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ABSTRACT 

 

Background 

Analysis of physical activity usually focuses on a small number of summary statistics derived 

from accelerometer recordings: average counts per minute, and the proportion of time spent in 

moderate-vigorous physical activity or in sedentary behaviour. We show how bigrams, a 

concept from the field of text mining, can be used to describe how a person’s activity levels 

change across (brief) time points. These variables can, for instance, differentiate between two 

people with the same time in moderate activity, where one person often stays in moderate 

activity from one moment to the next and the other does not. 

 

Methods 

We use data on 4810 participants of the Avon Longitudinal Study of Parents and Children 

(ALSPAC). We generate a profile of bigram frequencies for each participant and test the 

association of each frequency with body mass index (BMI), as an exemplar. 

 

Results 

We found several associations between changes in bigram frequencies and BMI. For instance, 

a 1 standard deviation decrease in the number of adjacent minutes in sedentary then moderate 

activity (or vice versa), with a corresponding increase in the number of adjacent minutes in 

moderate then vigorous activity (or vice versa), was associated with a 2.36 kg/m2 lower BMI 

[95% CI: -3.47, -1.26], after accounting for the time spent at sedentary, low, moderate and 

vigorous activity. 

 

Conclusions 
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Activity bigrams are novel variables that capture how a person’s activity changes from one 

moment to the next. These variables can be used to investigate how sequential activity 

patterns associate with other traits. 
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Key Messages 

• Epidemiologists typically use only a small number of variables to analyse the 

association of physical activity with other traits, such as the average counts per minute 

and the proportion of time spent in moderate-vigorous physical activity or being 

sedentary. 

• We demonstrate how activity bigrams can be used as a set of interpretable variables 

describing how a person’s activity levels change from one moment to the next. 

• Testing the association of activity bigrams with exposures or outcomes can help us 

gain further understanding of how physical activity is associated with other traits; with 

further research they might provide evidence for more refined public health advice. 
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INTRODUCTION 

 

Physical activity – defined as any bodily movement that results in energy expenditure – is 

associated with many diseases, such as diabetes (1) and coronary heart disease (2). Research 

increasingly uses objective measures of physical activity recorded using accelerometers, 

rather than self-report via questionnaires that are affected by reporting bias and measurement 

error (3). Cohort participants wear an accelerometer that measures accelerations at time 

intervals typically ranging from 0.01 seconds (4) to 1 minute (5,6). This high-resolution time-

series data potentially contains much valuable information about a person’s activity. To date, 

however, only a small number of variables derived from accelerometer recordings have been 

used: average counts per minute (mCPM), and the proportion of time spent in moderate-

vigorous physical activity (MVPA) or sedentary behaviour (SB) (5,7–12). These measures 

only include a fraction of the information contained in accelerometer sequences, and this may 

lead to bias and a loss of power when using these variables as measures of physical activity. 

As public health advice has, to date, been informed by research using these limited variables, 

it is possible that analyses using other aspects of this data would support more refined advice. 

 

Recently, work has been conducted to generate other variables describing physical activity. 

Goldsmith et al. used functional data analyses to model diurnal physical activity profiles, and 

test the association of these profiles with other traits (13). For example, they identified that 

during daytime hours girls are less active than boys, but this difference is not present in the 

evening. Evenson et al. used latent class analysis to assign participants to groups based on 

their activity levels across a one week period, to identify common weekly patterns of activity 

(14). Their analyses using MVPA identified an interesting set of 4 groups – two lower activity 

groups with stable MVPA across the week, and two higher activity groups, one most active 
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between Monday and Thursday and the other most active between Friday and Sunday. 

Augustin et al. used a histogram of activity counts as a functional summary of activity (15), 

which is beneficial because it does not assume that the association of activity on a second trait 

across activity levels is linear, and also allows this assumption to be tested. Their analysis 

with fat mass found a non-linear association across activity intensities. 

 

One key aspect of accelerometer sequences not captured by mCPM and time spent in different 

intensities of activity from sedentary to MVPA, or the more recent methods described above, 

is variability in a person’s activity levels from one moment to the next. For instance, two 

people may have the same mCPM and also the same total time spent in MVPA, but the first 

person may stay at the vigorous activity level for one continuous period, whereas the second 

enters into the vigorous activity state for more frequent, shorter bouts. It is increasingly 

recognised that variability of a trait about the mean level can have important associations with 

exposures and outcomes, independently of the mean level (e.g. variation of systolic blood 

pressure (16–18)). 

 

At present, most physical activity guidelines recommend accumulating at least 150 minutes of 

moderate intensity activity or 75 minutes of vigorous intensity activity a week (19,20), with 

no advice on possible benefits of time-varying intensities. There is increasing interest in the 

possible health benefits of undertaking repeat short bursts of high intensity activity, referred 

to as high intensity interval training (HIIT) (21–23). While HIIT research assesses the benefits 

of short periods of very high intensity activity, there are many other sequential activity 

patterns that might also be beneficial (or detrimental) to a person’s health. However, methods 

for assessing the association of a sequence of exposures (rather than the mean level) with an 

outcome are not widely used. 
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Sequential data, like that from accelerometers, occurs in many settings. The field of text 

mining seeks to learn models to make predictions from the sequence of words in a document 

(24). A common approach is to treat each document as an unordered collection of words, each 

called a unigram, and to use the frequency of each word in the document as a variable in 

analyses. The set of words and associated frequencies is known as a bag of words. This is 

equivalent to the way epidemiologists treat accelerometer data, after the sequence is first 

categorised into sedentary, low and moderate/vigorous activity. The accelerometer sequence 

is treated as an unordered collection of these activity categories and the variables MVPA and 

SB denote the frequency (or proportion) of each category in the sequence. Hence we can view 

these activity categories as activity unigrams, and the set of activity unigrams with the 

associated frequencies as a bag of activity unigrams. While a unigram is a sequence of length 

one, this can be generalised to n-grams – sequences of length n – and bags of n-grams (see 

Supplementary material section S1 for examples). This provides opportunities to extend 

representations of physical activity beyond activity unigrams.  

 

In this paper we use 2-grams, referred to as bigrams, to represent sequential patterns in a 

person’s accelerometer sequence. This is useful as we can then ask, for instance, how often is 

a person in the moderate state at time t and the vigorous state at time t+1? Activity bigrams 

can be used to examine how changes in activity from one moment to the next associates with 

other traits. We demonstrate our novel approach with BMI, as an exemplar. 
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METHODS 

 

Participants 

We used data on participants in the Avon Longitudinal Study of Parents and Children 

(ALSPAC), a prospective population-based cohort. The ALSPAC study website contains 

details of all the data that are available through a fully searchable data dictionary: 

[http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/].	 The study methods 

are described in detail elsewhere (25). In brief, ALSPAC recruited 14,541 pregnant women 

resident in Avon, United Kingdom, with expected dates of delivery between 1 April 1991 and 

31 December 1992 (http://www.alspac.bris.ac.uk). These mothers and their children have 

been followed with regular assessments since this time. Ethical approval for the study was 

obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committees.  

 

Data collection 

Physical activity was measured using the uni-axial Actigraph 7164 accelerometer that 

measures vertical accelerations. All children who attended the age 11 clinic were asked to 

wear an accelerometer on their waist for 7 days, taking it off while sleeping, showering, 

bathing or swimming. The devices were programmed to start recording at 05:00 a.m. the day 

after the clinic. The sum of activity counts (a measure of acceleration) over each one-minute 

epoch (interval) was recorded, giving a maximum sequence of 10 080 values for each 

participant. We refer to each two-minute interval in a person’s sequence as an epoch pair. The 

total number of epoch pairs in a sequence is equal to the length of the sequence minus one. 
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Weight and height were measured at the age 11 clinic, with the child in light clothing without 

shoes. BMI was calculated as weight in kilograms divided by height in meters squared. We 

consider the following potential confounders: child gender, exact age at age 11 clinic, parity, 

household social class, maternal education, maternal smoking during pregnancy and child 

ethnicity (details of how these were assessed are provided in Supplementary material section 

S2). 

 

Study sample 

Of the 6080 participants with accelerometer data we excluded from analyses 68 participants 

who did not have 7 days of recorded accelerometer data. We further excluded 40 participants 

with no measure of BMI. We assumed that continuous sequences of zero activity counts of 

length greater than 60 epochs (1 hour) meant that the participant was not wearing their device 

and treated such periods as missing accelerometer data (26). Accelerometer data was 

considered invalid if: 1) there were fewer than three valid days, where a valid day is defined 

as at least 8 hours of wear time, or 2) the average activity level per minute was greater than 

1500, as this was deemed infeasible. We excluded 240 participants with invalid accelerometer 

data. We removed 66 participants who were siblings to other participants in this sample. We 

excluded a further 856 participants with no value for at least one confounding factor, giving a 

resultant sample size of 4810 participants. A participant flow diagram is given in Figure 1. 

 

Statistical analyses 

The activity levels at each epoch of participant’s accelerometer sequences (excluding non-

wear time) were categorized into four groups of activity intensities: sedentary: 0-100 activity 

counts per minute; low: 101-2019; moderate: 2020-5998, and vigorous: 5999+ (6,26), 
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denoted S, L, M and V, respectively. We refer to these as activity states, to distinguish from 

the continuous activity levels of the original accelerometer data. 

 

Relating mean activity levels to outcomes 

We use univariate linear regression (regress function in Matlab) to test the association of 

the mean activity levels per minute over the time where a participant wore the accelerometer 

(mCPM) and the variance of these activity levels per minute (vCPM), individually, with BMI. 

We test this association before and after adjustment for potential confounding factors, and 

also after mutual adjustment of mCPM and vCPM in order to examine their independent 

associations with BMI. 

 

Within one day there are a finite number of occurrences of activity states in total (the number 

of minutes = 1440), such that as the frequency of one activity state increases, this must be 

coupled with a decrease in frequency of at least one other activity state. This means that an 

increase in frequency of the moderate state may, for instance, be associated with lower BMI 

when the additional frequency comes from the sedentary state, but not when it comes from the 

vigorous state. We calculate the average number of minutes each participant spends in S, L, 

M and V activity states per day, denoted Sd, Ld, Md and Vd, respectively. We then use 

univariate linear regression to estimate the association of transferring time between pairs of 

activity states, with BMI. We assign, in turn, one activity state as a baseline and another as a 

comparison, and calculate the total remaining time per day. The comparison state and 

remaining time are included in the model and the baseline is not included. For example, we 

use the following model and multiply !" by 10 to estimate the difference in means of BMI for 

a 10-minute per day transfer from the sedentary (baseline) to the moderate (comparison) 

activity state: 
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#$% = 	!"	×	$) +	!+	×	,+	∈ 

 

where , = 	.) − ($) + 1)) and .)	is the number of epochs per day (in this case 1440). We 

use the number of minutes spent in each activity state in our models rather than the proportion 

of non-missing time, as we are interested in how the actual amount of time spent in each state 

associates with BMI. We note that swapping the baseline and comparison activity states 

results in a reciprocal model with estimate −!". We test these associations both before and 

after adjustment for potential confounders. 

 

Modelling activity sequences with activity bigrams 

We derive a set of variables denoting the number of times a particular bigram occurs in a 

person’s sequence, on average per day. Given the four activity states – sedentary, low, 

moderate and vigorous, there are 16 bigrams: SS, SL, SM, SV, LS, LL, LM, LV, MS, ML, 

MM, MV, VS, VL, VM and VV. For instance, SL denotes the occurrence of the sedentary 

state at time t, followed by the low state at time t+1. In this work we use a one-minute epoch 

such that t=1 minute. Formally, the frequency of a bigram AB per day is given by: 

 

3(4, #) = 	 17	
1, 89 = 4	 ∧ 	89;" = #
0, =>ℎ@,ABC@

9D":FG"
 

 

for number of days D (in this work D=7) and sequence xi ={x1, x2 … xn} where x e 

{S,L,M,V}. Figure 2 provides two example sequences where the values of the common 

activity statistics (MVPA, SB and mCPM) are the same, but the frequency of bigrams differ. 

For example, the SS bigram occurs three times in sequence A but only once in sequence B. 
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Epoch pairs are overlapping such that a bigram occurring in the time period [t, t+1] overlaps 

with the bigrams at [t-1, t] and [t+1, t+2]. This means that the frequency of each bigram in a 

sequence does not correspond to a specific amount of time. For instance, the sequences 

SSSLS and SSLSS both have two occurrences of the SS bigram, but over three and four 

minutes, respectively.  

 

Relating activity bigrams to outcomes 

As with activity states, a person can only have a fixed number of occurrences of bigrams in 

total per day, such that as the frequency of one bigram increases the frequency of at least one 

other must decrease. Also, because bigrams are overlapping, a change of an epoch pair in a 

sequence from one bigram to another will often change the number of occurrences of at least 

one other bigram, and these changes depend on the particular sequence (see examples in 

Figure 3 and supplementary section S3). For these reasons, we investigate how BMI changes 

as the average frequency of bigrams per day increases for one bigram while at the same time 

decreasing for another bigram, while allowing for collateral changes in other bigrams. 

 

We use univariate linear regression and assign one bigram as a baseline (i.e. not included in 

the model) and another as a comparison (i.e. included in the model), and adjust for the 

remaining number of bigrams in a day. For example, we use the following model and 

multiply HI by 10 to estimate the difference in means of BMI for a 10 epoch pair increase of 

the SL bigram, coupled with a 10 epoch pair decrease of the SS bigram: 

	

#$% = 	!"	×	3(1, J) +	!+	×	,K+	∈	
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where the remaining number of bigrams in a day is given by: LM = 	NO − I − M P, Q −

M P, P . We work with 10 epoch pairs as a non-negligible amount for which a person may 

reasonably be expected to change their activity. Adjusting for the combined frequency of the 

remaining bigrams rather than the frequency of each bigram separately, allows for collateral 

changes in the frequency of these bigrams (while their total frequency remains the same). 

While we may think of these models as representing a swap from one bigram to another at 

particular positions in a person’s sequence, in fact any increase in frequency of one bigram 

that is accompanied by an equal decrease in frequency of another bigram, is consistent with 

these models (see Supplementary section S3 for further explanation). 

	

We investigated the impact of potential confounding by characteristics that relate to both the 

bigram measures and BMI by including these characteristics as covariables in the regression 

analyses (see Table 1 for confounders). We also considered that the following accelerometer 

variables might confound associations of bigrams with BMI: mCPM and the number of 

minutes spent in sedentary, low, moderate or vigorous activity. This is because these will be 

related to the bigrams and it is well established that they are related to BMI. These 

adjustments were made in a series. In all analyses we undertook the following:  

• model 1 – unadjusted;  

• model 2 – adjusted for child gender, exact age at age 11 clinic, parity, household 

social class, maternal education, maternal smoking during pregnancy and child 

ethnicity;  

• model 3 – as model 2 and additionally adjusted for the mean number of minutes per 

day spent in the activity states: sedentary, low, moderate and vigorous;  

• model 4 – as model two and additionally adjusted for mCPM. 
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Figure 3	 provides illustrative examples showing how our models relate to differences in 

activity sequences (see Supplementary material section S3 and Supplementary table 1 for 

further examples). 

 

Relating unordered-bigrams to outcomes 

While bigrams denote the ordered occurrence of consecutive activity states it may be the case 

that it is the adjacent occurrence of activity states that matters rather than the sequential order. 

For instance, the frequency of the MV bigram may associate with BMI because M and V are 

adjacent rather than because V follows M, and where this is true we would expect the 

associations for MV with BMI to be comparable to the associations for VM with BMI.  

	

We repeat our analyses using an unordered version of bigrams, in order to maximise the 

power of our analyses, and refer to these as unordered-bigrams (u-bigrams). Given the 

activity states (sedentary, low, moderate and vigorous), there are 10 u-bigrams: [SS], [SL], 

[SM], [SV], [LL], [LM], [LV], [MM], [MV] and [VV]. For instance, the [SL] u-bigram 

corresponds to the bigrams SL and LS, and [VV] corresponds to the bigram VV. Formally the 

frequency of a u-bigram per day is calculated as: 

 

3R 4, # = 	 17	
1, 89 = 	4	 ∧ 	89;" = #
1, 89 = 	#	 ∧ 	89;" = 4
0, =>ℎ@,ABC@9D":FG"

 

 

for u-bigram [AB], number of days D, and sequence xi ={x1, x2 … xn} where x e {S,L,M,V}. 

Clearly, the u-bigrams [SS], [LL], [MM], and [VV] are equivalent to the bigrams SS, LL, 

MM, and VV, respectively. We refer to two bigrams AB and BA, corresponding to the u-
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bigram [AB], as the reciprocal of each other. Example u-bigrams are given in Figure 2 and 

example sequence changes consistent with our models are given in Supplementary table 2. 

 

Summary statistics (Table 1) were generated using Stata SE14. All other analyses are 

performed in Matlab (R2015). All code is available at 

[https://github.com/MRCIEU/activityBigrams/]. Git tag v0.1 corresponds to the version 

presented here. 

 

RESULTS 

 

Table 1 shows characteristics of participants included in our analysis sample compared with 

those who were eligible (i.e. attended the age 11 clinic) but were not included in our sample 

because of missing accelerometer, BMI or confounder data. Participants who were younger, 

lighter, female, white, with a higher household social class (nearer to class I), higher maternal 

education and whose mothers did not smoke in pregnancy were more likely to be in our 

sample (than have attended the same clinic but not be in our sample), though the magnitudes 

of these differences were small. 

 

[Table 1 here] 

 

Associations of conventional summary activity variables (mCPM and time spent in activity 

states), with BMI 

Before presenting the results of our novel activity bigram variables in the following section, 

here we present results for the common activity statistics (mCPM and time spent in activity 

states: sedentary, low, moderate and vigorous) and vCPM. Table 2 and Figure 4 show the 
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association of mCPM and vCPM with BMI. The variables mCPM and vCPM are strongly 

correlated (Pearson correlation coefficient =0.69). After adjustment for confounders a 100 

count per minute increase in mCPM is associated with a 0.283 kg/m2 lower BMI [95% CI: -

0.337, -0.229], and after adjustment for vCPM this association remains. After adjustment for 

confounders a 1 SD increase in vCPM is associated with a 0.356 kg/m2 lower BMI [95% CI: -

0.449, -0.263]. However, after adjustment for mCPM this association attenuates to the null. 

 

[Table 2 here] 

 

Table 3	 and Figure 5	 show the unadjusted and confounder adjusted associations of 

transferring time between activity states (sedentary, low, moderate and vigorous), with BMI. 

In general transferring time to a higher activity state was associated with a lower BMI, and 

the greater the increase in activity state, the greater the change in BMI. For example, 

transferring 10 minutes of time from the sedentary to the vigorous activity state per day was 

associated with a 0.960 kg/m2 lower BMI [95% CI: -1.169, -0.751], after adjustment for non-

accelerometer confounders (i.e. Model 2). 

 

[Table 3 here] 

 

Associations between sequences of physical activity (bigrams and u-bigrams), with BMI 

The distributions of the bigrams are shown in Supplementary figure 1. The frequencies of 

reciprocal bigrams in an individual’s sequence were highly correlated (Pearson correlation 

coefficients range from 0.479 [95% CI: 0.457, 0.500] for SV versus VS, to 0.999 [95% CI: 

0.999, 0.999] for SL versus LS); see Supplementary table 3). The associations of reciprocal 

bigrams (such as MV and VM) with BMI were largely consistent (see Supplementary table 4 
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and Supplementary figures 2-17 for bigram results). For example, a 10 epoch pair higher 

frequency of MV, coupled with a 10 epoch pair lower frequency of SS is associated with a 

2.308 kg/m2 lower BMI [95% CI: -3.552, -1.064], and a 10 epoch pair higher frequency of 

VM, coupled with a 10 epoch pair lower frequency of SS is associated with a 1.926 kg/m2 

lower BMI [95% CI: -3.169, -0.683], after adjustment for confounders and the average 

frequency of activity states per day (model 3). This suggests that the order of the activity 

states within a bigram (eg. MV versus VM) does not affect its association with BMI, and so 

we present the u-bigram results as the main results. 

 

Table 4 and Figure 6 show the associations of frequency changes of u-bigrams, with BMI 

(models 1, 2 and 4 are shown in Supplementary table 5). An increase in frequency of the 

[MV] u-bigram, when coupled with a decrease in frequency of all other u-bigrams except 

[VV], show negative associations with BMI, after adjusting for confounders and both the time 

spent in each activity state, and mCPM, respectively. For example, a 10 epoch pair higher 

frequency of [MV], coupled with a 10 epoch pair lower frequency of [SM] is associated with 

a 1.840 kg/m2 lower BMI [95% CI:  -2.701, -0.980], after adjustment for confounders and the 

time spent in each activity state. We also found associations for an increase in frequency of 

the [MM] u-bigram, when coupled with a decrease in frequency of the [SS] and [LL] u-

bigrams, that remained after adjusting for the both the time spent in each activity state, and 

mCPM, respectively.  

 

[Table 4 here] 

 

While we present associations for a 10 frequency change, this may not represent feasible 

changes in activity for all u-bigrams, as their standard deviations vary widely (from 1.66 to 
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526.65 epoch pairs for the [SV] and [SS] u-bigrams, respectively; see Supplementary table 6). 

Hence, while the large estimates for [SV] in our main analysis appear unfeasible, this is 

because occurrences of [SV] are infrequent. Supplementary table 7 and Supplementary figure 

18 presents associations for a 1 SD change of baseline bigram frequency, reflecting a realistic 

change based on variation in frequency of bigrams across our sample. 

 

DISCUSSION 

 

In this work we have shown how activity bigrams can be used to investigate changes in 

activity from one moment to the next and how these can then be used to assess the 

associations of finely graded patterns of change in activity across a day with disease or health 

related traits such as BMI. Reciprocal bigrams (with the same sets of activity states, e.g. MV 

and VM) had comparable associations with BMI. This may be because these bigrams 

correlate highly with each other, as for example, people with more occurrences of the MV 

bigram on average have more VM bigrams. 

 

Our tests of association of the u-bigrams with BMI identified several sequential activity 

patterns that were associated with BMI. In particular, a higher frequency of the [MV] u-

bigram, coupled with a lower frequency of all other u-bigrams except [VV], was associated 

with a lower BMI, even after adjusting for mCPM and the amount of time spent in each 

activity state (sedentary, low, moderate and vigorous), respectively. This indicates that, given 

two groups of people who spent the same amount of time in each activity state per day and 

the same number of adjacent minutes in the vigorous state, those who have more adjacent 

minutes of moderate and vigorous, have a lower BMI. Hence, while current physical activity 

recommendations say adults should do at least 150 minutes of moderate-, or 75 minutes of 
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vigorous-intensity physical activity a week (19,26,27), it may also be important to consider 

how activity levels change from one moment to the next. For instance, it might be that 

frequent occurrences of the acute increase in heart rate and changes to metabolism that occur 

with consecutive minutes in moderate and vigorous activity are important for lowering BMI. 

 

Thus, if further research replicates our findings, demonstrates similar associations with other 

health related outcomes and evidence suggests these associations are causal then public health 

advice in relation to physical activity might need to change. To date, analysis and hence 

advice on physical activity has focused on average levels of activity. Exploring associations 

between sequential patterns of activity with other traits and disease will enable more 

comprehensive advice about the types and patterns of change in activity that may be 

beneficial or detrimental to health. For example, if a causal effect of adjacent minutes in 

moderate and vigorous activity on BMI was established and extended to obesity related 

disease outcomes such as diabetes and cardiovascular disease, it may be appropriate to advise 

performing moderate and vigorous activity sequentially, rather than separately throughout the 

day. 

 

We also investigated whether the variance of activity levels (vCPM), was associated with 

BMI. While vCPM was associated with lower BMI, we found no evidence of an association 

independent of mCPM, indicating that the association of vCPM with BMI was due to its high 

correlation with mCPM. 

 

Study limitations 

We use the average frequency of bigrams over 7 days as independent variables in linear 

regression models, without considering the uncertainty in these estimates. Therefore the 
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confidence intervals of the associations with BMI may be under-estimated. Estimates based 

on a larger number of days may improve the accuracy of the bigram variables and hence the 

accuracy of associations based on these estimates. We identified differences in characteristics 

between ALSPAC participants included in our sample, and those who attended the age 11 

clinic but were not included in our sample. This may bias associations if these data are not 

missing at random. However, the magnitudes of the differences were small and hence major 

bias unlikely. This paper is primarily concerned with demonstrating a novel (activity bigram) 

method. In future more applied papers we would want to undertake sensitivity analyses to 

explore the likelihood that our assumptions about missing data are correct. 

 

We cannot infer that the associations with BMI we have presented in this paper are causal. 

Associations may be because the bigram (or u-bigram) has a causal effect on BMI. 

Alternatively, it may be the case that people with higher BMI are less likely to partake in 

activities that involve this type of activity pattern (i.e. more obese people may be less likely to 

change frequently from moderate to vigorous activity). Finally, while we adjusted for 

common confounding factors, it is possible that associations may be due to residual 

confounding.  

 

We note that our analysis used a one-minute epoch such that the bigrams are a sequence of 

two one-minute intervals. The association of a bigram with another trait is likely to change as 

the epoch size changes. For example, a 1-minute epoch of moderate activity may be 

composed of one 30-second interval at low and one at vigorous activity, rather than 

continuous activity at the moderate level. While the accelerometers used in ALSPAC 

measured data in one-minute intervals, accelerometers are increasingly being used to collect 

raw data at a much higher resolution. Our methods are applicable to such data and could be 
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used to determine whether associations with health/disease related traits differ with different 

epoch sizes. Also, while in this work we have used activity bigrams, it is possible to extend 

this approach to other n-grams. However, as n increases the number of occurrences of each n-

gram in the population decreases and hence so does the study power. 

 

To conclude, we have shown how a method initially developed for text data-mining can be 

used with accelerometer data to explore whether variation in physical activity intensity from 

one moment to the next, over and above mean levels of time spent in a given intensity, relates 

to health outcomes. We have shown that for BMI and activity bigrams calculated using a one-

minute epoch, this does appear to be the case. We recommend that other studies explore 

whether our findings with BMI replicate, and the association of activity bigrams with other 

traits are assessed. 
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TABLES AND FIGURES
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Table 1: Summary statistics of ALSPAC participants who attended the focus@11 clinic, who are included and not included in our 
sample 

 Attended focus at 11 clinic and 
not in sample 

Attended focus at 11 clinic and in 
sample 

Difference between 
participants and non-
participants2 

 Number of 
participants 

Mean (SD) or N 
(%) 1 

Number of 
participants 

Mean (SD) or N 
(%) 1 

Odds ratio [95% CI]  

BMI in kg/m2 (mean (SD)) 2297 19.39 (3.73) 4810 18.97 (3.30) 0.97 [0.95, 0.98] 
Potential confounding factors 

Age in years at age 11 clinic (mean (SD)) 2343 11.82 (0.26) 4810 11.77 (0.23) 0.45 [0.36, 0.55] 
Parity (%) - 0 

2343 
869 (37.09) 

4810 
2219 (46.13) 

0.66 [0.62, 0.70]              1 619 (26.42) 1688 (35.09) 
             2+ 855 (36.49) 903 (18.77) 
Sex - % female 2343 1114 (47.55) 4810 2552 (52.43) 1.22 [1.10, 1.34] 
Ethnicity - % non-white 1640 82 (5.00) 4810 169 (3.51) 0.69 [0.53, 0.91] 
Mother smokes in pregnancy - % yes 1900 455 (23.95) 4810 821 (17.07) 0.65 [0.57, 0.74] 
Household social class (%) – I 

1440 

199 (13.82) 

4810 

776 (16.13) 

0.86 [0.81, 0.91] 
                               II 614 (42.64) 2185 (45.43) 
                               III (non-manual) 358 (24.86) 1215 (25.26) 
                               III (manual) 180 (12.50) 468 (9.73) 
                               IV/V 89 (6.18) 166 (3.45) 
Maternal education (%) - Less than O level 

1503 

322 (21.42) 

4810 

877 (18.23) 

1.06 [1.00, 1.13]                   % O level 530 (35.26) 1788 (37.17) 
                  % A level 418 (27.81) 1333 (27.71) 
                  % Degree 233 (15.50) 812 (16.88) 
 
BMI: body mass index; SD: standard deviation. 
1 Mean (SD) for continuous and percentage for binary variables. 
2 Odds ratio for participants included in our sample versus participants who attended the age 11 clinic but are not in our sample (reference group), for a 1 unit increase in 
continuous variable (using variable units as described in column 1), or comparison group (indicated in column 1) versus baseline group for binary variables, or a 1 category 
increase for ordinal categorical variables. For example, an odds ratio of 0.97 [0.95, 0.98] for BMI means that on average a participant (who attended the age 11 clinic) is 3% 
[95% CI: 5%, 2%] less likely to be in our sample for each 1kg/m2 increase in BMI.
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Table 2: Association of the average counts per minutes and variance of counts per minute with BMI  
	
 Difference in means of BMI (kg/m2) per unit increase in each activity variable [95% 

confidence interval] N=4810 
 Model 1 (unadjusted) Model 2 (non-

accelerometer 
confounder adjusted) 

Model 3 (non-accelerometer 
confounder adjusted and 
mutually adjusted) 

mCPM (per 100 
counts) 

-0.292 [-0.344, -0.240] -0.283 [-0.337, -0.229] -0.266 [-0.342, -0.191] 

vCPM (per 1 SD; 
1SD = 1.06x106 
counts2) 

-0.387 [-0.480, -0.294] -0.356 [-0.449, -0.263] -0.041 [-0.170, 0.088] 

 
BMI: body mass index; mCPM: average counts per minute; vCPM: variance of counts per minute. 
 
Model 1: unadjusted. 
	
Model 2: adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household social class, maternal education, maternal smoking during pregnancy and 
child ethnicity). 
 
Model 3: adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household social class, maternal education, maternal smoking during pregnancy and 
child ethnicity), and mutually adjusted (vCPM is adjusted for mCPM and vice versa). 
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Table 3: Difference in means of BMI for 10-minute per day transfer from baseline activity state to comparison activity state 

	
Baseline 

activity state Model Comparison activity state 

  Sedentary  Low  Moderate  

Difference in 
means of BMI 

(kg/m2) 
95% CI 

Difference in 
means of BMI 

(kg/m2) 
95% CI 

Difference in 
means of BMI 

(kg/m2) 
95% CI 

Sedentary 
Model 1 

   
Model 2 

Low 
Model 1 0.048 0.031, 0.065 

  
Model 2 0.051 0.034, 0.068 

Moderate 
Model 1 0.201 0.166, 0.236 0.196 0.151, 0.241 

 
Model 2 0.192 0.154, 0.229 0.181 0.133, 0.230 

Vigorous 
Model 1 1.053 0.846, 1.261 1.018 0.809, 1.227 0.526 0.271, 0.782 

Model 2 0.960 0.751, 1.169 0.931 0.721, 1.142 0.524 0.269, 0.778 
 

BMI: body mass index; CI: confidence interval. 
N=4810 
 
Model 1: unadjusted.  
Model 2: adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household social class, maternal education, maternal smoking during pregnancy and 
child ethnicity).  
 
Swapping the baseline and comparison activity states gives equivalent associations with BMI (same values but with opposite sign), hence we present only one of each. 
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Table 4: Difference in means of BMI for a 10 epoch pair lower frequency of baseline u-bigram, coupled with a 10 epoch pair higher 
frequency of comparison u-bigram, after adjustment for confounding factors and amount of time spent in each activity state (model 3) 

Baseline 
u-bigram Comparison u-bigram 

 [SS] [SL] [SM] [SV] [LL] [LM] [LV] [MM] [MV] 

 Difference in means of BMI [95% CI] (N=4810) 

[SL]  -0.279  
[-0.779, 0.221] 

 

	 	
       

[SM]  -0.774 
[-1.348, -0.200] 

-1.204  
[-1.789, -0.620] 

       

[SV]  -5.740  
[-9.987, -1.493]  

-5.680  
[-9.927, -1.434]  

-4.107  
[-8.768, 0.553] 

      

[LL] 0.165  
[-0.384, 0.714]  

-0.255  
[-0.418, -0.092]  

0.948  
[0.372, 1.523]  

6.389  
[2.141, 10.638] 

     

[LM]  0.410  
[0.206, 0.615]  

-0.188  
[-0.320, -0.055]  

0.580  
[-0.112, 1.272]  

5.319  
[0.971, 9.666]  

0.242  
[0.075, 0.409] 

 

	
   

[LV]  -0.130  
[-1.289, 1.029]  

-0.625  
[-1.775, 0.524]  

0.423  
[-1.021, 1.867]  

5.642  
[0.586, 10.698]  

-0.744  
[-1.894, 0.405]  

-0.234  
[-1.489, 1.022] 

   

[MM] 0.479  
[0.231, 0.727]  

-0.203  
[-0.472, 0.065]  

0.753  
[0.167, 1.340]  

5.538  
[1.232, 9.844]  

0.852  
[0.564, 1.141]  

0.208  
[-0.218, 0.634]  

0.546  
[-0.618, 1.709] 

  

[MV]  1.307  
[0.664, 1.950]  

0.687  
[0.040, 1.334]  

1.840  
[0.980, 2.701]  

6.234  
[1.966, 10.502]  

1.442  
[0.793, 2.090]  

1.101  
[0.457, 1.744]  

1.836  
[0.491, 3.181]  

0.839  
[0.166, 1.513]  

 

[VV]  -0.376  
[-1.467, 0.715]  

-1.058  
[-2.136, 0.021]  

-0.322 
[-1.487, 0.842] 

5.671  
[1.396, 9.945]  

-0.264  
[-1.362, 0.834]  

-0.872  
[-1.959, 0.215]  

-0.109  
[-1.382, 1.165]  

-1.588  
[-2.779, -0.397]  

-0.075  
[-1.277, 1.126] 

 
BMI: body mass index; S: sedentary; L: low; M: moderate; V: vigorous; CI: confidence interval; u-bigram: unordered bigram. 
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Model 3 is adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household social class, maternal education, maternal smoking during pregnancy and 
child ethnicity) and activity states (time spent in sedentary, low, moderate and vigorous activity). 
	
Full results (models 1 – 4) are given in Supplementary table 5. 
	
Swapping the comparison and baseline u-bigram gives equivalent estimates of association with BMI (same values but with opposite sign), hence we present only one of each.
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Figure 1: Participant flow diagram showing creation of our sample in ALSPAC 
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Figure 2: Illustrative examples of common physical activity statistics and our novel 
activity bigrams  

 
mCPM: average counts per minute; MVPA: proportion of time spent in moderate-vigorous physical activity; SB: 
sedentary behaviour. 
	
Illustration shows two 7-minute activity sequences, where each coloured block denotes a one-minute interval 
with a given activity level. 
 
Sequence A and sequence B have the same number of occurrences of each activity state (with the same activity 
levels) and so have the same values for the common activity statistics and frequency of each activity state, but 
the different order of activity states means they have different frequencies of bigrams and unordered-bigrams. 
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Figure 3: Illustrative examples of real differences in activity sequences consistent with 
our models, for baseline ML (moderate followed by low) and comparison MM 
(moderate followed by moderate) activity bigrams 

	
	
	
mCPM: average counts per minute. 
 
Each illustration shows the activity of two people during an 8-minute period, where each coloured block denotes 
a one-minute interval. Illustration 3 also shows the activity level of each minute. Curly brackets on right hand 
side show the frequency of each activity bigram and activity state, where those emboldened have different values 
for person A and B. 
 
Illustration 1: Consistent with models 1 and 2 because swapping ML (the moderate followed by low bigram) 
with MM (the moderate followed by moderate bigram) increases the occurrence of MM and decreases the 
occurrence of ML by the same amount. 
 
Illustration 2: Consistent with model 3 because: 1) swapping ML with MM increases the occurrence of MM and 
decreases the occurrence of ML by the same amount, and 2) the time spent in sedentary, low, moderate and 
vigorous does not change. 
 
Illustration 3: Consistent with model 4 because: 1) swapping ML with MM increases the occurrence of MM and 
decreases the occurrence of ML by the same amount, and 2) the average counts per minute (mCPM) does not 
change. 
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Figure 4: Association of the average counts per minutes and variance of counts per 
minute with BMI 

 
	
BMI: body mass index; mCPM: average counts per minute; vCPM: variance of counts per minute. 

Model 1 (orange circle): unadjusted. 

Model 2 (green square): adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household 
social class, maternal education, maternal smoking during pregnancy and child ethnicity). 
 
Model 3 (red cross): adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household 
social class, maternal education, maternal smoking during pregnancy and child ethnicity), and mutually adjusted 
(vCPM is adjusted for mCPM and vice versa). 
 
N=4810. 
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Figure 5: Difference in means of BMI for a 10 occurrence per day transfer from baseline 
activity state to comparison activity state 

 

 
 
BMI: body mass index; S: sedentary; L: low; M: moderate; V: vigorous. 
 
Model 1 (orange circle): unadjusted.  
Model 2 (green cross): adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household 
social class, maternal education, maternal smoking during pregnancy and child ethnicity).  
	
N=4810
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Figure 6: Difference in means of BMI for a 10 epoch pair lower frequency of baseline 
activity u-bigram, coupled with a 10 epoch pair higher frequency of comparison activity 
u-bigram 

 
 
 
BMI: body mass index; u-bigram: unordered-bigram; S: sedentary; L: low; M: moderate; V: vigorous. 
 
Swapping the comparison and baseline u-bigram gives equivalent estimates of association with BMI (same 
values but with opposite sign). 
 
Model 1 (circle): unadjusted.  
Model 2 (cross): adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household social 
class, maternal education, maternal smoking during pregnancy and child ethnicity).  
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Model 3 (square): adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household social 
class, maternal education, maternal smoking during pregnancy and child ethnicity) and activity states (time spent 
in sedentary, low, moderate and vigorous activity).  
Model 4 (star): adjusted for potential confounders (gender, exact age at age 11 clinic, parity, household social 
class, maternal education, maternal smoking during pregnancy and child ethnicity), and mCPM. 
N=4810
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