
MMTF - an efficient file format for the transmission,
visualization, and analysis of macromolecular
structures
Anthony R. Bradley1,2, , Alexander S. Rose1, Antonín Pavelka1, Yana Valasatava1, Jose M.
Duarte1,2, Andreas Prlić1,2, and Peter W. Rose1,2,*.

 1Structural Bioinformatics Laboratory, San Diego Supercomputer Center, University of
California, San Diego, La Jolla, CA 92093, USA

2RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San
Diego, La Jolla, CA 92093, USA.

* Corresponding author
E-mail: pwrose@ucsd.edu

Abstract
Recent advances in experimental techniques have led to a rapid growth in complexity, size, and
number of macromolecular structures that are made available through the Protein Data Bank.
This creates a challenge for macromolecular visualization and analysis. Macromolecular
structure files, such as PDB or PDBx/mmCIF files can be slow to transfer, parse, and hard to
incorporate into third-party software tools. Here, we present a new binary and compressed data
representation, the MacroMolecular Transmission Format, MMTF, as well as software
implementations in several languages that have been developed around it, which address these
issues. We describe the new format and its APIs and demonstrate that it is several times faster
to parse, and about a quarter of the file size of the current standard format, PDBx/mmCIF. As a
consequence of the new data representation, it is now possible to visualize structures with
millions of atoms in a web browser, keep the whole PDB archive in memory or parse it within
few minutes on average computers, which opens up a new way of thinking how to implement
efficient algorithms in structural bioinformatics. The PDB archive is available in MMTF file format
through web services and data are updated on a weekly basis.

Introduction
The Protein Data Bank (PDB) [1] is the global archive of 3D structures of proteins, nucleic acids,
and complex assemblies. Recent advances in experimental techniques have led to an explosion
in both the number and size of such structures. The entire PDB now exceeds one billion atoms
and the largest structure currently contains about 2.4 million atoms [2] (Fig 1A). In addition to a
growing number of depositions per year (Fig 1B) and average number of atoms per structure

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

(Fig 1C), 68 of the 100 largest structures were deposited in the past three years. In Fig 1D, we
show the rising importance of Cryo-Electron microscopy as a technique [3]. It is expected that
much larger molecular machines and molecular assemblies will be modeled by combining
multiple experimental techniques [4].

Fig 1. Growth of the Protein Data Bank Archive.
(A) The currently largest asymmetric structure in the PDB - the HIV Capsid (PDB ID 3J3Q)
contains over 2.4 million atoms. (B) The number of depositions per year (obsoleted or
superseded entries are excluded). (C) The average structure size (asymmetric unit size for
crystallographic structures). (D) Electron microscopy structures are contributing ~10 million
atoms per year for the past 3 years (1% of the archive).

Significant increases in data sizes have been seen in many fields. Efficient storage and
transmission of data using novel file formats and data compression methods are integral to
these development, e.g., for the transport of HD-TV, video, and audio. A similar trend has
emerged in the handling of whole genome data [5].

e
at
ng

Q)
or
for
on

nd
to
as

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

Two notable developments have been made in developing such a format for macromolecules.
First, WPDB [6] stored the data as binary files with limited precision, allowing efficient access.
WPDB is however no longer maintained and was tied to the Windows operating system. The
second development is mmJSON [7], which represents data from the PDBx/mmCIF format
(http://mmcif.wwpdb.org/) in the JSON serialization format that can be efficiently parsed by
modern web browsers. Even after compression with gzip (a commonly used general purpose
compression tool) the largest structure (PDB ID 3J3Q) takes up 27 MB of space making it
challenging to transfer - in particular over mobile networks. Moreover, neither WPDB, mmJSON,
nor other formats such as PDBx/mmCIF, provide all data necessary to represent a full
macromolecular model including bond information. Furthermore, as text based formats, they are
slow to parse, and clean Application Programming Interfaces (APIs) are generally not made
available.

Commercial software providers have produced their own internal representations of
macromolecular structures. No such format, however, is openly available and thus they cannot
be incorporated into third party software or developed with community involvement. For this
reason, structural analysis is currently a laborious and error-prone process, often involving
substantial duplicated effort to reliably process the entire PDB archive into a 3rd party data
structure. Structure visualization can be equally challenging for large structures, due to slow
data download and high client-side memory requirements to parse large structure files. Some of
the largest structures in the PDB require more memory than is typically available within in web
browser.

In this paper we describe a new data representation, the MacroMolecular Transmission Format
(MMTF) (http://mmtf.rcsb.org/) that aims to resolve these deficiencies. MMTF is a binary
machine-readable file format that can be parsed, in some instances at least an order of
magnitude faster than existing text-based formats. Custom lossless and lossy compression
methods with either full atom level detail and a reduced representation (C-alpha, P atoms) are
applied [8] to reduce the file size and thus further improve transmission and parsing speeds.
Finally, MMTF is designed for interoperability and use by a broad community. APIs are provided
in common programming languages and a full chemical description required to understand a
structure is included in the file. The PDB archive is provided in MMTF format through web
services and updated weekly. MMTF is a macromolecular file format for the modern age.

Design and Implementation

Design Considerations
Above we demonstrated that existing file formats are becoming less suitable for modern
macromolecular data. Due to these challenges, the MMTF format was designed with three core
aims. First, to minimize data storage requirements and transfer times, the format should
represent data in compressed form without loss of accuracy. Second, it should be fast to parse,
since I/O is often a bottleneck in structural analysis and visualization. Third, we designed MMTF

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

to be as extensible, self-contained, and interoperable as possible. As a binary, machine-
readable format, the preferred access to MMTF data is through the APIs provided in several
programming languages. This allows the developers to focus on scientific applications and not
on developing file parsers.

Data Items and Encoding
The MMTF format was designed to include the core data commonly used by macromolecular
visualization and analysis tools (Table 1). A comprehensive list of the data items is available in
the MMTF specification. Additional data, if required, can be accessed through web services.

Table 1. Data Categories described in MMTF format

Data Category Data Items

Metadata PDB ID, title, deposition date, release date, experimental method(s)

Crystallographic info Space group, unit cell, NCS operators, resolution, Rfree, Rwork

Primary structure Polymer sequences

Secondary structure DSSP secondary structure assignments*

Structural model Models, chains, groups (residues), atoms, bonds* and bond orders*

Quaternary structure Biological assembly transformations

* These data items are not available in the PDBx/mmCIF files and are added to MMTF files.

To make MMTF files directly usable by visualization and analysis applications, we add
consistently calculated DSSP [9] secondary structure information using the BioJava
implementation [10]. MMTF includes the full chemical description of all molecules in a PDB
entry. Bonds and bond orders for both standard and non-standard residues, e.g., ligands, are
included from the Chemical Component Dictionary [11] and additional covalent bonds
(struct_conn category in the PDBx/mmCIF files), such as disulfide bonds or covalent bonds
between ligands and polymers are also included in MMTF. Metal coordination and hydrogen
bond information is not included in MMTF, since there are no generally agreed upon standards
how to define them. Fig 2 describes the creation of an MMTF file from a PDBx/mmCIF archive
file.

Fig 2. Steps in the creation of a MMTF file from a PDBx/mmCIF file.
After parsing a PDBx/mmCIF file, DSSP secondary structure is calculated and bond information
is added for all residues. Custom encoding strategies are applied to the different data categories
to achieve a compact representation. These data are serialized in binary form and then further
compressed with standard compression tools to create a compressed MMTF file.

-
ral
ot

n
es

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

Encoding Strategies
In order to reduce the overall file size, we applied specialized encoding techniques to make the
data more compressible. These techniques either reduce redundancy in the data or reduce the
dynamic range (entropy) of numbers, to make them more compressible using standard entropy
encoding techniques.

Fields of the same type are grouped together in MMTF to create a flat data structure. For
instance, the coordinates of all atoms are stored together, instead of in atom objects with other
atom-related data. This avoids imposing a deeply nested hierarchical structure on consuming
programs, while still allowing efficient traversal of models, chains, groups, and atoms. This
approach represents a columnar encoding [12] of data, which facilitates data encoding and
enhances data compressibility.

Lossless integer encoding is applied to all fixed precision floating point numbers. Integer
numbers have a simpler bitwise representation and are therefore more compressible than the
equivalent floating-point numbers [8]. Atomic coordinates are typically represented with a
precision of 3 decimal places, and temperature factors with 2 decimal places. For lossless
encoding, we multiply coordinate and temperature factor values by 1000 and 100, respectively,
and round the values to the nearest integer.

A further increase in compression can be obtained through lossy encoding by rounding
coordinates to 0.1 Å precision and temperature factors and occupancy to 0.1 precision. Lossy
compression is particularly important for the visualization of large complexes, for which the
reduced precision is not visually perceptible [6,8].

Dictionary encoding is used for data repeated across multiple residues. In standard PDB and
mmCIF files, atoms within a residue are listed in a standard order. Exploiting this, atom name,
element symbol, intra residue bonds and bond orders, etc. can be stored once for each unique
residue type and not repeated across the file, as shown for the dictionary entry for serine (Fig
3). MMTF has been designed to handle exceptions to a consistent atom order, if they occur,
however, the encoding will be less efficient.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

Fig 3. Dictionary entry for amino acid serine.

Delta encoding is applied to data of large magnitude that change in small increments. For
example, instead of storing absolute atom coordinate values, differences in the x, y, and z
coordinates are stored. Due to the covalent bond structure in molecules, these differences
typically lie within a small dynamic range bound by their bond distances. Previous work
determined this method to be the most effective encoding technique [8]. Temperature factors
are also delta encoded, since their variation from residue to residue is typically low.

Run-length encoding compresses a list of repeated values, such as occupancy values in X-ray
structures, most of which are constant (1.0). Here the value itself and the number of repetitions
is stored. For atom serial numbers, delta and run-length encoding are combined to achieve a
very compact encoding.

Recursive indexing - Given the small dynamic range of delta encoded coordinates, most, but not
all values can be represented as 16-bit signed integers, rather than 32-bit signed integers. We
have explored the effect of packing on compression [8] and identified recursive indexing as a
simple and effective packing strategy for this data type. Any values that lie outside the 16-bit
integer range [-32,768, 32,767] are decomposed into a series of values, such that the individual
values fit into the 16-bit range (Fig. 4D), and their sum adds up to the original value.

The overall workflow for the encoding of columnar data is shown in Fig 4.

ot

al

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

Fig 4. Workflow for encoding columnar data within MMTF.
(A) Columnar data are first converted to integer arrays. Depending on the type of the values in
the array, three types of custom encoding are applied to: 1. Repeated values, 2. Sequential
values, 3. Small differences between adjacent values. All encoded values are finally encoded as
a byte array. (B) Example of encoding 2,000 occupancy values by integer encoding (x100)
followed by run-length encoding. (C) Example of encoding 2000 atom serial numbers by
applying delta and run-length encoding. (D) Example of encoding atom coordinate values by

 in
ial
as
0)
by
by

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

integer encoding (x1,000), delta encoding, and recursive index encoding into a 16 bit signed
integer array. Here, the value 32,867 exceeds the maximum value (32,767) for a 16-bit signed
integer. Therefore, recursive index encoding decomposes this value into two numbers 32,767
and 100 that sum up to the original value. All subsequent values are within range and are
represented directly by their values 2,001, and 1,053.

Serialization
MMTF data are stored in the MessagePack format (version 5, http://msgpack.org) binary
container format. MessagePack is an efficient binary serialization format, similar to JSON, but
faster to parse and more compact. Encoding and decoding libraries for MessagePack are
available in many languages. The top-level of the container holds the field names as keys and
field data as values. Non-columnar data are described using standard MessagePack data types.
Columnar data, e.g., most data columns in the “ATOM” records, are custom encoded. The
MMTF specification defines Codec Types used to custom encode columnar data. These data
records are described by the following data structure (Fig 5), which is represented as a binary
array in MessagePack.

Fig 5. Data structure of custom encoded record in MMTF.
A Codec Type describes the columnar encoding strategy. A Codec may describe the
combination of several encoding strategies. For example, coordinate data are encoded by a
Codec that combines integer encoding, delta encoding, recursive index encoding. Data Length
represents the number of values that have been encoded, and here the Codec Parameter for
coordinate encoding is a divisor to convert integers to floating point numbers.

MMTF Data Files
MMTF files for all PDB entries are updated weekly as part of the RCSB PDB weekly update
pipeline. Semantic versioning (http://semver.org) is employed to the file specification and the
APIs. Major version changes of the specification may require code updates to decode and parse
data. For this reason, after the release of a new major version of the specification, the previous
major version will be retained for a number of months to allow time for code updates and
testing. Such version changes will be disseminated through a mailing list and updates to the
documentation.

MMTF files are generated with two types of molecular representation (Table 2). The reduced
representation, which uses lossy compression and less atomic level detail is suitable for 3D
visualization, e.g., ribbon diagrams, or calculations that require only a C-alpha representation.

Table 2. MMTF File Types

ed
ed
67
re

s.

te
he
se
us
nd
he

ed
D

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

Type Representation Coordinate precision
(Å)

Temperature factor (Å2) and
 Occupancy precision

full all atoms 0.001 0.01

reduced C-alpha (polypeptide),
P (polynucleotide),
all atoms (non-polymers)

0.1 0.1

MMTF Application Programming Interface
MMTF files are accessible through RESTful web services via HTTP and HTTPS protocols, or
downloadable as individual gzipped files (http://mmtf.rcsb.org/download.html). A weekly update
procedure ensures the availability of the latest structures, as provided by the wwPDB. For large-
scale analysis of the PDB archive, where loading of thousands of individual files is inefficient, a
single Hadoop Sequence file (https://wiki.apache.org/hadoop/SequenceFile) is provided. These
files can be efficiently processed in parallel by Big Data frameworks such as Apache Hadoop
(http://hadoop.apache.org/) or Apache Spark (http://spark.apache.org/).

The preferred access to MMTF data is via the provided decoder APIs, which are available
through open source GitHub repositories. API documentation and example code are available
from the MMTF project page (http://mmtf.rcsb.org/). Fig 6 shows the integration of third-party
applications and software libraries with the MMTF APIs.

Fig 6. Third party software integration through MMTF APIs and web services.

or
te
-

, a
se
op

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

MMTF data are accessed through the MMTF RESTful web services. APIs available in common
programming languages provide efficient access to the MMTF data. Third party applications
then access the data through the language-specific APIs.

Results
The benefits of the MMTF file format were assessed in three different ways. First, the relative
sizes of the files in different formats were measured. Second, the file load time was
benchmarked in Python, JavaScript, and Java. Third, the simplicity of using the new format is
demonstrated.

File Size Comparison
In Fig 7 we compare the size of the PDB archive in mmCIF, PDB, and MMTF file formats. In the
MMTF file format the PDB archive can be stored in about 8 GB, making it less than 1/4 the size
of the mmCIF files and 1/3 the size of the PDB files. In practice, being stored in about 8 GB also
means the entire archive can be stored in RAM on many standard desktop and laptop
computers.

Fig 7. Comparison of file sizes for the PDB archive (~127,000 entries) in gzip compressed
mmCIF, PDB, and MMTF formats as of March 2017.
About 500 large structures (> 99,999 atoms or > 62 chains) cannot be represented in the PDB
format, however, they are available as split PDB files (.tar.gz files) and take up about 2.7 GB,

ve
as
 is

e

o

d

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

which is included in the reported PDB file size. For MMTF, we report the size of the all atom
representation (MMTF-full) and the reduced representation (MMTF-reduced).

Load Time Benchmarks
The following benchmarks assess the file load time for MMTF compared to mmCIF and PDB
data formats. The load times reported in the figures below consist of reading the files from a
local disk, decompressing and parsing the data, instantiating a hierarchical molecular data
structure (model->chain->residue->atom), and storing the metadata. All parsing benchmarks
were performed using a single core on a MacMini, 2.6 GHz Intel Core i5, 16 GB RAM 1600 MHz
DDR3, with a solid state drive.

The first benchmark uses the existing file parsers (mmCIF, PDB) in BioJava and compares their
performance with the new BioJava MMTF parser, which uses the MMTF-Java API. In Fig 8 we
compare the load times for ~127,000 PDB entries as individual gzip compressed mmCIF, PDB,
and MMTF files, and as uncompressed Hadoop Sequence files.

Fig 8. Comparison of BioJava load time for the PDB archive using different file formats.
Load time for the PDB archive (~127,000) entries using the gzip compressed mmCIF, PDB, and
MMTF formats. For MMTF, we report the load time for individual gzipped files, as well as, the
load time for uncompressed Hadoop Sequence Files containing MMTF records in the full (all
atom, MMTF-full) and the reduced format (MMTF-reduced). For PDB file loading, about 500
large structures that cannot be represented in the PDB format (>99,999 atom, > 62 chains) were
excluded.

z

ir

d

re

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

Next, we compared the load time of implementations in different programming languages. We
benchmarked three commonly used software libraries: BioPython [13] (http://biopython.org/),
NGL Viewer [14] (https://github.com/arose/ngl), and BioJava [15] (http://biojava.org/) written in
Python, JavaScript, and Java, respectively. A benchmark set of 1,000 randomly selected PDB
entries was used for the assessment (S1 Table) (Fig 9).

Fig 9. Comparison of the average load times for different file formats using three
software libraries in three programming languages on a set of 1000 random PDB entries.

The MMTF format has clear advantages over mmCIF and PDB. For BioPython, MMTF is parsed
about 4 times faster than mmCIF using the FastMMCIFParser (353 seconds), and about 30
times faster compared to the default MMCIFParser (2650 seconds, data not shown in Fig 9),
which creates a more complete data model. For NGL (JavaScript), MMTF loading is about 18
times faster than mmCIF. For BioJava, loading MMTF files is about 45 times faster than loading
the corresponding mmCIF files.

To assess the effect of structure size on load time (Fig 10), we created samples of 100
structures around the 25 percentile (S2 Table), 50 percentile (S3 Table), and 75 percentile (S4
Table) from the atom size distribution of the PDB archive. To create these subsets, we selected
100 structures symmetrically around the quartile values.

.

ed

ng

d

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

Fig 10. Comparison of the average load times per structure using the MMTF format for
three structure sizes.
The benchmarks contain 100 structures each around the 25, 50 and 75 percentile of the PDB
size distribution: Q25 (2,309-2,313 atoms), Q50 (4,054-4,063 atoms), Q75 (7,862-7,885 atoms).

According to this benchmark, most small to medium sized PDB structures can be parsed in
milliseconds using the BioJava/MMTF-Java API and NGL/MMTF-JavaScript API. The load time
is approximately linear with the number of atoms in a PDB entry. MMTF file loading with
BioPython is consistently about a factor of 40-50 slower than with BioJava. This is due in part
that Python is an interpreted language. Our profiling points to the creation of the hierarchical
molecular data structure as the time limiting factor for BioPython.

MMTF was specifically designed to handle the efficient transfer and visualization of very large
structures that could not be parsed and visualized using the PDBx/mmCIF format due to the
large memory overhead. For example, the currently largest asymmetric structure (PDB ID 3J3Q)
in the PDB with 2,440,800 atoms, shown in Fig 1A, was rendered with NGL viewer using the
MMTF-reduced format. Table 3 compares the load times for this entry using BioPython, NGL,
and BioJava.

Table 3. Average load time for large PDB entry 3J3Q with about 2.4 million atoms

Library Load Time (seconds)
mmCIF (50.1 MB)

Load Time (seconds)
MMTF-full (14.1 MB)

Load Time (seconds)
MMTF-reduced (1.0 MB)

).

e

Q)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

BioPython 164.7 59.7 11.8

NGL
(JavaScript)

26.0 0.9 0.3

BioJava 52.1 2.2 0.4

Average load time (100 repeats) for the gzip compressed mmCIF and MMTF files from a local
file system. MMTF-full represents the all atom model and MMTF-reduced represents the C-
alpha only model.

Simple Application Programming Interfaces
The MMTF file format is designed to be easy to use and incorporate into 3rd party applications.
While MMTF has a flat, columnar data structure, it can be traversed following the structure
hierarchy: Models -> Chains -> Groups -> Atoms. In Fig 11, we demonstrate the simplicity in
retrieving data using the Java, JavaScript and Python APIs.

Fig 11. Traversal of the structure hierarchy using the MMTF API.
These code snippets (A) Java, (B) JavaScript, and (C) Python demonstrate how to load and
decode an MMTF file (PDB ID 4CUP) from http://mmtf.rcsb.org and then traverse the

nd
he

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

hierarchical data structure (Models -> Chains -> Groups -> Atoms). The code shown here loops
through the Model and Chain hierarchy. For each model, the model index is printed, and for
each chain, the chainId, chainName, and number of groups (residues) are printed. In an
analogous fashion, not shown for brevity, the group and atom data can be traversed.

Availability and Future Directions
In this paper we present a modern macromolecular transmission format. MMTF addresses the
growing size and complexity of macromolecular structures through a new binary, custom
compressed file format. Furthermore, MMTF is self-contained and simple APIs are provided in
multiple popular programming languages. Software developers do not need to implement their
own parsers - often an error-prone process, but rather build on the tools provided by MMTF.
Through both these advances MMTF allows rapid user-friendly access to any structure in the
PDB archive with a few lines of code. We demonstrate that the format is 75% smaller, an order
of magnitude faster to parse, and is provided along with a user friendly API that promotes
interoperability.

The MMTF project page (http://mmtf.rcsb.org) is the entry point to all documentation and
software, including the MMTF specification, links to GitHub repositories of the MMTF APIs
(Java, JavaScript, Python, C, and C++), and API descriptions. The versioned specification and
all software libraries are available under either an Apache 2 or MIT license. A description how to
download MMTF files is also available. A “Try it” feature demonstrates the transfer and parsing
performance of MMTF-JavaScript in a web browser, and a “See it in Action” page demonstrates
the fast data transfer, parsing, and rendering in NGL viewer [14].

Due to simple API, user-friendly specification and licensing model, the format has already been
incorporated into several protein analysis tools and 3D structure visualization tools (Table 4).

Table 4. Applications that support the MMTF file format.

Application Link Reference

3DMol.js http://3dmol.csb.pitt.edu/ [16]

BioJava http://biojava.org/ [15]

BioPython http://biopython.org/ [13]

ICM http://www.molsoft.com/icm_browser.html

iCn3D https://www.ncbi.nlm.nih.gov/Structure/icn3d/icn3d.html [17]

JSmol/Jmol http://www.jmol.org/

MDAnalysis http://www.mdanalysis.org/

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

NGL https://github.com/arose/ngl [14]

PyMol https://www.pymol.org/

We envisage the above advances will have a major impact in two areas of structural
bioinformatics (Fig 12).

Fig 12. Main applications of the MMTF file format.
(A) MMTF enables fast transfer, parsing, and low client side overhead for high-performance
visualization in web-based viewers and in particular mobile devices. (B) MMTF can be
represented in “Big Data” formats and the small size enables high-performance, in-memory
analysis and calculations of the entire PDB archive using Big Data frameworks for parallel
processing.

The first key area of impact is visualization of macromolecular structures, in particular when
used on mobile device or in a web browser. MMTF enables low bandwidth file transfer, low
client-side memory consumption, and fast parsing of PDB structures. For example, the 3D
visualization on the RCSB PDB website is powered by MMTF [18], using the MMTF-full
representation for entries < 10,000 residues and the MMTF-reduced representation for larger
entries. Using the NGL viewer [14] and MMTF, the currently largest structure in the PDB, the
HIV viral capsid (PDB ID 3J3Q) [2], can now be visualized on a mobile device (Fig 1A).

ral

ce
be
ry
lel

en
w
D
ull
er
he

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

Second, by greatly increasing file-parsing speed, a rapid analysis of the entire PDB archive can
be carried out. As an example, we have used the MMTF format to rapidly mine the PDB for
interatomic distance distributions. Coupled with the use of an efficient geometric hashing
algorithm in BioJava, the distances between all C-alpha carbons can be calculated in minutes.
Parsing of the text-based mmCIF format alone would take several hours. Using a Hadoop
Sequence file with MMTF records enables the scalable analysis of the PDB using standard
distributed parallel processing frameworks. Further work is ongoing to demonstrate the use of
MMTF with Big Data frameworks.

MMTF is an open source project and we welcome additions and new applications that use the
new technology. As an example, the MMTF-C and MMTF-C++ decoders were developed in
collaboration with community members.

Acknowledgements
We thank Robert Hanson, Thomas Holder, and David Koes for their feedback on the MMTF
specification and API. We thank Thomas Holder, Julien Ferté, Gazal Kalyan for developing the
MMTF-C decoding library and Gerardo Tauriello, Stefan Bienert, Gabriel Studer, and Andrew
Waterhouse for developing the MMTF-C++ decoding library. Robert Hanson provided efficient
Java code for decoding of MessagePack. We also thank all users who helped with MMTF file
transfer benchmarks worldwide, and Shih-Cheng Huang for performing the BioPython
benchmarks. We thank Ezra Peisach for help with data validation, and Cole Christie and Chris
Randle for setting up the weekly update process and data download for MMTF files.

References
1. Berman HM. The Protein Data Bank. Nucleic Acids Res. 2000;28: 235–242.

doi:10.1093/nar/28.1.235
2. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, et al. Mature HIV-1 capsid

structure by cryo-electron microscopy and all-atom molecular dynamics. Nature.
2013;497: 643–6. doi:10.1038/nature12162

3. Callaway E. The revolution will not be crystallized: a new method sweeps through
structural biology. Nature. 2015;525: 172–174. doi:10.1038/525172a

4. Callaway E. Data bank struggles as protein imaging ups its game. Nature. 2014;514:
416–416. doi:10.1038/514416a

5. Paten B, Diekhans M, Druker BJ, Friend S, Guinney J, Gassner N, et al. The NIH BD2K
center for big data in translational genomics. J Am Med Informatics Assoc. 2015;43:
ocv047. doi:10.1093/jamia/ocv047

6. Shindyalov IN, Bourne PE, IUCr. WPDB – PC Windows-based interrogation of
macromolecular structure. J Appl Crystallogr. 1995;28: 847–852.
doi:10.1107/S0021889895005723

7. Bekker G-J, Nakamura H, Kinjo AR. Molmil: a molecular viewer for the PDB and beyond.
J Cheminform. 2016;8: 42. doi:10.1186/s13321-016-0155-1

8. Valasatava Y, Bradley AR, Rose AS, Duarte JM, Prlić A, Rose PW. Towards an efficient

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

compression of 3D coordinates of macromolecular structures. PLoS One. 2017;12:
e0174846. doi:10.1371/journal.pone.0174846

9. Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of
hydrogen-bonded and geometrical features. Biopolymers. 1983;22: 2577–2637.
doi:10.1002/bip.360221211

10. Prlić A, Yates A, Bliven SE, Rose PW, Jacobsen J, Troshin P V., et al. BioJava: an open-
source framework for bioinformatics in 2012. Bioinformatics. 2012;28: 2693–2695.
doi:10.1093/bioinformatics/bts494

11. Westbrook JD, Shao C, Feng Z, Zhuravleva M, Velankar S, Young J. The chemical
component dictionary: complete descriptions of constituent molecules in experimentally
determined 3D macromolecules in the Protein Data Bank. Bioinformatics. 2015;31: 1274–
1278. doi:10.1093/bioinformatics/btu789

12. Abadi DJ, Madden SR, Hachem N. Column-stores vs. Row-stores: How Different Are
They Really? Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM; 2008. pp. 967–980.
doi:10.1145/1376616.1376712

13. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely
available Python tools for computational molecular biology and bioinformatics.
Bioinformatics. 2009;25: 1422–1423. doi:10.1093/bioinformatics/btp163

14. Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW. Web-based
molecular graphics for large complexes. Proceedings of the 21st International
Conference on Web3D Technology - Web3D ’16. New York, New York, USA: ACM
Press; 2016. pp. 185–186. doi:10.1145/2945292.2945324

15. Prlić A, Yates A, Bliven SE, Rose PW, Jacobsen J, Troshin P V., et al. BioJava: An open-
source framework for bioinformatics in 2012. Bioinformatics. 2012;28: 2693–2695.
doi:10.1093/bioinformatics/bts494

16. Rego N, Koes D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics. 2015;31:
1322–1324. doi:10.1093/bioinformatics/btu829

17. NCBI Resource Coordinators. Database Resources of the National Center for
Biotechnology Information. Nucleic Acids Res. 2017;45: D12–D17.
doi:10.1093/nar/gkw1071

18. Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, et al. The RCSB protein
data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids
Res. 2017;45: D271–D281. Available: http://dx.doi.org/10.1093/nar/gkw1000

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/122689doi: bioRxiv preprint

https://doi.org/10.1101/122689
http://creativecommons.org/licenses/by/4.0/

