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Abstract:  42 

If an expression quantitative trait locus (eQTL) effect is modulated by an 43 

environmental stimulus, such as drug exposure or disease status, it can point to 44 

key regulatory mediators. In a clinical trial for anti-IL-6 in 157 patients with 45 

systemic lupus erythematosus we measured cell counts, interferon (IFN) status, 46 

drug exposure and genome-wide gene expression at three time points. First, we 47 

confirmed an increase in power using repeat transcriptomic measurements. 48 

Then, after detecting 4,976 cis eQTLs, we discovered that 154, 185 and 126 had 49 

evidence of significant eQTL interactions with T cell proportion, IFN status and 50 

anti-IL-6 drug exposure respectively. Next, we found an enrichment of 51 

transcription factor binding motifs interrupted by eQTL interaction SNPs, pointing 52 

to regulatory mediators of these environmental stimuli and therefore potential 53 

therapeutic targets for autoimmune diseases. In particular, IFN interactions are 54 

enriched for IRF1 binding site motifs, while anti-IL-6 interactions are enriched for 55 

IRF4 motifs. Finally, we used the drug-eQTL interactions to define an informative 56 

drug exposure score, reflecting a drug’s effect in an individual patient, thus 57 

highlighting the potential for utilizing drug-eQTL interactions in a 58 

pharmacogenetic framework.  59 

 60 

 61 

 62 

 63 

 64 
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Main Text: 65 

A cis expression quantitative trait locus (eQTL) contains a genetic variant that alters 66 

expression of a nearby gene. Cis eQTLs are ubiquitous across the genome1 and while 67 

most are stable across tissues and conditions, environmental perturbations can alter the 68 

effects of some of them2–8. If a perturbation disrupts upstream regulatory mechanisms 69 

for a gene then it could magnify or dampen an eQTL effect, resulting in a genetic by 70 

environment interaction. Therefore, observing a set of eQTL interactions due to a 71 

perturbagen (such as drug exposure or disease status) can identify shared upstream 72 

regulatory mechanisms. These may represent key transcription factors and affected 73 

pathways that inform our understanding of both disease and drug mechanisms. Defining 74 

the molecular effects of a drug’s action is particularly critical as these effects could help 75 

to classify likely non-responders, indicate off-target effects, predict the toxicities of the 76 

medication, find more accurate biomarkers and identify diseases for which a drug might 77 

be repurposed.  78 

 79 

However, cis eQTL interactions with environmental factors in humans have been 80 

challenging to discover in vivo9–13 even with large cohorts1,7. Success at finding cis 81 

eQTL interactions has largely been found in studies using model organisms14,15 or 82 

treating cells in vitro with non-physiologic conditions16. Thus far, these studies might be 83 

limited in power since they either map eQTLs separately across conditions and fail to 84 

exploit the power of repeat measurements17. Or they test for genetic variants associated 85 

with differential expression and miss information about the magnitude of the eQTL effect 86 

in a specific condition18.  87 
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 88 

Here, we predicted that if RNA is queried at multiple time points under different 89 

exposure states, repeat measurements could increase power to not only detect eQTLs, 90 

but also their interactions with environment.  91 

 92 

Clinical trials, with their structured study design, may be the ideal setting to detect eQTL 93 

interactions with drugs or other environmental perturbations. In clinical trials, it is 94 

becoming increasingly common to collect transcriptional and genetic data alongside 95 

clinical and physiological data. This extensive phenotyping of the same individuals at 96 

multiple time points across conditions can be leveraged to identify eQTL interactions. 97 

The profiling of an individual both before and after exposure to a drug provides a unique 98 

opportunity to identify in vivo drug-eQTL interactions.   99 

 100 

As a proof of principle, we examined the modulation of eQTL effects by environmental 101 

factors, including cell count, interferon (IFN) status and drug exposure, using data from 102 

a phase II clinical trial to evaluate the safety and efficacy of a neutralizing IL-6 103 

monoclonal antibody (PF-04236921) in 157 systemic lupus erythematosus (SLE) 104 

patients19 (Methods). IL-6 is a cytokine elevated in SLE and other autoimmune 105 

diseases such as rheumatoid arthritis (RA). In SLE, IL-6 is thought to play a role in the 106 

observed B cell hyperactivity and autoantibody production20. The IL-6 receptor has been 107 

successfully targeted with tocilizumab in RA21 and has shown promise in a phase I trial 108 

for SLE22. IL-6 itself has been targeted with siltuximab for the treatment of Castleman’s 109 

disease23 and this has led to the development of other biologics targeting IL-6, such as 110 

PF-04236921. While this drug was not significantly different from placebo for the 111 
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primary efficacy endpoint (proportion of patients achieving the SLE Responder Index 112 

(SRI-4) at week 24), biologically it effectively reduced free IL-6 protein levels. Given the 113 

key role of IL-6 in a range of diseases, IL-6 blockade and mechanism of action are of 114 

great interest to study.  115 

 116 

In this study, we leverage the power of repeat transcriptional and environmental 117 

measurements from a lupus clinical trial to identify eQTL interactions. We discover 118 

eQTL interactions with cell count, IFN status and drug exposure. We find the eQTL 119 

interaction SNPs are enriched for transcription factor binding motifs (such as IRF1 and 120 

IRF4 for IFN and drug exposure respectively) highlighting regulatory mediators of these 121 

interactions and potential therapeutic targets.  122 

 123 

Results 124 

We conducted whole blood high-depth RNA-seq profiling at 0, 12, and 24 weeks in anti-125 

IL-6 exposed and unexposed individuals with the Illumina TruSeq protocol. We 126 

observed and quantified 20,253 gene features and genotyped 608,017 variants 127 

genome-wide (Methods). Along with each RNA-seq assay, we documented drug 128 

exposure and quantified cell counts with FACS and IFN signature status with real-time 129 

PCR. 130 

 131 

Mapping eQTL in SLE patients 132 

We first mapped cis eQTLs (SNPs within 250kb of the transcription start site of the 133 

gene) and then tested those eQTLs for interactions with cell counts, IFN status and drug 134 
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exposure. eQTL interactions can be explored using our interactive visualization tool 135 

(http://baohongz.github.io/Lupus_eQTL). 136 

 137 

We used a linear mixed model, including repeat measurements with up to three RNA-138 

seq assays per patient (Fig. 1A, 379 samples from 157 patients, Methods). To 139 

maximize power, we adjusted for 5 population and 25 gene expression principal 140 

components (Methods). To ensure a set of highly confident eQTLs, we applied a 141 

stringent multiple hypothesis testing correction and identified 4,976 cis eQTL genes with 142 

peqtl<2.3x10-8 (0.05/2,177,889 tests, Fig. 1B,1C, Supplementary Table 1).  143 

 144 

Repeat measurements increase power to detect eQTL 145 

We observed that repeat samples increased our power by detecting 63% more cis 146 

eQTLs compared to using a single sample per individual (3,061 genes Fig. 1B). Our 147 

results are highly concordant with the BIOS cohort, a much larger dataset of 2,166 148 

healthy individuals1. 85.4% of our SLE eQTL SNP-gene pairs are reported as eQTLs in 149 

BIOS (FDR<0.05). Of these, 99.1% showed consistent direction of effect (p<5x10-16, 150 

binomial test, Fig. 1D). For each of the 4,976 cis eQTL genes, we tested the most 151 

significantly associated SNP for environmental interactions.  152 

 153 

eQTL interactions with T cell proportions 154 

We first tested a type of eQTL interaction that has been examined previously: cell 155 

counts24,25. We obtained FACS data for 320 samples for which we had 156 

contemporaneous RNA-seq profiles (n=152 subjects). We determined the percentage of 157 

total lymphocytes that were T cells by gating (Fig. 2A). We found 154 T cell-eQTL 158 
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interactions with nominal evidence (pinteract<0.01, Supplementary Table 1), whereas 159 

from 4,976 tests we would expect ~50 from chance alone. To ensure that our statistics 160 

were not inflated, we conducted 1,000 stringent permutations, where we reassigned T 161 

cell percentages across samples and retested. This permutation preserved the main 162 

eQTL effect, while disrupting interactions that might be present in the data. In no 163 

instance did we observe 154 or more interactions at pinteract<0.01 (maximum=133), 164 

suggesting that the number of observed interactions is highly unlikely to have happened 165 

by chance (Fig. 2B, ppermute~0/1,000 = <0.001).  166 

 167 

Interactions can be divided into magnifiers, where environmental exposure and eQTL 168 

effects are in the same direction, and dampeners where the effects work in the opposite 169 

direction (Fig. 2C, Supplementary Fig. 1). The NOD2 rs1981760 eQTL is an example 170 

of an interaction that is dampened by increased T cell count (Fig. 2D, pinteract=6.5x10-5), 171 

and has separately been shown to vary across cell types24,25. For each 10% increase in 172 

T cell proportion, the eQTL effect is reduced by about 7%.  173 

 174 

IFN status eQTL interactions 175 

Many patients with SLE exhibit high levels of genes induced by IFN alpha; these genes, 176 

known as the IFN signature, are a marker of disease severity26,27 and a pathogenic 177 

feature of SLE. We explored the influence of IFN alpha on gene regulation after 178 

determining the IFN status of every patient at each time point using real-time PCR of 11 179 

IFN-inducible genes28 (Methods, Fig. 3A). We identified 185 IFN-eQTL interactions 180 

with pinteract<0.01 (Supplementary Table 1). Following the same permutation 181 

procedures as above, our observed interactions were unlikely to have occurred by 182 
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chance (maximum permutation interactions=112, ppermute<0.001) (Supplementary Fig. 183 

2). We note that interactions with a proxy gene for IFN status have been described1 and 184 

we find overlap of genes with those reported interactions (Supplementary Fig. 3). For 185 

example, SLFN5 expression is influenced by the rs12945522 SNP (pinteract =1.3x10-10, 186 

Fig. 3B). This effect is dampened in IFN low samples.  187 

 188 

To define transcription factors that drive the response to IFN alpha, we sought to 189 

identify motifs that explain the differences between magnifier (n=75) and dampener 190 

(n=110) eQTLs (Supplementary Fig. 4). We applied HOMER29 to assess overlap 191 

between transcription factor binding motifs and the eQTL interaction SNPs (and SNPs 192 

in high linkage disequilibrium (LD, r2>0.8) in the cis window) (Methods). We found 193 

significant enrichment of motifs for key transcription factors involved in IFN signaling 194 

including the IRF1 motif. IRF1 motif disruption occurred for 11 genes with an eQTL 195 

dampened in IFN low samples but for only 2 genes with an eQTL magnified (HOMER 196 

p=0.001, permutation p<0.048, Methods, Fig. 3C, Supplementary Table 2). An 197 

example is the GTF2A2 rs2306355 eQTL (pinteract=8.7x10-3, Fig. 3D); rs2306355 is in 198 

tight LD (r2=0.85 in Europeans) with rs6494127, which interrupts the GAAA core of the 199 

IRF1 motif (Fig. 3C), and likely disrupts IRF1 binding30. We observe greater expression 200 

of GTF2A2 in individuals with the rs2306355 A allele compared to G; this difference is 201 

dampened in IFN low individuals (Fig. 3D).  202 

 203 

Discovery of eQTL interactions with drug exposure 204 

We then examined whether IL-6 blockade alters the relationship between genomic 205 

variation and gene expression and induces drug-eQTL interactions. We observed 126 206 
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drug-eQTL interactions with pinteract<0.01 (Supplementary Table 1). Following the same 207 

permutation strategy as above, we found a median of 77 interactions with pinteract<0.01 208 

(maximum=117) from 1,000 permutations. This suggests that about half of our drug-209 

eQTL interactions likely represent real biological phenomena, and not statistical artifact 210 

(Supplementary Fig. 5). These drug-eQTL interactions showed little overlap with the 211 

interactions observed for T cell count or IFN status (Supplementary Fig. 6). We note 212 

biologically relevant drug-eQTL interactions for IL10 (Supplementary Fig. 7), an anti-213 

inflammatory cytokine, CLEC4C which has previously been associated in trans with an 214 

SLE risk allele31 and CLEC18A (Fig. 4A) another member of the C-type lectin domain 215 

family.  216 

 217 

Again, the drug-eQTL interactions can be divided into magnifiers and dampeners 218 

(Supplementary Fig. 8) and a similar approach as described above can be applied to 219 

define transcription factors driving the response to IL-6 blockade. The most enriched 220 

motif for eQTLs magnified after drug treatment was IRF4. Strikingly, the IRF4 motif 221 

disruption occurred for 16 genes, including CLEC18A, with an eQTL magnified after 222 

drug treatment compared to 6 genes with an eQTL dampened (p=1x10-5, permutation 223 

p<0.01, Fig. 4B, Methods, Supplementary Table 3).  224 

 225 

Searching for transcription factor binding motifs in DNA regions of interest may not be 226 

the only way of identifying downstream mediators of IL-6. From chromatin 227 

immunoprecipitation sequencing (ChIP-seq), our drug-eQTL interaction SNP 228 

(rs2270843) for CLEC18A lies in a MAFK binding site. SNPs in high LD (r2>0.8) in the 229 
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cis window also lie in JUND, CTCF, RAD21, SMC3 and ZNF143 binding sites. Hence 230 

one or more of these factors could also be acting to translate changes in serum IL-6 231 

levels to regulation of CLEC18A gene expression.  232 

 233 

A more common strategy to determine the effect of a perturbagen is to use differential 234 

gene expression. For differential expression following drug treatment, we identified 235 

1,161 genes with nominal statistical evidence (p<0.01) but modest effects (max fold 236 

change=1.3, Supplementary Fig. 9). Only 8/126 drug-eQTL interaction genes also 237 

show evidence of differential gene expression. This suggests that eQTL interactions 238 

offer independent information from differential expression, which might contribute to 239 

defining mechanisms. 240 

 241 

Concordance of drug-eQTL interactions with protein level interactions   242 

To validate these interactions, we hypothesized that interactions due to drug exposure 243 

are likely driven by free IL-6 cytokine levels (our key clinical biomarker of interest). If this 244 

is the case, for eQTLs dampened by drug exposure, an increase in free IL-6 should 245 

elicit an opposite interaction effect and result in eQTL magnification. We assessed 246 

whether eQTL interactions with free IL-6 protein levels measured in the patient serum 247 

samples were consistent with those following IL-6 blockade. We observed enrichment in 248 

the overlap between cytokine interactions and drug interactions (91/126 interactions in 249 

consistent direction, Fig. 4C, p=3.2x10-7, binomial test). We were concerned that free 250 

IL-6 and drug exposure are not independent in this dataset, and that this concordance 251 

might be in part due to the connection between free IL-6 protein levels and IL-6 252 

blockade (Supplementary Fig. 10). To assess whether free IL-6 offers independent 253 
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interaction effects that were consistent after accounting for drug effect, we first modeled 254 

free IL-6 levels to account for the presence or absence of drug, and then we assessed 255 

interactions with residual IL-6 levels. Again, we observed a significant number of 256 

interactions in a consistent direction with residual IL-6 levels, which are independent of 257 

drug exposure (p=0.03, Supplementary Fig. 11).  258 

 259 

Drug score for assessing drug exposure 260 

We speculated that these drug-eQTL interactions could be used in a clinical 261 

pharmacogenetic context to assess effective drug exposure for patients. We defined a 262 

simple drug exposure score using the 126 drug-eQTL interactions (Methods). For each 263 

RNA-seq sample, we assessed whether the expression of the interaction gene was 264 

more consistent with the drug exposed or unexposed state for the corresponding 265 

interaction SNP genotype. Samples more consistent with the drug-exposed state are 266 

assigned a larger drug exposure score. Unsurprisingly, we found a difference in drug 267 

exposure score between the unexposed and exposed samples (Supplementary Fig. 268 

12) (rs=0.79, p=6.9x10-81); these differences reflect the fact that the eQTLs were 269 

themselves identified by examining samples with and without drug exposure. However, 270 

while we did not utilize the administered drug dose to identify drug-eQTL interactions, 271 

we found a significant correlation between drug dose (10, 50 or 200mg) and drug 272 

exposure score (rs=0.16, p=0.018) in the drug-exposed samples (Fig. 4D).  273 

 274 

Discussion 275 

Here, we mapped eQTLs in a cohort of SLE patients and discovered interactions with 276 

physiological (T cell abundance) and clinical (IFN status) data, but most importantly, 277 
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with drug exposure. We hypothesized that the eQTL effects modulated following 278 

treatment with anti-IL-6 were likely being driven by changes in the free IL-6 protein 279 

levels. Remarkably, we were able to replicate 91/126 of our drug-eQTL interactions at 280 

the protein level, providing additional support that the vast majority of interactions are 281 

biologically relevant.  282 

 283 

Our ability to identify eQTL interactions in humans in vivo stems from the use of a 284 

structured study design with repeat measurements of gene expression across different 285 

conditions in the same individual. By allowing the same individual to be assessed under 286 

different circumstances, the noise in transcriptomic measurements caused by non-287 

genetic factors is reduced. This is apparent in our increased power to detect main eQTL 288 

effects with repeat measurements. We observed 4,976 eQTL genes with repeat 289 

measurements versus 3,061 with only single measures.  290 

 291 

Observing the same individuals when they are both unexposed and exposed to an 292 

environmental perturbagen further increases power to find interactions. Structured study 293 

designs such as clinical trials provide this design setup and therefore offer excellent 294 

opportunities to identify interactions to drug exposure, thereby potentially illuminating 295 

mechanisms. This strategy may be particularly informative for research conducted in a 296 

clinical setting where the size of a cohort can be limited by the ability to recruit suitable 297 

patients.  298 

 299 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2017. ; https://doi.org/10.1101/118703doi: bioRxiv preprint 

https://doi.org/10.1101/118703


 
Davenport et al 

 13 

eQTL interactions with drug interventions or other environmental stimuli are important 300 

because they indicate mechanisms of action by highlighting key regulatory factors, such 301 

as transcription factors or subclasses of enhancers. These regulatory factors act 302 

downstream of the environmental condition of interest and drive groups of eQTL 303 

interactions. The IFN status eQTL interactions we identified provide support for this 304 

approach. By making use of the direction of effect for the eQTL interaction, we were 305 

able to identify an enrichment of dampening eQTL interaction SNPs interrupting the 306 

binding sites of transcription factors known to be important in the response to IFN, such 307 

as IRF1.  308 

 309 

We were intrigued to discover an enrichment of magnifying drug-eQTL interaction SNPs 310 

interrupting the binding site of IRF4. It has been suggested that IRF4 works downstream 311 

of IL-6 by binding BATF and coordinately regulating the production of IL10 and other 312 

genes32. Consistent with this, we observed that the IL10 eQTL does indeed interact with 313 

presence of anti-IL-6 (Supplementary Fig. 7). Previous studies have highlighted a role 314 

for IRF4 in the pathogenesis of autoimmune diseases in mouse and humans. For 315 

example in a murine model of SLE, IRF4 knockout mice did not develop lupus 316 

nephritis33. In humans, IRF4 is associated with RA34, a disease in which anti-IL-6 317 

treatment has been successful21. Our findings provide further support that IRF4 could 318 

be a potential therapeutic target for autoimmune diseases such as RA where anti-IL-6 is 319 

effective35. As the regulatory genome continues to be mapped36,37 and available binding 320 

sites for different regulator proteins are specifically defined, these approaches to define 321 

environmental mechanisms will become more potent. For example, it will become easier 322 
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to connect groups of interaction eQTLs being driven by specific transcription factors or a 323 

subset of regulatory elements.  324 

 325 

In addition to defining drug interactions, the ability to focus on interactions with specific 326 

patient phenotypes might point to key targets for disease intervention. For example, our 327 

discovery of many IFN interactions was likely enabled by the prevalence of this key 328 

immunophenotype in SLE patients compared to healthy controls26,27. Our study largely 329 

replicates the IFN interactions discovered in a much larger study of healthy controls1. 330 

The IFN status immunophenotype is now a target for therapy. A recent phase II clinical 331 

trial has shown that an antagonist to the type I IFN receptor, acting upstream of IRF1, 332 

reduced severity of symptoms in SLE. Interestingly, the antagonist was more effective in 333 

the patients with a high baseline IFN status38. This example provides a compelling case 334 

study for how understanding master regulators of key disease phenotypes might lead to 335 

promising new therapeutic strategies. We speculate that this provides a mechanism for 336 

stratified medicine for future studies, which may be applicable to other diseases.  337 

 338 

Finally, we argue that drug-eQTL interactions can augment pharmacogenetic strategies 339 

and may be informative for patient response. For many biologic medications, predictive 340 

pharmacogenetics has been challenging; for example, studies to define genetic or non-341 

genetic biomarkers of anti-TNF response have not been successful39,40. Our drug 342 

exposure score, based on a novel approach using SNP-gene pairs from drug-eQTL 343 

interactions, might reflect the biological activity that a medication is having upon an 344 

individual, and may be modeling an effective medication activity level. This score may 345 
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therefore be helpful in stratifying individuals when assessing response to a medication 346 

for example those with a higher drug exposure score may have a better response to 347 

treatment. We note a limitation of this study is that the drug itself did not achieve its 348 

primary efficacy endpoint of improving SLE outcomes. Hence, while the drug exposure 349 

score for this study tracked with the biological effect of the drug (reducing free IL-6 350 

protein levels), it might not be useful for SLE specifically. However, such a scoring 351 

system could be implemented easily in most phase III trials for a broad range of 352 

therapeutics, where the numbers of samples are far in excess of this phase II trial, 353 

ensuring better powered and more accurate eQTL-interaction mapping.  354 

 355 

Methods 356 

Study design 357 

The objectives of this study were to map eQTLs in a cohort of lupus patients and 358 

identify eQTL interactions with environmental perturbations such as drug treatment to 359 

shed light on drug and disease mechanisms. SLE patients were recruited to a phase II 360 

clinical trial to test the efficacy and safety of an IL-6 monoclonal antibody (PF-361 

04236921). The patient population recruited to this trial have been detailed extensively 362 

by Wallace et al.19 183 patients (forming a multiethnic cohort) were randomized to 363 

receive three doses of drug (10, 50 or 200mg) or placebo at three time points during the 364 

trial (weeks 0, 8 and 16).  365 

 366 

RNA-sequencing 367 
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We collected peripheral venous blood samples in PAXgene Blood RNA tubes 368 

(PreAnalytiX GmbH, BD Biosciences) for high-depth RNA-seq profiling at 0, 12, and 24 369 

weeks. We extracted total RNA from blood samples using the PAXgene Blood RNA kit 370 

(Qiagen) at a contract lab using a customized automation method. We assessed the 371 

yield and quality of the isolated RNA using Quant-iT™ RiboGreen® RNA Assay Kit 372 

(ThermoFisher Scientific) and Agilent 2100 Bioanalyzer (Agilent Technologies), 373 

respectively. Following quality assessment, we processed an aliquot of 500-1000 ng of 374 

each RNA with a GlobinClear-Human kit, (ThermoFisher Scientific) to remove globin 375 

mRNA. We then converted RNA samples to cDNA libraries using TruSeq RNA Sample 376 

Prep Kit v2 (Illumina) and sequenced using Illumina HiSeq 2000 sequencers. We 377 

generated an average of 40M 100bp pair-end reads per sample for downstream 378 

analysis. 379 

 380 

We successfully obtained 468 RNA-seq profiles from 180 patients. We aligned reads to 381 

the reference genome and quantified gene expression using Subread41 and 382 

featureCounts42 respectively. We included genes with at least 10 reads (CPM>0.38) in 383 

at least 32 samples (minimum number of patients with both unexposed and exposed 384 

RNA-seq assays in a drug group) prior to normalization. Following quality control (QC), 385 

we removed 4 samples as outliers. We then normalized 20,253 transcripts using the 386 

trimmed mean of M-values method and the edgeR R package43. Expression levels are 387 

presented as log2(cpm +1). 388 

 389 

Genotyping 390 
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We genotyped 160 individuals across 964,193 variants genome-wide with the Illumina 391 

HumanOmniExpressExome-8v1.2 beadchip. We removed SNPs if they deviated from 392 

Hardy-Weinberg Equilibrium (p < 1x10-7), had a minor allele frequency <5%, 393 

missingness >2% or a heterozygosity rate greater than 3 standard deviations from the 394 

mean (PLINK44,45). For mapping eQTLs, we removed SNPs on the Y chromosome. 395 

Following QC, we used 608,017 variants for further analysis. We removed one sample 396 

with high missingness and outlying heterozygosity rate from further analysis.  397 

 398 

Cell counts 399 

We collected blood samples for cytometry analysis at weeks 0, 12 and 24. Samples 400 

were subjected to flow cytometry for T cell immunophenotyping. We counted T cells 401 

(CD3+) as a percentage of lymphocytes (CD45+). FACS data were available for 320 402 

samples from 152 subjects.  403 

 404 

Interferon status 405 

We classified the interferon (IFN) status of each sample at each time point from the 406 

expression of 11 IFN response genes (HERC5, IFI27, IRF7, ISG15, LY6E, MX1, OAS2, 407 

OAS3, RSAD2, USP18, GBP5)28 using TaqMan Low Density Arrays. We classified 408 

samples as high or low IFN based on the first PCA score for the expression of these 409 

genes. IFN status was available for 376 samples from 157 subjects. 410 

 411 

Drug exposure 412 
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Samples were assigned as unexposed (placebo or week 0 samples) or drug exposed 413 

(week 12 and week 24 samples in the drug groups).  414 

 415 

Free IL-6 protein levels 416 

We determined free IL-6 protein levels from serum using a commercial sandwich ELISA 417 

selected for binding only free IL-6. The assay was validated according to FDA 418 

biomarker and fit-for purpose guidelines. Free IL-6 protein levels were available for 311 419 

samples from 145 subjects. Since IL6 levels were highly nonparametric, we ranked 420 

samples in order of IL-6 protein levels and included in the model to identify cytokine-421 

eQTL interactions.  422 

 423 

Statistical analysis 424 

eQTL and interaction analysis 425 

In total, 157 patients (with 379 RNA-seq samples) had good quality gene expression 426 

and genotyping data for eQTL analysis. All statistical analyses were carried out in R46.  427 

 428 

We defined a cis eQTL as the SNP within 250kb either side of the GENCODE47 429 

transcription start site of the gene. We first applied a linear model for the first available 430 

time point to identify each eQTL using the first 25 principal components of gene 431 

expression and the first 5 principal components of genotyping as covariates. SNPs were 432 

encoded as 0, 1 and 2. To adjust for multiple testing during eQTL discovery we used a 433 

stringent Bonferroni corrected p-value threshold of 2.3x10-8 (0.05/ 2,177,889 tests).  434 

 435 
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To map eQTLs using multiple samples for each individual, we applied a random 436 

intercept linear mixed model using the first 25 principal components of gene expression 437 

and the first 5 principal components of genotyping as covariates and patient as a 438 

random effect:  439 

 440 

 441 

 442 

Where Ei,j is gene expression for the ith sample from the jth subject, θ is the intercept, 443 

βgeno is the genotype effect (eQTL), (κj|i) is the random effect for the ith sample from the 444 

jth subject, pci,l is principal component l of gene expression for sample i, pcj,m is principal 445 

component m of genotyping for subject j. 446 

 447 

We used the most significant SNP (with p<2.3x10-8) from the 4,976 identified eQTL 448 

genes to explore eQTL interactions. For each environmental interaction analysis, we 449 

further filtered these eQTLs to include only those with at least two individuals 450 

homozygous for the minor allele of the SNP being tested in each of the environmental 451 

factor groups. For example we required two of these individuals in each of the drug 452 

exposed and drug unexposed groups. To identify eQTL interactions, we added an 453 

additional covariate to the model for example drug exposure, and an interaction term 454 

between this covariate and the genotype of the SNP:  455 

 456 

Ei, j =θ +βgeno ⋅ gj + (κ j i)+ φl
l=1

25

∑ ⋅ pci,l + γm
m=1

5

∑ ⋅ pcj,m
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 457 

 458 

Where Ei,j is gene expression for the ith sample from the jth subject, θ is the intercept, 459 

βgeno is the genotype effect (eQTL), (κj|i) is the random effect for the ith sample from the 460 

jth subject, pci,l is principal component l of gene expression for sample i, pcj,m is principal 461 

component m of genotyping for subject j, βdrug is the drug effect (differential gene 462 

expression) and βx is the interaction effect. 463 

 464 

We determined the significance of the interaction term with a likelihood ratio test. 465 

 466 

To rigorously confirm the relative enrichment of eQTL interactions, we shuffled the 467 

interaction covariate (for example drug exposure) 1,000 times and calculated the 468 

number of significant interactions observed in each permutation. For T cell counts and 469 

IFN high/low status, we shuffled across all samples. For drug interaction permutation 470 

analysis, we maintained the number of individuals in the drug group and the number of 471 

samples with exposure to drug.  472 

 473 

Concordance with an eQTL study in healthy individuals 474 

In the SLE cohort, we classified 4,976 cis eQTL genes (p<2.3x10-8). The z-score for the 475 

most associated SNP for each of these genes was compared to the z- score from a 476 

previously published eQTL dataset from whole blood from 2,166 healthy individuals1. 477 

4,250/4976 SNP-gene pairs (85.4%) were also reported in the BIOS dataset 478 

Ei, j =θ +βgeno ⋅ gj + (κ j i)+ φl
l=1

25

∑ ⋅ pci,l + γm
m=1

5

∑ ⋅ pcj,m +

βdrug ⋅di +βx ⋅di ⋅ gj
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(FDR<0.05). After removing 60 SNPs, which could not be mapped to a strand 479 

4,154/4,190 (99.1%) had a z-score (eQTL effect) in a consistent direction.  480 

 481 

Magnifiers and Dampeners 482 

An eQTL interaction can either magnify or dampen the original eQTL effect. We 483 

multiplied the interaction z-score by the sign of the original eQTL effect (genotype beta) 484 

and defined magnifiers as interactions with an adjusted z-score > 0 and dampeners as 485 

interactions with an adjusted z-score < 0. 486 

 487 

Differential gene expression analysis 488 

To identify differentially expressed genes following drug exposure, we applied a random 489 

intercept linear mixed model using the first 25 principal components of gene expression 490 

and the first 5 principal components of genotyping as covariates and patient as a 491 

random effect. 492 

 493 

Conditional analysis for IL-6 protein levels 494 

We modeled the relationship between free IL-6 protein levels and drug exposure using 495 

a linear model. We used the residuals from this model in our interaction linear mixed 496 

model to identify IL-6 protein interactions independent of drug exposure. 497 

 498 

Drug exposure score 499 

We used linear discriminant analysis to assign a drug exposure score for each sample.  500 

A score was calculated for each gene (see equation below) and then the final drug 501 

exposure score is the average across the 126 drug-eQTL genes. 502 
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 503 

!"#$ !"#$%&'! !"#$% !"# !"#" =  12 (
! −  !!"#$%

!" )! − 12 (
! − !!"#

!" )!  

 504 

Where G is gene expression for a given sample, GUnexp is predicted mean gene 505 

expression for unexposed samples of the relevant SNP genotype, GExp is predicted 506 

mean gene expression for exposed samples of the relevant SNP genotype and SE is 507 

standard error for the intercept term of the model (unexposed expression for genotype 508 

0). 509 

 510 

HOMER analysis for transcription factor binding motif enrichment 511 

We used the HOMER software suite29 to look for enrichment of transcription factor 512 

binding motifs in the 185 IFN-eQTL interactions (p<0.01) and the 126 drug-eQTL 513 

interactions (p<0.01). Each eQTL interaction was identified using the most highly 514 

associated SNP for that eQTL. However, as this SNP is not necessarily the functional 515 

SNP, we additionally considered all those with an r2≥0.8 in the 1000 Genomes 516 

European population48 within 250kB of the transcription start site of the gene. We 517 

defined our motif search window as 20 bp on either side of each SNP (i.e. 41 bp wide).  518 

 519 

For each environmental factor, we divided the eQTL interactions into magnifiers or 520 

dampeners and conducted two separate HOMER analyses: one with magnifiers in the 521 

foreground and dampeners in the background; the other with dampeners in the 522 

foreground and magnifiers in the background. HOMER reported the transcription factor 523 
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motifs that were significantly enriched in the foreground relative to background. Motifs 524 

were plotted using the SeqLogo R library49.  525 

 526 

We determined permutation p values for enrichment of the IRF1 and IRF4 transcription 527 

factor binding sites as follows. For IRF1, the motif is interrupted by interaction SNPs (or 528 

SNPs in LD) corresponding to 11 dampening genes and 2 magnifying genes. We 529 

permuted which genes were labeled as magnifiers or dampeners 10,000 times and 530 

counted the number of genes in each category with an IRF1 motif interrupted. We found 531 

478 occurrences from 10,000 trials with at least 11 dampening genes (p<0.0479). For 532 

IRF4 the motif is interrupted by SNPs corresponding to 16 magnifying genes and 6 533 

dampening genes. Using the same permutation approach, we found 133 occurrences 534 

from 10,000 trials with at least 16 magnifying genes (p<0.0134). 535 

 536 

 537 
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Figure 1. Identifying eQTLs in SLE patients (A) Clinical trial structure and 

sampling strategy. (B) Number of eQTL genes identified using a linear model 

(left) and a linear mixed model (right). (C) Volcano plot of eQTL effects for the 

most significantly associated SNP for each gene (red color indicates p<2.3x10-8). 

(D) Concordance of SLE eQTL effects (p<2.3x10-8) with eQTLs observed in the 

BIOS cohort1 of healthy individuals (FDR <0.05). Each point represents the most 

significant SNP-gene pair for the SLE eQTL.  
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Figure 2. eQTL interactions with T cell percentages (A) Flow cytometry gating 

strategy to determine T cells as a percentage of lymphocytes. (B) Number of 

significant interactions (p<0.01) from 1,000 permutations of T cell counts 

(median=85). (C) Effect of the T cell interaction on the original eQTL effect. (D) T 

cell interaction with the NOD2 eQTL. The eQTL effect is dampened as T cell 

percentage increases.  
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Figure 3. eQTL interactions with IFN status (A) Designation of IFN status for 

each sample from the real-time PCR expression of 11 genes (first principal 

component). (B) IFN status interaction with the SLFN5 eQTL plotted with respect 

to rs12945522 genotype (left) and IFN status of the sample (right). (C) The IRF1 

motif enriched among eQTLs dampened in IFN low samples. Arrows indicate 

positions of the motif interrupted by interaction SNPs (or SNPs in strong LD). 

Blue indicates these SNPs correspond to dampened eQTLs.  (D) IFN status 

interaction with the GTF2A2 eQTL plotted with respect to rs2306355 genotype 

(left) and IFN status of the sample (right).  
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Figure 4. eQTL interactions with drug exposure (A) Drug exposure interaction 

with the CLEC18A eQTL plotted with respect to rs2270843 genotype (left) and 

drug exposure (right). (B) The IRF4 motif enriched among eQTLs magnified 

following drug treatment. Arrows indicate positions of the motif interrupted by 

interaction SNPs (or SNPs in strong LD). Red and blue indicate SNPs 

corresponding to magnified and dampened eQTLs respectively. (C) 

Concordance of free IL-6 protein interaction effects with drug exposure 

interaction effects (grey indicates consistent direction). (D) Drug exposure score 

calculated from 126 drug-eQTL interactions.  
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