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Summary Statement: As gravity decreases, humans reduce peak vertical speed in running to optimally1

balance energetic costs of ground-contact collisions and frequent steps, contributing to lower vertical dis-2

placement during the non-contact phase.3

Abstract4

In gravity below Earth normal, a person should be able to take higher leaps in running.5

We asked ten subjects to run on a treadmill in five levels of simulated reduced gravity and6

optically tracked center of mass kinematics. Subjects consistently reduced ballistic height7

compared to running in normal gravity. We show that this trend is partially explained by8

considering maximum vertical speed during the stride (MVS). Energetically optimal gaits9

should balance energetic costs of ground-contact collisions (favouring lower MVS), and step10

frequency penalties such as leg swing work (favouring higher MVS, but less so in reduced11

gravity). Measured MVS scaled with the square root of gravitational acceleration, following12

energetic optimality predictions and explaining why ballistic height does not increase in lower13

gravity. While it may seem counterintuitive, using less “bouncy” gaits in reduced gravity is a14

strategy to reduce energetic costs, to which humans seem extremely sensitive.15

Introduction16

Under normal circumstances, why do humans and animals select particular steady gaits from the myriad pos-17

sibilities available? One theory is that the chosen gaits minimize metabolic energy expenditure (Alexander18

and Jayes, 1983; Ruina et al., 2005). To test this theory, one can subject organisms to abnormal circum-19

stances. If the gait changes to a new energetic optimum, it can be inferred that energetics also govern gait20

choice under normal conditions (Bertram and Ruina, 2001; Long and Srinivasan, 2013; Selinger et al., 2015).21

One “normal” gait is the bipedal run, and one abnormal circumstance is that of reduced gravity. Movie22

S1 demonstrates the profound effect reducing gravity has on running kinematics. A representative subject23

runs at 2 m s-1 in both Earth-normal and simulated lunar gravity (about one-sixth of Earth-normal). In both24

cases, the video is slowed by a factor of four. The change in kinematics is apparent; the gait in normal gravity25

involves pronounced center-of-mass undulations compared to the near-flat trajectory of the low-gravity gait.26

This gait modification seems paradoxical: in reduced gravity, people are free to run with much higher leaps.27

Instead, they seem to flatten the gait. Why should this be?28
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He et al. (1991) noticed that subjects in reduced gravity lower vertical center of mass speed at the29

beginning of the non-contact phase. This observation implies a constant height, relative to height at takeoff,30

achieved during the ballistic phase, and a flattening of the parabolic arc. He et al. did not point to a specific31

mechanism for why vertical takeoff speed scales in this way, but proposed the relationship on the basis of32

dimensional analysis.33

A simple explanation posits that the behaviour is energetically beneficial. To explore the energetic34

consequences of modifying vertical takeoff speed in running, and to understand more thoroughly the dynamics35

of the running gait, we follow Rashevsky (1948) and Bekker (1962) by modelling a human runner as a point36

mass body bouncing off rigid vertical limbs (Fig. 1). This simple model does not invoke elastic energy37

recoil from the leg, so should be a conservative estimate of contact loss in running. During stance, all38

vertical velocity is lost through an inelastic collision with the ground (Fig. 1b). Horizontal speed, however,39

is conserved. The total kinetic energy lost per step is therefore Ecol = mV 2/2, where m is the runner’s mass40

and V is their vertical takeoff speed (Fig. 1). Lost energy must be recovered through muscular work to41

maintain a periodic gait, and so an energetically-optimal gait will minimize these losses. If center-of-mass42

kinetic energy loss were the only source of energetic cost, then the optimal solution would always be to43

minimize vertical takeoff velocity. However, such a scenario would require an infinite stepping frequency, as44

this frequency (ignoring stance time and air resistance) is f = g/(2V ), where g is gravitational acceleration.45

Let us suppose there is an energetic penalty that scales with step frequency, as Efreq ∝ fk ∝ gk/V k,46

where k > 0. Such a penalty may arise from work-based costs associated with swinging the leg, which are47

frequency-dependent (Alexander, 1992; Doke et al., 2005), or from short muscle burst durations recruiting48

less efficient, fast-twitch muscle fibres (Kram and Taylor, 1990; Kuo, 2001). This penalty has minimal cost49

when V is maximal and, notably, increases with gravity (this fact comes about since runners fall faster50

in higher gravity, reducing the non-contact duration). Therefore, the two sources of cost act in opposite51

directions: collisional loss promotes lower takeoff speeds, while frequency-based cost promotes higher takeoff52

speeds.53

If these two effects are additive, then it follows that the total cost per step is54

Etot = Ecol + Efreq55

= mV 2/2 + Agk/V k (1)56
57

where A is an unknown proportionality constant relating frequency to energetic cost. As the function is58

continuous and smooth for V > 0, a minimum can only occur either at the boundaries of the domain, or59

when ∂Etot

∂V = 0. Solving the latter equation yields60

V ∗ ∝ gk/(k+2) (2)61

as the unique critical value. Here the asterisk denotes a predicted (optimal) value. Since Etot approaches62

infinity as V approaches 0 and infinity (equation 1), the critical value must be the global minimum in the63

domain V > 0. As k > 0, it follows from equation 2 that the energetically-optimal solution is to reduce the64

vertical takeoff speed as gravity decreases.65

The observation of He et al. (1991) that V ∗ ∝ √g implies k = 2. However, their empirical assessment of66

the relationship used a small sample size, with only four subjects. We tested the prediction of the relationship67

between V ∗ and g by measuring the maximum vertical speed over each running stride, as a proxy for takeoff68

speed, in ten subjects using a harness that simulates reduced gravity. We also measured the maximum69
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vertical displacement in the ballistic phase to verify whether the counter-intuitive observation of lowered70

ballistic COM height in hypogravity, as exemplified in Movie S1, is a consistent feature of reduced gravity71

running.72

Methods73

We asked ten healthy subjects to run on a treadmill for two minutes at 2 m s-1 in five different gravity levels74

(0.15, 0.25, 0.35, 0.50 and 1.00 G, where G is 9.8 m s-2). A belt speed of 2 m s-1 was chosen as a comfortable,75

intermediate jogging pace that could be accomplished at all gravity levels. Reduced gravities were simulated76

using a harness-pulley system similar to that used by Donelan and Kram (2000). The University of Calgary77

Research Ethics Board approved the study protocol and informed consent was obtained from all subjects.78

Due to the unusual experience of running in reduced gravity, subjects were allowed to acclimate at79

their leisure before indicating they were ready to begin each two-minute measurement trial. In each case,80

the subject was asked to run in any way that felt comfortable. Data from 30 to 90 s from trial start were81

analyzed, providing a buffer between acclimating to experimental conditions at trial start and possible fatigue82

at trial end.83

Implementation and measurement of reduced gravity84

Gravity levels were chosen to span a broad range. Of particular interest were low gravities, at which the85

model predicts unusual body trajectories. Thus, low levels of gravity were sampled more thoroughly than86

others. The order in which gravity levels were tested were randomized for each subject, so as to minimize87

sequence conditioning effects.88

For each gravity condition, the simulated gravity system was adjusted in order to modulate the force89

pulling upward on the subject. In this particular harness, variations in spring force caused by support spring90

stretch during cyclic loading over the stride were virtually eliminated using an intervening lever. The lever91

moment arm was adjusted in order to set the upward force applied to the harness, and was calibrated with92

a known set of weights prior to all data collection. A linear interpolation of the calibration was used to93

determine the moment arm necessary to achieve the desired upward force, given subject weight and targeted94

effective gravity. Using this system, the standard deviation of the upward force during a trial (averaged95

across all trials) was 3% of the subject’s Earth-normal body weight.96

Achieving exact target gravity levels was not possible since the lever’s moment arm is limited by discrete97

force increments (approximately 15 N). Thus, each subject received a slight variation of the targeted gravity98

conditions, depending on their weight. A real-time data acquisition system allowed us to measured tension99

forces at the gravity harness and calculate the effective gravity level at the beginning of each new condition.100

The force-sensing system consisted of an analog strain gauge (Micro-Measurements CEA-06-125UW-350),101

mounted to a C-shaped steel hook connecting the tensioned cable and harness. The strain gauge signal102

was passed to a strain conditioning amplifier (National Instruments SCXI-1000 amp with SCXI-1520 8-103

channel universal strain gauge module connected with SCXI-1314 terminal block), digitized (NI-USB-6251104

mass termination) and acquired in a custom virtual instrument in LabView. The tension transducer was105

calibrated with a known set of weights once before and once after each data collection trial to correct106

for modest drift error in the signal. The calibration used was the mean of the pre- and post-experiment107

calibrations.108
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Center of mass kinematic measurements109

A marker was placed at the lumbar region of the subject’s back, approximating the position of the center110

of mass. Each trial was filmed at 120 Hz using a Casio EX-ZR700 digital camera. The marker position was111

digitized in DLTdv5 (Hedrick, 2008). Position data were differentiated using a central differencing scheme112

to generate velocity profiles, which were further processed with a 4th-order low-pass Butterworth filter at 7113

Hz cutoff. The vertical takeoff speed was defined as the maximum vertical speed during each gait cycle (V114

in Fig. 1). This definition corresponds to the moment at the end of stance where the net vertical force on115

the body is null, in accordance with a definition of takeoff proposed by Cavagna (2006).116

Vertical takeoff velocities were identified as local maxima in the vertical velocity profile. Filtering and117

differentiation errors occasionally resulted in some erroneous maxima being identified. To rectify this, first118

any maxima within ten time steps of data boundaries were rejected. Second, the stride period was measured119

as time between adjacent maxima. If any stride period was 25% lower than the median stride period or less,120

the maxima corresponding to that stride period were compared and the largest maximum kept, with the121

other being rejected. This process was repeated until no outliers remained.122

Position data used to determine ballistic height were processed with a 4th-order low-pass Butterworth123

filter at 9 Hz cutoff. Ballistic height was defined as the vertical displacement from takeoff to the maximum124

height within each stride. No outlier rejection was used to eliminate vertical position data peaks, since the125

filtering was not aggressive and no differentiation was required. If a takeoff could not be identified prior to126

the point of maximum height within half the median stride time, the associated measurement of ballistic127

height was rejected; this strategy prevented peaks from being associated with takeoff from a different stride.128

Statistical methods129

Takeoff velocities and ballistic heights were averaged across all gait cycles in each trial for each subject. To130

test whether ballistic height varied with gravity, a linear model between ballistic height and gravitational131

acceleration was fitted to the data using least squares regression, and the validity of the fit was assessed132

using an F -test. Since the proportionality coefficient between V ∗ and
√
g is unknown a priori, we derived its133

value from a least squares best fit of measured vertical takeoff speed against the square root of gravitational134

acceleration, setting the intercept to zero. Given a minimal correlation coefficient of 0.5 and sample size of135

50, a post-hoc power analysis yields statistical power of 0.96, with type I error margin of 0.05. Data were136

analyzed using custom scripts written in MATLAB (v. 2016b).137

Results and Discussion138

Pooled data from all trials are shown in Fig. 2. Fig. 2A shows that ballistic height increases with gravity139

(linear vs constant model, p = 4×10−3), validating that the counter-intuitive result exemplified in Movie S1140

is a consistent feature of running in hypogravity. Despite being statistically distinguishable from a constant141

model, the linear fit is a poor predictor of ballistic height, with R2 = 0.24.142

Takeoff velocity also increases with gravitational acceleration (Fig. 2B), and a least-squares fit using143

k = 2 is a good predictor of the empirical measurements. The fit exhibits an R2 value of 0.73, indicating144

that this simple energetic model can explain over two thirds of the variation in maximum vertical speed145

resulting from changes in gravity. The remaining variation may come about due to individual differences146

(e.g. leg morphology) that would affect the work needed to accelerate the limbs, or from simplifications of147
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the model that ignore effects such as finite stance time. The agreement of the model with the data supports148

the relationship found by He et al. (1991), and indicates that a frequency-based cost proportional to f2 can149

make accurate predictions of gait adjustments to non-normal functional circumstances.150

Though we did not directly measure the frequency-based cost in this study, our results suggest that leg151

swing is a dominant source. Using a simple model of a biped, Alexander (1992) suggested that swing cost152

results primarily from adding and removing rotational energy to and from the leg during swing, and should153

scale with frequency squared, as our model assumes. Though leg swing costs are difficult to measure in154

humans, they compose up to 24% of total limb work in guinea fowl (Marsh et al., 2004). Humans likely have155

a similar or higher cost to leg swing: Willems et al. (1995) estimate that at least 25% of total muscular work156

does not accelerate the center of mass during human running.157

Regardless of the exact mechanism relating step frequency to energetic cost, the present results indicate158

that the cost of step frequency is a key factor in locomotion. Although the exact value of the optimal159

takeoff speed depends on both frequency-based penalties and collisional costs, the former penalties change160

with gravity while the latter do not (Fig. 3). Collisional costs are independent of gravity because the final161

vertical landing velocity is alone responsible for the lost energy. Regardless of gravitational acceleration,162

vertical landing speed must equal vertical takeoff speed in the model; so a particular takeoff speed will have163

a particular, unchanging collisional cost.164

However, taking off at a particular vertical velocity results in less frequent steps at lower levels of gravity–165

thus, the frequency-based costs are reduced as gravity decreases (Fig. 3). According to our model, the166

observed changes in kinematics with gravity occur only because frequency-based costs are, surprisingly,167

gravity-sensitive (due to the influence of gravity on non-contact flight time). Frequency-based costs appear168

to be an important determinant of the effective movement strategies available to the motor control system.169

Their apparent influence warrants further investigation into the extent of their contribution to metabolic170

expenditure.171

The simple impulsive model underpredicts the changes observed in ballistic height. The dotted line in172

Fig. 2A is the predicted height achieved given the best-fit of the takeoff velocity in Fig. 2B, assuming173

ballistic trajectories after takeoff, and is consistently lower than mean values for g > 0.3 G. We defined174

“takeoff” as occurring when the net force on the body was null and velocity was maximal; however, this175

does not equate to the moment when the stance foot leaves the ground. After the point of maximal velocity,176

upward ground reaction forces decay to zero. During this time, the net deceleration on the body is less177

than gravitational deceleration. Thus, the body travels higher than would be expected if maximal velocity178

corresponded exactly to the point where the body entered a true ballistic phase, as in the model.179

He et al. (1991) observed that stance times increase with gravity. Since we expect shorter stance times to180

reduce the time between maximal velocity and foot liftoff, the measured takeoff velocity should better predict181

the observed ballistic height in lower gravity. This is what we observe (Fig. 2A). The model presented here,182

therefore, can explain why ballistic height does not decrease with increased gravity, but it cannot explain183

why stance times are longer in higher levels of gravity. Thus, the model does not by itself offer an explanation184

for why ballistic height increases with gravity.185

The model presented here is admittedly simple and makes unrealistic assumptions beyond impulsive186

stance, including no horizontal muscular work, non-distributed mass, and a simple relationship between step187

frequency and energetic cost. Future investigations could evaluate work-based costs using more advanced188

optimal control models (Srinivasan and Ruina, 2006; Hasaneini et al., 2013), eliminating some of these189

assumptions. Despite its simplicity, the model is able to correctly predict the observed trends in maximal190
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speed with gravity, and demonstrates that understanding the energetic cost of both swing and stance is critical191

to evaluating why the central nervous system selects specific running motions in different circumstances.192

Although many running conditions are quite familiar, running in reduced gravity is outside our general193

experience. Surprisingly, releasing an individual from the downward force of gravity does not result in higher194

leaps between foot contacts. Rather, humans use less bouncy gaits with slow takeoff speeds in reduced gravity,195

taking advantage of a reduced collisional cost while balancing a stride-frequency penalty.196

List of Symbols197

A proportionality constant in the relationship Efreq = Afk (J s-k)

Ecol collisional energetic cost (J)

Efreq energetic cost related to step-frequency (J)

Etot total energetic cost (Ecol + Efreq, in J)

f step frequency (s-1)

g gravitational acceleration (m s-2)

G Earth-normal gravitational acceleration (9.8 m s-2)

k scalar power in proportionality Efreq ∝ fk

m total subject mass (kg)

MVS maximum vertical speed (m s-1)

U average horizontal speed (m s-1)

V vertical speed at takeoff (m s-1)

V ∗ optimal and predicted vertical takeoff speed (m s-1)

Data Availability198

The dataset supporting this article have been uploaded as part of the supplementary material (Table S1).199
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Figure 1: Schematics explaining the energetic model (A) In the impulsive model of running, a point
mass bounces off vertical, massless legs during an infinitesimal stance phase. As the horizontal velocity U
is conserved, the vertical takeoff velocity V dictates the step frequency and stride length. Smaller takeoff
speeds result in more frequent steps that incur an energetic penalty. The small box represents a short time
around stance that is expanded in panel B. (B) We assume that the center-of-mass speed at landing is equal
to the takeoff speed. The vertical velocity V and its associated kinetic energy are lost during an impulsive
foot-ground collision. The lost energy must be resupplied through muscular work.
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Figure 2: Human subjects lower both ballistic height and takeoff velocity in reduced gravity.
(A) Mean ballistic height (data points) increases with gravity (p of linear vs constant model under two-tailed
F -test: 4× 10−4, N = 50). The predicted ballistic height is shown with a dotted line, derived from the best
fit of takeoff velocities in panel B. At gravity levels greater than 0.3 G (G = 9.8 m s-2), mean ballistic height
is greater than predictions beyond error. As takeoff velocity is defined here at the point when net force on
the body is null, this discrepancy is due to a prolonged stance phase beyond the takeoff point, reducing
the vertical deceleration experienced by the center of mass. (B) Measured vertical takeoff velocities increase
proportionally with the square root of gravitational acceleration, following energetic optimality. The least
squares fit is shown as a dashed line. The fit has an R2 value of 0.73 (N = 50). For both panels, data
points represent the mean gravity (abscissa) and vertical takeoff speed or ballistic height (ordinate) across
ten subjects, grouped by target gravity level. An exception is in one subject, where the lowest and second-
lowest levels of gravity were both closer to 0.25 G than 0.15 G; therefore, both trials were grouped with the
second-lowest gravity regime. From left to right, the sample sizes for means are therefore 9, 11, 10, 10, and
10. Error bars are twice the standard error of the mean. Data used for creating these graphics are given in
Table S1
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Figure 3: The energetic costs according to the model are plotted as a function of vertical takeoff
speed (V ) for the five levels of gravity tested. The hypothetical subject has a mass of 65 kg and a
frequency-based proportionality constant (A in Efreq = Af2) derived from the best fit in Fig. 2B. The
collisional cost (Ecol = mV 2/2) does not change with gravity (black dot-dash line), while the frequency-
based energetic cost (Efreq, dotted lines) is sensitive to gravity, leading to an effect on total energy (Etot,
solid lines). The optimal takeoff speed (yellow stars) changes with gravity only because frequency-based cost
is gravity-sensitive; however, the unique value of the optimum at any given gravity level always balances
collisional and frequency-based costs. Labels of gravity levels (g) are placed over the colours they represent.
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