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ABSTRACT 

Bone metastases (BoM) are a significant cause of morbidity in patients with Estrogen-

receptor (ER)-positive breast cancer, yet characterizations of human specimens are 

limited. In this study, exome-capture RNA-sequencing (ecRNA-seq) on aged (8-12 

years), formalin-fixed paraffin-embedded (FFPE) and decalcified cancer specimens was 

first evaluated. Gene expression values and RNA-seq quality metrics from FFPE or 

decalcified tumor RNA showed minimal differences when compared to matched flash-

frozen or non-decalcified tumors. ecRNA-seq was then applied on a longitudinal 

collection of 11 primary breast cancers and patient-matched de novo or recurrent BoM. 

BoMs harbored shifts to more Her2 and LumB PAM50 intrinsic subtypes, temporally 

influenced expression evolution, recurrently dysregulated prognostic gene sets and 

altered expression of clinically actionable genes, particularly in the CDK-Rb-E2F and 

FGFR-signaling pathways. Taken together, this study demonstrates the use of ecRNA-

seq on decade-old and decalcified specimens and defines expression-based tumor 

evolution in long-term, estrogen-deprived metastases that may have immediate clinical 

implications.   
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INTRODUCTION 

Bone metastases (BoM) occur in approximately 65-75% of breast cancer patients 

with relapsed disease, resulting in significant comorbidities such as fractures and 

chronic pain1. Following colonization to the bone, breast cancer cells exploit the local 

microenvironment by activating osteoclasts, which in turn provides proliferative fuel for 

tumor cells2. This process is targeted clinically using anti-osteoclast agents such as 

bisphosphonates and RANKL inhibitors, yet these therapies do not confer significant 

survival benefits3.  

Importantly, the majority of breast cancers that metastasize to bone are estrogen 

receptor (ER)-positive and present clinically in the context of long-term endocrine 

therapies such as selective estrogen receptor modulators and aromatase inhibitors4. In 

vivo models of BoM have unfortunately been somewhat restricted to ER-negative 

disease due to the more indolent characteristics of ER-positive cell lines5. Molecular 

characterizations of ER-positive specimens that have recurred in an estrogen-deprived 

system, which represents the major burden of breast cancer BoM, are thus essential to 

reinforce the significant scientific contributions made using in vivo bone metastasis 

models6–9. Nonetheless, datasets are currently limited, in part due to the practical 

difficulties of obtaining and processing human BoM specimens10.  

Large-scale molecular characterizations of patient-matched samples—primary 

tumors and synchronous or asynchronous matched metastases—show that metastatic 

lesions acquire features distinct from primary tumors that are either clinically actionable 

or confer therapy resistance11–13. Indeed, current treatment guidelines in breast cancer 

recommend a biopsy to guide therapy in advanced disease if possible14. Unfortunately, 
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BoM often undergo harsh decalcification procedures with strong acids to eliminate 

calcium deposits prior to specimen sectioning. Decalcification degrades nucleic acids 

and can alter results of immunohistochemistry15–17. Furthermore, formalin-fixed paraffin 

embedding (FFPE)—often performed in concert with decalcification—causes severe 

degradation and hydrolysis of RNA18. In light of this, new capture-based methods of 

nucleic acid sequencing on aged FFPE specimens have shown efficacy in identifying 

DNA variants and even guiding care in academic centers19–21. Exome-capture RNA-

sequencing (ecRNA-seq) is less well characterized in aged tumor samples, although 

recent studies on FFPE specimens have shown promising expression correlations with 

flash-frozen tissues22–24. 

 Because of the untapped potential of archived, decalcified BoM specimens, the 

burden of BoM in breast cancer patients and the lack of long-term endocrine treated 

tumor datasets, the performance of ecRNA-seq from decade-old, degraded and 

decalcified tumor samples was first assessed. Following this evaluation, ecRNA-seq 

was then applied to a collection of 11 ER-positive patient-matched primary breast 

cancers and bone metastases to define transcriptional evolution in breast cancer cells 

following metastatic colonization in the bone and years of endocrine therapy.  
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RESULTS 

ecRNA-sequencing of aged and decalcified breast cancers. To determine the 

feasibility of sequencing an aged, FFPE and decalcified tumor cohort, ecRNA-seq on 

two separate sample sets was performed. The first sample set included four cases of 

primary breast tumors that at the time of resection, were split in two.  One part was 

flash-frozen and stored at -80 C and the other tumor section was formalin-fixed paraffin 

embedded and stored at room temperature. Storage times ranged from 8.2 to 12.3 

years. Post-alignment RNA-sequencing QC analyses showed differences in GC content 

and insert size, yet gene body coverage and transcript diversity assignments were 

largely similar (Figure 1A). After quantifying and normalizing gene abundances, 

expression correlations between frozen and FFPE matched samples were assessed 

using log2normCPM values. Pearson r correlations ranged from 0.929 to 0.963, with an 

average correlation of 0.953 (Figure 1B). The same analysis was performed using a 

second sample set of matched FFPE-decalcified and FFPE-non-decalcified samples. 

Again, no concerning deviations in RNA-seq quality metrics were observed between the 

two differently processed sample groups (Figure 1C) and Pearson r expression 

correlations ranged from 0.936 to 0.969 (Figure 1D). Furthermore, correlation matrices 

of the two sample sets showed matched tumor sample expression values were more 

similar to each other than expression values from tumors with equivalent processing 

and storage (Supplementary Figure 1). Full RNA-seq metrics from the QC analysis did 

reveal differences in some metrics between FFPE and flash-frozen tissue (i.e. splice 

junction loci number), that may be informative for other applications such as indel 

mutation calling or isoform detection (Supplementary Data S1 and S2). In summary, 
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ecRNA-seq shows outstanding quality metrics for analysis of aged FFPE and 

decalcified bone metastases samples. 

 

ecRNA-seq of breast cancer bone metastases. Following the validation of ecRNA-

seq, a cohort of 11 ER-positive patient-matched primary tumors and BoMs was 

acquired through the University of Pittsburgh Health Science Tissue Bank (Table 1, 

Supplementary Data S3). Abstracted clinical records showed that nearly all patients 

(10/11) were documented as having received adjuvant endocrine therapy, and bone 

metastasis free survival ranged from 0 (de novo bone metastasis) to greater than 5 

years with the most common site of bone metastasis being the vertebral column.  

ecRNA-seq was performed on the 22 samples yielding an average readcount of 

58,294,593 and an average Salmon transcript mapping rate of 92.6% (Supplementary 

Data S4). Consistent with the initial quality control studies above, quality metrics on 

these samples showed consistent gene body coverage, GC content, insert sizes and 

transcript diversity regardless of decalcification status (Supplementary Figure 2, 

Supplementary Data S5). Furthermore, since samples within the cohort had been 

surgically excised and banked many years apart, all paired specimens underwent an 

analysis of shared variants, which confirmed tumor pairs were patient-matched 

(Supplementary Figure 3). 

  

Clustering and temporal expression shifts. Unsupervised hierarchical clustering of 

patient-matched pairs revealed that decalcification of BoMs did not produce 

independent clades, with 5 of 11 BoM clustering in the same doublet clade as their 
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matched primary (denoted with * in Figure 2A). Notably, 3 of the 5 doublet clustering 

cases were de novo metastases. Discrete PAM50 intrinsic subtype assignments were 

identical in 6 of 11 pairs. 2 pairs switched from LumA to LumB in the metastasis, 1 pair 

from LumB to LumA, 1 pair from LumB to Her2 and another was classified as Normal 

subtype in the primary tumor and LumB in the BoM (Figure 2B). To obtain more 

granularity than discrete PAM50 calls, probability scores for each PAM50 subtype were 

assigned (Figure 2B and Supplementary Data S6). Her2 and LumB profile gains 

(defined as a probability gain of >10% in a matched BoM) were the most common—

being observed in 4 of 11 cases (Figure 2B). Given observed shifts in expression 

profiles of bone metastases and doublet clustering of de novo bone metastases, 

temporal influence on transcriptional evolution was analyzed. Pearson r correlations 

between each patient-matched pair using log2normCPM expression values were 

utilized as a metric for transcriptional similarity. Expression pair similarity was 

significantly correlated (Pearson r = -0.864, p-value < 0.001) with time from primary 

tumor diagnosis to bone metastasis (Figure 2C). 

 

Differentially expressed genes in bone metastases. To determine genes consistently 

up- or downregulated in bone metastases, a paired DESeq2 differential gene 

expression analysis was performed. 207 genes were differentially expressed (FDR 

adjusted p-value < 0.10)—80 genes with increased and 127 genes with decreased 

expression in bone metastases (Figure 3A, Supplementary Data S7). Gene ontology 

analysis was performed to determine biological processes represented in the up- and 

downregulated gene sets. Generally, genes within osteogenic programs showed the 
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most significant increases in expression while muscle-related, adhesion and motility 

gene sets were found to be significantly lost in bone metastases (Figure 3A, 

Supplementary Data S8, Supplementary Figure 4). Given that a subset of these genes 

may be mediating therapy resistance and/or distant metastases, single sample gene set 

enrichment analysis (ssGSEA) scores25 were calculated using tumor expression data 

from patients with long-term outcomes in METABRIC26. Two separate gene lists were 

created to build the signatures—representing the most significantly upregulated 

(boneMetSigUp) and downregulated (boneMetSigDown) genes in bone metastases 

(Supplementary Data S9). Tumors intrinsically expressing higher boneMetSigUp and 

lower boneMetSigDown ssGSEA scores conferred worse (log-rank p-value < 0.001) 

disease-specific survival outcomes (Figure 3B). To increase the power of discerning 

gene expression effects due to long-term estrogen deprivation, a differential gene 

expression analysis was performed excluding the treatment-naïve, de novo bone 

metastases. This yielded a list of 612 differentially expressed genes (Supplementary 

Data S10), some of which were not detected as differentially expressed with treatment-

naïve de novo bone metastasis cases included. 

 

Dysregulated gene sets and RBBP8 expression loss. To determine pathway level 

changes in breast cancer bone metastases, a pre-ranked GSEA was performed. All 

genes were ranked by DESeq2 calculated log2 fold-changes (metastasis vs. primary, 

Supplementary Data S11) and then analyzed for enrichments using Molecular Signature 

Database (MsigDB) gene sets (http://software.broadinstitute.org/gsea/msigdb, H: 

Hallmark gene sets, C6: Oncogenic signatures)27. This yielded several significantly 
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metastasis-enriched and metastasis-diminished gene sets (FDR q-val < 0.10, 

Supplementary Data S12). The three most significantly enriched gene sets in 

metastases involved E2F transcription factor targets, genes mediating the G2M 

checkpoint and an experimental perturbation gene set consisting of genes up-regulated 

with knockdown of RBBP8 in a breast cell line (Figure 4A). Other upregulated gene sets 

included hedgehog signaling and gene sets associated with Rb loss and KRAS gains. 

The three most significantly negatively correlated gene sets consisted of an NFKb/TNF 

gene set, genes involved in epithelial mesenchymal transition (EMT) and an embryonic 

development gene set. We further interrogated RBBP8 due to it being the most 

significant gene set enriched in bone metastasis. As predicted by the enrichment, bone 

metastases carried significant RBBP8 expression loss (Wilcoxon-signed rank p-value = 

0.02), with 5 of 11 metastases [45%] having at least a 2-fold decrease in expression 

versus patient-matched primaries (Figure 4B). Tumors intrinsically expressing lower 

levels of RBBP8 showed worse disease-specific and bone metastasis-free survival 

outcomes (Figure 4C). 

 

Expression gains and losses in clinically actionable genes. Because of the 

observed acquisition of clinically actionable targets reported in other studies of paired 

primary and recurrent tumors12,13, a paired expression analysis to define clinically 

actionable expression changes in ER-positive bone metastases was performed 

(Supplementary Data 13). Using stringent, case-informed cutoffs for expression 

alterations (Supplementary Figure 5), the most common expression losses in bone 

metastases were PIK3C2G [8 of 11, 73%], ESR1 [7 of 11, 64%] and TUBB3 [6 of 11, 
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55%] (Figure 5A and Supplementary Figure 6). Other notable losses included GREM1, 

PTPRT, CDKN2A, KIT and GATA3. The most recurrent expression gains were FGFR3 

[7 of 11, 64%], EPHA3 and PTPRD [6 of 11, 55%]. PDGFRA, PTCH1, ALK, HGF, 

FGFR1 and FGFR4 also showed highly recurrent gains (Figure 5B). Interestingly, some 

expression gains were absent in de novo bone metastasis cases (Cases 19, 53 and 55) 

yet highly recurrent in long-term endocrine-deprived cases (EPHA3, PTPRD, PDGFRA, 

PTCH1), suggesting clinically actionable, treatment-driven gains in endocrine-resistant 

breast cancer recurrences.  
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DISCUSSION 

 Bone is the most common site of distant recurrence for patients with ER-positive 

breast cancer, yet comprehensive sequencing datasets of endocrine therapy treated, 

metastatic samples are currently limited. This is in part due the challenge of obtaining 

tissue, and degradation of nucleic acids caused by decalcification. In this study, we 

found that aged FFPE and FFPE-decalcified tumors showed highly similar transcript 

quantification values as matched flash-frozen and FFPE-non-decalcified tumors. As a 

proof-of-concept, we then applied ecRNA-seq to a cohort of patient-matched primary 

and bone metastases collected over a period of five years. We identified subtle shifts in 

intrinsic subtypes and found a strong temporal influence on transcriptional evolution in 

breast cancer recurrences. Furthermore, we created several differentially expressed 

gene sets/signatures that are prognostic and point towards acquired RBBP8 loss, CDK-

Rb-E2F and FGFR pathway gains as mediators of ER-positive breast cancer 

progression. Lastly, we found bone metastases commonly gain or lose expression in 

clinically actionable genes, which may be distinct from primary tumors. 

 ecRNA-seq is an effective method for quantifying expression on aged, FFPE and 

decalcified tumor specimens. Previous work has assessed nucleic acid amplification 

success, DNA-sequencing and RNA integrity metrics using decalcified samples17,28,29; 

however, a comprehensive analysis of RNA-sequencing, to our knowledge, has not yet 

been performed. Consistent with only very minor differences between GC content, 

insert sizes and other QC metrics, gene expression values between aged matched 

FFPE/flash-frozen and FFPE-decalcified/FFPE-non-decalcified tumors are highly 

correlated (Pearson r range 0.929 – 0.969). This study reinforces and should encourage 
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the use of capture-hybridization approaches to sequence RNA from retrospectively 

collected, low yield, highly degraded and decalcified archival specimens 

(Supplementary Data S15)22–24. Expanding sample sets and modalities for genome-wide 

characterization, especially for rare specimen cohorts that may be impractical to obtain 

prospectively in large numbers, will accelerate translational discoveries. 

 Given promising results from our evaluation, we applied ecRNA-seq in a proof-of-

concept effort to characterize the transcriptome of 11 archival patient-matched ER-

positive primary and recurrent metastases— 3 cases having treatment-naïve, de novo 

bone metastases and 8 recurrent cases harboring long-term endocrine-therapy treated 

metastases. In the recurrent cases, bone metastasis-free survival ranged from 18 to 65 

months.  Despite a large portion of the bone metastases being decalcified, global 

transcriptome QC metrics showed similar features (i.e. GC content, insert sizes, gene 

body coverage and transcript assignment diversity) and no outliers. Consistent with this, 

unsupervised hierarchical clustering showed no distinct clusters of decalcified samples, 

with 5 bone metastases clustering in the same doublet clade as their patient-matched 

primary breast cancer. Interestingly, 3 of these doublet clustering pairs were clinically de 

novo, treatment naïve bone metastases, implying limited transcriptional evolution from 

the primary tumor in synchronous metastases. This was further corroborated with a 

striking negative correlation between patient-matched expression similarity and time to 

bone metastasis, suggesting metachronous metastases that clinically present later in 

their treatment course are more dissimilar from their derived primary lesions. Intrinsic 

subtyping revealed 5 of the 11 cases changed PAM50 subtypes, with 3 cases switching 

to LumB in the metastasis and another switching to Her2. Subtle Her2 and LumB profile 
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shifts were also the most common when observing continuous PAM50 probability 

scores, even in samples that remained concordant in their discrete PAM50 

assignments. A recent, targeted expression study analyzed PAM50 assignments in 123 

matched breast cancer metastases and the authors found similar frequencies of LumB 

and Her2 acquisitions in ER-positive metastatic tumors30. Given this transcriptional 

evolution to more LumB and Her2 profiles, a thoughtful reevaluation of therapy selection 

in the advanced and perhaps the adjuvant setting may be necessary—especially 

considering HER2-targeted therapies are generally reserved for patients with HER2-

positive primary disease.  

 We found 207 genes to be differentially expressed between primary tumors and 

patient-matched bone metastases. The top upregulated genes belonged to osteogenic 

gene sets—BGLAP, RANKL, PTH1R all showing significant expression gains—and 

supports in vivo modelling observations of breast cancer osteomimicry and hijacking of 

the bone microenvironment31. Downregulated gene sets included genes involved in 

broad categories such as cellular adhesion, hemidesmosome assembly and epithelium 

development, pointing towards specific biological programs lost following metastatic 

colonization. Moreover, when either the upregulated or downregulated genes are 

expressed coordinately in primary tumors, we found that they confer worse and better 

outcomes respectively in ER-positive tumors, suggesting some tumors may develop 

these transcriptional programs early in their evolution. Lastly, a differential expression 

analysis between endocrine naïve primary tumors and long-term endocrine treated 

bone metastases identified a larger list of differentially expressed genes. Importantly, 

known mediators of endocrine resistance are represented in the list, including 
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dysregulated expression of Wnt family members32, expression gains in FGFR133, 

FOXC134 and loss of ESR1 expression35. Notably, many of these genes do not overlap 

with the differential expression analysis that included the de novo metastases, 

suggesting expression alterations specific to late recurrent therapy-treated tumors. This 

non-overlapping gene set included a greater than 2-fold average expression gain of 

ABCG2 in therapy-exposed metastases—a multidrug resistance protein shown to be 

active in breast cancer36,37—and loss of CDKN2A. CDKN2A encodes p16, a negative 

regulator of CDK4/CDK6 and is located on a common somatically deleted region (9p21) 

in cancer38. Given recent success of CDK4/CDK6-inhibiting compounds (palbociclib and 

ribociclib) in treating ER-positive breast cancers, this recurrent, acquired, metastatic-

specific loss of CDK2NA is a clinically important observation39–41. 

 Following significant gene-level changes, a gene set enrichment analysis defined 

enriched and diminished pathways in breast cancer bone metastases. Enriched genes 

included those involved in G2M checkpoint and E2F targets. Consistent with the 

observed LumB enrichments, breast cancer cells appear to develop a more proliferative 

phenotype following bone colonization and the strong enrichment of E2F signature in 

metastatic disease again highlights the CDK-Rb-E2F pathway as a potential actionable 

target. Interestingly, another study that utilized a targeted gene expression platform 

found proliferative gene signatures in ER-positive metastases may be more accurate at 

predicting overall survival than signatures in the primary tumor30. A survival analysis for 

this work was impractical given the small set of patient-matched pairs, but future meta-

analyses are warranted to determine if gene expression signatures in metastases are 
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better predictors of overall survival in the advanced setting, especially given the 

significant transcriptomic shifts observed in this study.  

 The most significant gene set enriched in bone metastasis was an experimental 

perturbation gene set involving the knockdown of the tumor suppressor RBBP842. 

RBBP8 (also known as CtIP) binds directly to Rb, mediates cell cycle regulation, helps 

maintain genomic stability and loss of RBBP8 incurs tamoxifen resistance and 

sensitizes breast cancer cells to PARP inhibition in vitro43–46. Concordant with the GSEA 

analysis, bone metastases have significant expression loss of RBBP8, with 45% of 

cases showing a greater than 2-fold decrease in expression. We found low RBBP8 

expression in ER-positive tumors confers poorer disease-specific survival and bone 

metastasis-free survival outcomes. These observations point to RBBP8 loss in 

metastatic breast cancers as being a prime, perhaps therapeutically relevant candidate 

for further preclinical investigations.  

 Lastly, considering we have previously shown that brain metastases acquire 

highly recurrent gains in clinically actionable genes13, particularly in HER2, we analyzed 

the same set of genes in bone metastases. All tumors harbored significant gains and 

losses, some of which were highly recurrent. PIK3C2G, a relatively uncharacterized 

gene in the PI3K pathway, was the most recurrent gene expression loss. Other notable 

losses included ESR1, CDKN2A and GATA3—genes that have already been implicated 

in endocrine therapy resistance in experimental models. Intriguingly, GATA3 is one of 

the most recurrently mutated genes in breast cancer, being particularly enriched in ER-

positive disease47. Moreover, GATA3 inhibits breast cancer metastasis in various model 

systems and given losses of GATA3 in ER-positive bone metastases are common, 
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further evaluation of GATA3 as a potentially targetable breast cancer metastasis 

suppressor gene should be encouraged34,48,49. Metastatic gains included FGFR family 

members (FGFR3, FGFR4, FGFR1), ALK and KDR—all protein products having small 

molecules currently in clinical trials. Interestingly, some highly recurrent expression 

gains (i.e. EPHA3, PTPRD, PDGFRA, PTCH1) were exclusive to long-term endocrine 

treated bone metastases suggesting them as prime, clinically actionable candidate 

mediators of therapy resistance. Collectively, these observations provide yet further 

evidence of acquired transcriptional programs in metastatic lesions and suggests that 

precision care in breast cancer should be informed by molecular features of advanced 

tumors in order to not miss metastatic dependencies acquired in advanced disease. 

Although this study points towards ecRNA-seq as being a viable option to 

characterize the transcriptome of archived, decalcified specimens, there are limitations. 

Firstly, multiple methods are used for decalcification with varying effects on nucleic 

acids and we were unaware of this information for the profiled specimens, as it is rarely 

recorded in clinical notes17. Secondly, in primary versus metastatic expression studies, 

it is difficult to deconvolute expression contributions from tumors versus the altered 

microenvironment of the distant organ site. To limit these artifacts in this study, regions 

of high tumor cellularity in the bone metastasis were cored by a trained molecular 

pathologist for RNA extraction, which is corroborated by RNA-seq derived tumor purity 

estimates—as no significant tumor purity differences between primary and metastatic 

tumors (Supplementary Data S15) were observed50. Nonetheless, single-cell 

sequencing approaches of metastatic tumors will be essential to bring cell-level 

resolution to transcriptional studies of metastatic tumors. Novel computational methods 
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that deconvolute heterogeneous sample sets, until single-cell sequencing becomes 

more widely adopted, will also be essential51–53. All of this withstanding, features of the 

data are encouraging such as patient-matched tumors clustering together, intuitive 

PAM50 assignments, corroboration of other groups’ findings and treatment-specific 

gains and losses. Finally, a limitation of this study is the small sample size. Hopefully, 

these results will encourage the use of ecRNA-seq to transcriptionally profile other 

highly degraded samples and begin a collection of genomic data from metastatic or rare 

tissues for integration. Importantly, de-identified clinical data should be provided 

alongside the sequencing, as in this study, to allow more fluid merging of datasets and 

inspire clinical phenotype-driven analyses. 

Taken together, this study both validates the use of ecRNA-seq to 

transcriptionally profile highly degraded RNA from decade-old and decalcified tumor 

specimens and defines multiple acquired and lost transcriptional programs in ER-

positive bone metastases. We highlight acquired changes in the CDK-Rb-E2F and 

FGFR pathways, particularly relevant given the recent clinical use of CDK4/6 inhibitors, 

and point towards RBBP8 as a particularly compelling candidate in breast cancer 

progression. We also find significant gains in clinically actionable genes that may have 

not been appreciated in primary tumors, reinforcing the need for longitudinal 

characterizations of cancer specimens to guide clinical care.   
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METHODS 

Sample acquisition. Eleven sets of formalin-fixed paraffin-embedded (FFPE) primary 

breast tumors and patient-matched bone metastases (total of 22 samples) were 

obtained from the Health Sciences Tissue Bank, a certified honest broker facility at the 

University of Pittsburgh that maintains an IRB-approved protocol for collecting excess 

tissue and biological materials. A molecular pathologist reviewed hematoxylin and eosin 

slides from each sample and then subsequently cut 0.6-1 mm cores from the paraffin 

block exclusively from regions of high tumor cell purity for RNA extraction. De-identified 

clinical and biological data were collected under the approval of the University of 

Pittsburgh Institutional Review Board (Protocol numbers: PRO14040193 and 

PRO10050461). 

  

Tissue processing and RNA extraction. Tissues were digested over-night with 

shaking at 300 rpm at 56 °C in PKD buffer with the addition of proteinase K (Qiagen). 

RNA extraction was then performed with Qiagen’s FFPE RNeasy kit (Qiagen, 

Cat#73504) according to the manufacturer’s instructions under sterile RNase/DNase 

free conditions. RNA concentration was determined with the Qubit 3.0 Fluorometer 

(ThermoFisher Scientific). Quality RNA integrity number (RIN) scores and fragment 

sizes (DV200 metics) were obtained utilizing either the Agilent 2100 Bioanalyzer or the 

Agilent 4200 TapeStation.  

 

Exome-capture RNA-sequencing. Sequencing library preparation was performed 

using a minimum of 25 ng of RNA according to Illumina’s TruSeq RNA Access Library 
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Preparation protocol. Indexed, pooled libraries were then sequenced on the Illumina 

NextSeq 500 platform with a High Output flow cell producing stranded, paired-end reads 

(2 X 75 bp). A target count of 50 million reads per sample was used to plan indexing 

and sequencing runs. 

 

RNA-sequencing expression quantification and normalization. RNA transcripts 

from paired-end FASTQ files were mapped and quantified using k-mer based 

lightweight-alignment with seqBias and gcBias corrections (Salmon v0.7.2, quasi-

mapping mode, 31-kmer index built from GRCh38 Ensembl v82 transcript 

annotations)54. Transcript-level abundance estimates were collapsed to gene-level 

estimates using tximport255. To filter out non- or low expressed genes, only genes 

harboring a TPM value of more than 0.5 in at least 10% of samples were considered. 

Gene-level counts or log2 transformed TMM-normalized CPM (log2normCPM) values 

were implemented for subsequent analyses56,57. 

 

Expression correlations and RNA-seq quality assessment. Exome-capture RNA-

seq was performed on two cohorts: 1) a set of four aged (ranging from 8 – 12 years) 

primary breast cancer specimens that at the time of surgical resection were split in half 

and either immediately embedded in optimal cutting temperature (OCT) compound and 

flash-frozen for storage at -80C, or formalin-fixed paraffin embedded (FFPE) and stored 

at room temperature. A second cohort consisted of three breast cancer bone 

metastases that at the time of resection were split in half and either decalcified or 

nondecalcified and processed to FFPE. These datasets were quantified and normalized 
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as described above. Pearson r correlations between all samples were determined using 

log2normCPM values. Reads and mapping rates were obtained from Salmon. More 

detailed RNA-seq metrics were calculated and plotted using QoRTs (v1.1.8) following 

two-pass read alignment with STAR (v2.4.2a) for the 11 patient-matched cases58,59. 

 

tumorMatch patient-matched sample identifier. To confirm samples were patient-

matched, variants from RNA-seq were called using GATK’s Best Practices for variant 

calling on RNA-seq60. Output .vcf files were then provided to tumorMatch, a custom R 

script that analyzes a pool of .vcf files and calculates the proportion of shared variants 

(POSV) between each .vcf. These proportion values were visualized using corrplot in 

R61. 

 

Unsupervised hierarchical clustering and intrinsic subtyping. Hierarchical 

clustering was performed using the heatmap.3 function 

(https://raw.githubusercontent.com/obigriffith/biostar-

tutorials/master/Heatmaps/heatmap.3.R) in R on log2normCPM values of the top 5% 

most variable genes (defined by IQR) with 1 minus Pearson correlations as distance 

measurements and the “average” agglomeration method. PAM50 calls were generated 

using the molecular.subtyping function in genefu62. A separate cohort of exome-capture 

RNA-sequencing expression data from primary tumors (n = 12 ER-negative, 9 ER-

positive) was merged with the bone metastasis cohort to help account for test-set bias 

and increase the stability of the PAM50 assignments63. To call PAM50 subtypes, for 

each query sample in the bone metastasis cohort a random subset of primary tumor 
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expression data was added to enforce a balanced distribution of ER-positive and ER-

negative tumors. This was repeated 20 times and the discrete PAM50 subtype was 

designated as the mode of this 20-fold PAM50 assignment test while the final probability 

score was an average of all 20 probability scores from genefu. 

 

Differential gene expression. Salmon gene-level counts with effective lengths of target 

transcripts were used to call differentially expressed genes (DEGs) between primary 

tumors and bone metastases using DESeq64. Given samples were patient-matched, a 

multi-factor design was implemented (~Patient + Tumor [i.e. primary vs. metastasis]). 

Genes with an FDR adjusted p-value of less than 0.10 were assigned as differentially 

expressed. An unclustered heatmap using log2normCPM values from the 207 DEGs, 

first segregated by metastatic log2FoldChange gains and losses and then sorted by 

DESeq2 adjusted p-values, was created in R using heatmap.3. Differentially expressed 

genes within the MsigDB database that were gained or lost in bone metastases were 

separately interrogated for gene ontology (GO: Biological Process) enrichment by 

computing significant (top 10 gene sets) gene overlaps using the MsigDB online tool27.  

 

ssGSEA signatures and METABRIC survival analyses. Microarray expression along 

with disease-specific survival (DSS) data was obtained from the Molecular Taxonomy of 

Breast Cancer International Consortium (METABRIC) through Synapse 

(https://www.synapse.org/, Synapse ID: syn1688369), following IRB approval for data 

access from the University of Pittsburgh26. Normalized expression values from IHC-

confirmed ER-positive tumors were used to develop a single-sample gene-set 
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enrichment score (ssGSEA) for strongly DEGs (adjusted p-value < 0.05) between 

primary tumors and bone metastases25. 48 genes that carried positive log2FoldChange 

values and had a corresponding gene expression value in METABRIC were assigned to 

the “boneMetSigUp” signature; 74 genes with negative log2FoldChange values were 

assigned to the “boneMetSigDown” signature. A ssGSEA score for each sample from 

both gene sets was calculated using the ssGSEA method implemented in the GSVA R 

package65. Binary dichotomization of samples (low vs. high) based on ssGSEA 

signature score strata (10th, 25th, 50th, 75th, 90th percentiles) and log-rank testing 

were used to assess significant differences in DSS66. The strata with the most 

significant log-rank p-values were plotted using survminer from CRAN67. 

 

Ranked Gene Set Enrichment Analysis (GSEA). To determine pathways significantly 

enriched or lost in breast cancer bone metastases versus patient-matched primaries, 

GSEA analyses were performed using gene sets with coordinately expressed genes 

representing specific biological and cancer-related pathways (MSigDB: H and C6 sets). 

Input into GSEA was a ranked list (DESeq2 log2FoldChange values) of 21,702 genes. 

Enrichment scores, significance values and plots were generated using default settings 

of the Broad Institute’s javaGSEA Desktop Application (v2.2.3). 

 

RBBP8 survival analysis. RBBP8 expression was further interrogated and plotted 

using log2normCPM values from patient-matched. RBBP8 expression influence on DSS 

in METABRIC ER-posiitve patients was interrogated as described above. RBBP8 

expression influence on bone-met free survival (BMFS) was assessed by querying a 
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GCRMA-normalized microarray expression dataset (GSE12276) from 204 primary 

tumors and associated survival data as described above68.  

 

Gains and losses in clinically actionable genes. Clinically actionable gene set was 

obtained using the Drug Gene Interaction Database (DGBIdB 2.0)69. Considering 

metastatic fold-change distributions calculated from log2normCPM values for all genes 

were slightly different for each case, stringent case-specific fold-change thresholds were 

used to transform continuous fold-change values into discrete “expression alterations.” 

More specifically, if the fold-change value for a clinically actionable GENE_X was 

greater than the 95th percentile of all gene fold-change values in that case, GENE_X 

would be designated as a significant, case-specific expression gain. If the fold-change 

value for GENE_Y was lower than the 5th percentile, GENE_Y was designated as a 

significant, case-specific expression loss (Supplementary Figure 6, Supplementary Data 

S13). After assigning discrete expression alteration calls to clinically actionable genes, 

data was visualized using the oncoprint function in ComplexHeatmap70. 

 

Statistical considerations. To determine differentially expressed genes between 

patient-matched primary tumors and bone metastases, DESeq2 was used. DESeq2 is 

designed for RNA-seq gene-based count abundance estimates and assigns differential 

expression p-values based on a negative binomial distribution. For Kaplan-Meier 

curves, the logrank test was used to determine statistically significant differences in 

event probabilities (i.e. death or time to metastasis) based on binary expression or 
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signature strata. For single gene queries, paired Wilcoxon-signed ranked tests on 

log2normCPM values were used. 

 

Data availability. Comprehensive expression values for all samples will be deposited in 

the Gene Expression Omnibus (GEO). Raw sequencing data will be available upon 

request from authors and delegated in accordance to Institutional Review Board 

policies. 

 

Code availability. A collated version of code used to produce the major figures in this 

manuscript will be made publically available as performed for previous publications 

(https://github.com/npriedig/ ).  
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FIGURE LEGENDS 

Figure 1: Exome-capture RNA-sequencing of aged, FFPE and decalcified tumors. 

(A) RNA-seq quality metrics (GC content, insert size, gene body coverage and 

cumulative gene assignment diversity) of aged and tumor-matched FFPE and flash-

frozen (FF) sample; FF samples in blue, FFPE samples in red. (B) Expression value 

correlations between four sets of matched tumor samples (FF vs. FFPE) along with 

Pearson r correlations and sample ages. (C) RNA-seq quality metrics of matched non-

decalcified and decalcified samples; non-decalcified samples in blue, decalcified 

samples in red. (D) Expression correlations between three sets of matched tumor 

samples (non-decalified vs. decalcified) along with Pearson r correlations. 

 

Figure 2: Unsupervised clustering, intrinsic subtype shifts and temporal evolution 

of ER-positive bone metastases. (A) Unsupervised hierarchical clustering heatmap 

(red = high relative expression, blue = low relative expression) of patient-matched pairs 

using the top 5% most variable genes (n = 1096) across the cohort. Tumor (primary in 

blue, metastasis in red) and decalcification status (positive in green, negative in black) 

indicated. Asterisks below heatmap designate patient-matched pairs that cluster in a 

single doublet clade. (B) Discrete PAM50 assignments (red = basal, green = HER2, 

blue = LumA, purple = LumB, yellow = Normal) and PAM50 probabilities for patient-

matched pairs. PAM50 probability shifts in metastases (if greater than 10%) are marked 

with a black diamond. (C) Correlation of patient-matched tumor expression similarity 

versus clinical time to metastasis with Pearson r value and correlation p-value. 
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Figure 3: Differentially expressed genes in patient-matched bone metastases. (A) 

Left, heatmap (red = high relative expression, blue = low relative expression) of 

log2normCPM values from 207 differentially expressed genes (FDR adjusted p-value < 

0.10) between primary tumors and patient-matched bone metastases. Heatmap is 

segregated into two sections; genes with log2FoldChange > 0 on top and genes with 

log2FoldChange < 0 on bottom. Each section is gene-sorted by adjusted p-values. 

Right, Gene Ontology: Biological Process gene overlap analysis for genes with 

significant expression gains (top, red) and losses (bottom, blue) in bone metastases. 

Top 10 pathways are shown alongside FDR adjusted q-values. (B) Disease-specific 

survival outcome differences in ER-positive METABRIC tumors using boneMetSigUp 

(top) and boneMetSigDown (bottom) expression scores as strata. 95% confidence 

intervals are highlighted along with log-rank p-values and associated risk tables. 

 

Figure 4: Dysregulated gene sets and RBBP8 loss in breast cancer bone 

metastases. (A) Top three enriched and depleted gene sets (by FDR q-value) in bone 

metastases from ranked GSEA analysis. Gene list ranking was performed using 

log2FoldChange values from DESeq2 differential expression output, where a positive 

log2FoldChange represents increased expression in metastasis (red) and a negative 

log2FoldChange represents decreased expression in metastasis (blue). Green line 

shows running enrichment score as algorithm walks down the ranked gene list. Black 

vertical lines below curve show where genes within the query gene set are represented 

in the ranked list. Normalized enrichment score (NES) and FDR q-values are noted 

below gene set names. (B) RBBP8 expression values (log2normCPMs) in primary 
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tumors (blue) and bone metastasis (red). Pairs are connected with a line and Wilcoxon 

signed-rank p-value is shown. (C) Disease-specific survival outcome differences in ER-

positive tumors (METABRIC) and bone metastasis free survival differences 

(GSE12276) using normalized RBBP8 expression values as strata. 95% confidence 

intervals are highlighted along with log-rank p-values and risk tables. 

 

Figure 5: Recurrent, clinically actionable expression gains and losses in ER-

positive bone metastasis. (A) Recurrent expression alteration losses, ranked by 

frequency, for each patient-matched case (columns). Each blue tile represents a bone 

metastasis with a lower log2FoldChange vs. its matched primary than the case-specific 

expression loss threshold. Expression values (log2normCPMs) for most recurrent 

losses (PIK3C2G, ESR1) are pair plotted with corresponding Wilcoxon signed-rank test 

p-values noted. (B) Recurrent expression alteration gains, ranked by frequency. Red 

tiles represent bone metastases with higher log2FoldChange than the case-specific 

expression gain thresholds. The two most recurrent expression gains (FGFR3, EPHA3) 

are also plotted. 

 

SUPPLEMENTARY FIGURES AND LEGENDS ARE PROVIDED IN SEPARATE FILE. 
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TABLE: 

Table 1: Abridged clinicopathological features of patient-matched primary and bone 

metastasis tumor cohort¥ 

Case Age 
at Dx 

Histologic 
Subtype 

Pathological 
Stage 

ER 
Prim 

PR 
Prim 

HER2 
Prim 

BoM 
Location 

BoM 
Decal 

Endocrine 
Tx 

HER2 
Tx 

Radio 
Tx 

Chemo 
Tx BMFS OS 

17 54 IDC IIIA Pos Pos Neg Ileum Yes Yes No Yes Yes 24 46 

19 50 
IDC w/ 
lobular 
features 

IV Pos Pos Neg Vertebra No Yes No Yes No 0 75 

22 60 IDC IIA Pos Pos Neg Femur No Yes No Yes Yes 18 37 

31 59 
IDC w/ 
lobular 
features 

IIB Pos Pos Neg Vertebra Yes Yes No Yes Yes 43 55 

34 38 IDC IIIA Pos Pos Neg Vertebra Yes Yes No Yes Yes 65 130 

43 65 IDC IV Pos Pos Neg Vertebra Yes Yes No Yes No 0 54 

44 56 IDC IA Pos Pos Pos Femur No NA Yes Yes Yes 23 42 

48 49 ILC IIIC Pos Pos Neg Vertebra No Yes No Yes Yes 28 68 

55 56 IDC IV Pos Pos Neg Femur No Yes No NA No 0 137 

60 44 IDC IIB Pos Pos Neg Sacrum Yes Yes No Yes Yes 46 53 

A25 39 IDC IIIA Pos Pos Neg Femur Yes Yes Yes Yes Yes 38 57 

 

¥Abbreviations: Dx, diagnosis; Tx, therapy; ER, estrogen receptor; PR, progesterone 

receptor; HER2, human epidermal growth factor receptor 2; IDC, invasive ductal 

carcinoma; ILC, invasive lobular carcinoma; BoM, bone metastasis; BMFS; bone 

metastasis free survival; OS, overall survival  
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