘one-versus-199 

many’ classification schemes, performance was still high enough to prove that sequence level based models are 200 

capable of discriminating between epitope binders and non-binders. The good performance on held-out 201 

validation data, indicates that classifiers were likely able to capture real molecular features of the TCRß CDR3 202 

sequence that underpin the differential recognition of an epitope by a TCR within a B*08 context.  203 

Of all the features generated, only a limited number of features had a high importance score within a given 204 

classifier. Supporting the likelihood that classifiers were able to consistently capture import features, high 205 

scoring features were generally shared across the different presented classifier setups. These features generally 206 

encoded either physicochemical properties averaged over the entire CDR3 region or physicochemical properties 207 

of amino acids located near its centre, with basicity and hydrophobicity as the most prominent physicochemical 208 

features. These findings correspond well with previous literature describing pMHC recognition by TCRs to be 209 
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mediated by molecular interactions between the CDR loops and the pMHC complex, where the CDR3 loop 210 

plays a prominent role during epitope recognition (Jorgensen et al. 1992). As such, CDR3 loops with comparable 211 

physicochemical properties are likely to interact in similar ways with epitopes. In addition, the high rank of 212 

central physicochemical amino acid features suggests that these amino acids might be key in determining TCR 213 

specificity. The number of arginines in the CDR3 loop is one of two features capturing specific single amino 214 

acid data within the list of highly ranked features. Interestingly, arginine has previously been identified as a 215 

strongly conserved amino acid within the CDR3α loop of CD8+ T-cells recognising a HIV-1 epitope (Motozono 216 

et al. 2014).  217 

Although the immediate applicability of the binary, ‘one-versus-one’ peptide classifier is limited in scope, its 218 

good performance illustrates the feasibility of creating high-performing p-TCR affinity models. We further 219 

demonstrate this feasibility by creating random forest classifiers that can distinguish TCRs that bind a specific 220 

epitope. Next to the binary classifier, these more general ‘one-versus-many’ classifier schemes set the stage for 221 

the development of more complex TCR prediction models in the future. Despite only using sequence 222 

information for the TCR ß-chain, classifiers were able to differentiate their targeted epitope with high accuracy. 223 

In addition, the classifiers agree on highly discriminatory features, even for different classifiers contexts and are 224 

thus likely able to uncover important structural features. Thus it seems that the recognition determinants 225 

contained within the ß-chain are already sufficient to predict epitope binding. These results do still leave room 226 

for increased performance. Indeed, learning curves for the different classifier schemes suggests that performance 227 

increases can still be gained by incorporating new training data. These results indicate that current models are 228 

therefore not necessarily bound by technical limitations but rather by a lack of suitable training data. As we 229 

anticipate the amount of available MHC-peptide-TCR data to increase in the future, we expect sequence based 230 

models to quickly gain in performance and become a valuable aid in future immunological studies. In particular, 231 

insights and advancements into TCR recognition of immunogenic epitopes might prove crucial in studies of 232 

auto-immunity, tumour susceptibility and vaccine design.   233 
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Materials & Methods 234 

Data collection 235 

Training data on T-cell receptor sequences and peptides were obtained from Costa et al. (2015). In this study, T-236 

cells from chronically infected HIV-1 patients were stained with MHC tetramers and sorted by flow cytometry to 237 

select for CD8+ tetramer-positive T-cells. After extraction of mRNA from sorted T-cells, reverse transcription 238 

PCR was used to linearly amplify TCRß chain sequences. PCR products were then transformed into E. coli 239 

bacteria, amplified and sequenced using capillary electrophoresis. From the data generated by Costa et al. (Costa 240 

et al. 2015), we collected TCRß chain sequences from peptide-specific CD8+ T-cells for two HIV-1 derived 241 

HLA-B*08-restricted peptides (FLKEKGGL and EIYKRWII). In total, 95 TCRß chains were collected for the 242 

FLKEKGGL peptide and 142 TCRß chains for the EIYKRWII peptide. 243 

Negative control data was obtained by querying the ImmuneACCESS database 244 

(https://clients.adaptivebiotech.com/immuneaccess) using the following terms: ‘human’, ‘TCRB’, ‘HLA-B*08’, 245 

‘CD8+’ and ‘control’; which returned 66235 TCRß chain sequences originating from a single individual. From 246 

these, 56023 unique, productive, in-frame sequences were withheld.  247 

For each obtained TCRß chain, the following information was collected: V family, J family, V gene, J gene, and 248 

CDR3 sequence; with V/J families and genes as defined by the Immunogenetics Information System 249 

(www.imgt.org) (Lefranc et al. 2015). D genes were not collected separately as the CDR3 sequence contains the 250 

D region’s sequence information.   251 

Feature creation 252 

Several features were derived for each of the collected TCRß chains. Each observed V or J gene was represented 253 

as a single feature. This feature was assigned a value of 0 or 1, representing respectively the absence or presence 254 

of the gene in a specific TCRß chain. Because the V or J gene was not always available, the V and J family were 255 

also encoded in a similar way. The following properties were encoded as numeric features: the TCR CDR3 256 

sequence length; the absolute count of each individual amino acid in the CDR3 sequence; the total mass of the 257 

amino acids in the CDR3 sequence; and the average CDR3 basicity, hydrophobicity, helicity, isoelectric point, 258 

and mutation rate. The average CDR3 mutation rate was calculated by taking the average of the mutation rate for 259 

each amino acid in the CDR3 sequence, where the mutation rate of an amino acid is obtained from the diagonal 260 

of a PAM250 substitution matrix. Physicochemical amino acid property values were used as described in 261 

MS2PIP (Degroeve et al. 2013). Positional features were added for each CDR3 residue position. Due to the 262 

variable length of the CDR3 sequences present in the data, amino acid positions were translated into numerical 263 
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positions by assigning each position an index value relative to the centre of the CDR3 sequence. For example, a 264 

sequence of length 3 would be encoded by the positions -1, 0 and 1 whereas a sequence of length 4 would be 265 

encoded as -2, -1, 1 and 2. For each position encoding generated in such a way, a binary feature was created 266 

representing the presence or absence of an amino acid at that position was encoded in the same way as the V and 267 

J genes. In addition, numerical features encoding individual amino acid basicity, hydrophobicity, helicity, 268 

isoelectric point, and mutation stability were also created for each position. Features were always created prior to 269 

model training and evaluation. 270 

Model training & evaluation 271 

Peptide binding was predicted using a random forest classifier (Breiman 2001) consisting of 200 trees, as 272 

implemented in Sci-kit learn (Pedregosa et al. 2011). To tackle the problem of predicting peptide binding to a 273 

TCR, a ‘one-versus-one’ scheme and a ‘one-versus-many’ scheme were employed. In the ‘one-versus-one’ 274 

scheme, the classifier was tasked with correctly assigning whether a TCR binds to either the EIYKRWII peptide 275 

or the FLKEKGGL peptide. In the ‘one-versus-many’ scheme, the classifier had to distinguish between TCRs 276 

that bind a given peptide and TCRs that don’t bind the given peptide. The ‘one-versus-many’ scheme was 277 

applied for both the EIYKRWII and the FLKEKGGL peptide.  278 

During the ‘one-versus-one’ scheme, both the positive and negative class samples were considered to be of equal 279 

importance and their weight was set at 1. For the ‘one-versus-many’ scheme, class weights were set to be 280 

inversely proportional to the number of samples for that class to compensate for the larger amount of negative 281 

training samples. Other hyperparameters of the classifier were left at their default values, as random forests are 282 

highly performant classifiers that typically achieve excellent performance out of the box (Caruana et al. 2008). 283 

For the ‘one-versus-one’ scheme, the data was randomly subsampled 100 times into stratified 80%-20% training 284 

and testing data sets during model validation to provide a robust assessment of the classifier’s performance 285 

despite the limited amount of data available. In the ‘one-versus-many’ scheme, the classifier’s performance was 286 

assessed by creating 5 equally-sized, non-overlapping subsets from the positive data. For each positive subset, a 287 

subset of negative control samples equal to 10 times the amount of positive samples within the positive subset 288 

were randomly sampled without replacement from the negative control data. Positive and negative subset were 289 

then combined to generate a single fold. Training and test subsets were then created by using a single fold as test 290 

set while training the classifier on the remaining folds. 291 

On each training set, feature selection was performed prior to training a new model using the Boruta algorithm 292 

(Kursa and Rudnicki 2010). For each new model, the following validation measures were calculated on the held-293 
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out test data: prediction accuracy, the area-under-the-receiver-operating-characteristic-curve (AUC), and the 294 

mean precision over a recall range of 0 to 1 (PR). Overall classifier performance was evaluated in terms of 295 

prediction accuracy, AUC values, and mean PR values averaged over 100 random stratified training-test sets for 296 

the ‘-one-versus-one’ scheme and over 10 folds for the ‘one-versus-many’ scheme. The receiver-operating-297 

characteristic curve and precision-recall curve were drawn up for each model as well. Here, precision is 298 

interpreted as how many of the TCRs predicted to bind peptide 1 actually bind peptide 1 and recall as how many 299 

of the TCRs that bind peptide 1 are predicted to bind peptide 1. Because PR values are computed for the peptide 300 

with 1 as label, for the ‘one-versus-one’ scheme, the PR values were also calculated with reversed labels to 301 

obtain PR values for both peptides. The evaluation measures were reported as their mean over the number of 302 

subsampled executions ± their standard deviation. 303 

Feature importance was evaluated based on the Gini importance (Hastie et al. 2009) to provide an overview of 304 

each feature’s ability to discriminate between the two peptides. In addition, classification accuracy was evaluated 305 

by drawing learning curves for increasing sizes of training data with and without independent test data. 306 

Classifiers with independent test data used a stratification and sampling scheme as described above for their 307 

respective schemes while classifiers without independent test data were tested on their training data. 308 

All data and code used within this manuscript can be found in the following GitHub repository: 309 

https://github.com/bittremieux/TCR-classifier. 310 

Statistical analyses 311 

Statistical analyses were performed in Python. The Shannon-Wiener diversity was calculated using the Sci-kit 312 

bio package (http://scikit-bio.org/). Statistical results were considered significant whenever the (corrected) p-313 

value < 0.05.  314 
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Figures & tables 364 

 365 

Fig. 1 Segment usage across datasets. Segment usage is compared in terms of occurrence frequency at (a) V 366 

family, (b) J family, (c) V gene and (d) J gene level. Overall, no single segment distributions of segment usage 367 

are similar across different datasets, with slightly more restricted usage of segments in the peptide datasets, as is 368 

also reflected by the Shannon diversity (table 1)  369 
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 370 

Fig. 2 (a) Receiver-operating-characteristics curve or true positive rate versus false positive rate. Averaged 371 

values were plotted as a single line while the surrounding area indicates the standard deviation as observed 372 

during cross-validation. The striped diagonal indicates the performance of a random classifier where no 373 

distinction between the two peptides can be made based on TCR features. The more the average AUC curve is 374 

shifted towards the top left corner of the figure and away from the diagonal, the higher the performance of the 375 

evaluated classifier. (b, c) Precision versus recall. Averaged values were plotted as a single line while the 376 

surrounding area indicates the standard deviation as observed during cross-validation. In the perfect case, the PR 377 

curve is a horizontal line with precision always equal to 1, representing the lack of false positive predictions over 378 

the entire recall range. (d) Ranked feature importance. Features were generated based on the following TCR 379 

sequence derived characteristics: V gene, J gene, averaged CDR3 amino acid counts, positional CDR3 amino 380 

acid presence, averaged CDR3 amino acid physicochemical properties, and positional CDR3 amino acid 381 

physicochemical properties. Features are ranked on the x-axis according to their importance within the decision 382 

tree scheme of the random forest classifier as plotted on the y-axis  383 
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 384 

Fig. 3 Comparison of the validation measures and feature importances for each peptide using the one-versus-385 

many scheme. (a, b) Receiver-operating-characteristics curve or true positive rate versus false positive rate. 386 

Averaged values were plotted as a single line while the surrounding area indicates the standard deviation as 387 

observed during cross-validation. The striped diagonal indicates the performance of a random classifier where no 388 

distinction between the two peptides can be made based on TCR features. The more the average AUC curve is 389 

shifted towards the top left corner of the figure and away from the diagonal, the higher the performance of the 390 

evaluated classifier. (c, d) Precision versus recall. Averaged values were plotted as a single line while the 391 

surrounding area indicates the standard deviation as observed during cross-validation. In the perfect case, the PR 392 

curve is a horizontal line with precision always equal to 1, representing the lack of false positive predictions over 393 

the entire recall range. (e, f) Ranked feature importance. Features were generated based on the following TCR 394 
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sequence derived characteristics: V gene, J gene, averaged CDR3 amino acid counts, positional CDR3 amino 395 

acid presence, averaged CDR3 amino acid physicochemical properties, and positional CDR3 amino acid 396 

physicochemical properties. Features are ranked on the x-axis according to their importance within the decision 397 

tree scheme of the random forest classifier as plotted on the y-axis   398 
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 399 

Fig. 4 Learning curve for the different classifier schemes: (a) ‘one-versus-one’ scheme, (b) ‘one-versus-many’ 400 

scheme for the EIYKRWII peptide, (c) ‘one-versus-many’ scheme for the FLKEKGGL peptide. Influence of 401 

training data size on the accuracy of classifiers with access to all training data (blue dots) and cross-validated 402 

classifiers (green dots). AUC values were compared for 10 different training data sizes. Mean AUC values for 403 

fitted classifiers without independent test data are shown in blue while AUC values for cross-validated classifiers 404 

are shown in green. Surrounding areas of the curve indicate the variation in AUC values during cross-validation  405 
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Table 1. Descriptive statistics of all datasets. Diversity statistics were calculated based on the Shannon diversity. 406 

Peptide EIYKRWII FLKEKGGL Control 

total number of TCRBs 142 95 56 
unique CDR3 sequences 119 70 54 
CDR3 diversity 6,82 5,92 15,71 
unique V families 19 18 27 
unique V genes 33 28 63 
unique J families 2 2 2 
unique J genes 12 12 14 
V gene diversity 4,41 4,44 5,07 
V family diversity 3,65 3,61 4,19 
J gene diversity 3,17 3,18 3,16 
J family diversity 0,93 0,93 0,97 

 407 
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