
TITLE: A collection of genetically engineered Populus trees reveals 

wood biomass traits that predict glucose yield from enzymatic 

hydrolysis 

Short title: Tools to predict glucose yield from Populus wood 

 

Sacha Escamez1,a, Madhavi Latha Gandla2, Marta Derba-Maceluch3, Sven-Olof Lundqvist4, 
Ewa J. Mellerowicz3, Leif J. Jönsson2 and Hannele Tuominen1,a 

 

1Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87 
Umeå, Sweden. 
2Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden. 
3Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), SE-
901 87 Umeå, Sweden. 
4INNVENTIA AB, Box 5604, SE-114 86 Stockholm, Sweden. 
 
 
aCorresponding authors:  
Sacha Escamez 
phone: +46907868545 
e-mail: sacha.escamez@umu.se 
Hannele Tuominen 
phone: +46907869693 
fax: +46907866676 
e-mail: hannele.tuominen@umu.se 
 
Author contributions:  
HT originally designed the study with assistance from EJM, LJJ and SOL. MLG, SOL, SE and HT contributed to the 
experiments and data acquisition. SE analyzed the data with help from HT, SOL, LJJ, MLG, EJM and MDM. SE 
performed the mathematical modeling. SE and HT wrote the manuscript, with assistance from SOL, EJM, LJJ, 
MLG and MDM. 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/124396doi: bioRxiv preprint 

mailto:hannele.tuominen@umu.se
https://doi.org/10.1101/124396


Abstract 

 

Wood represents a promising source of lignocellulosic biomass for the production of bio-based 

renewables, especially biofuels. However, woody feedstocks must be improved to become competitive 

against petroleum. We created a collection of Populus trees consisting of 40 genetically engineered lines 

to modify and to better understand wood biomass properties. A total of 65 traits were measured in these 

trees and in the corresponding wild-type clone, including growth parameters, wood anatomical and 

structural properties, cell wall composition and analytical saccharification. The relationships between 

saccharification of glucose and biomass traits were investigated using multivariate data analysis 

methods and mathematical modeling. To circumvent potential trade-offs between biomass production 

and saccharification potential, we also estimated the “total-wood glucose yield” (TWG) expected after 

pretreatment and 72h of enzymatic hydrolysis from whole trees. A mathematical model estimated TWG 

from a subset of 22 wood biomass traits with good predictivity (Q2 = 0.8), while saccharification of 

glucose could be predicted from seven biomass traits (Q2 = 0.49). Among the seven diagnostic traits for 

saccharification, four also affected biomass production, such as the ratio of S- to G-lignin which was 

beneficial for saccharification but detrimental for growth. The contents of various matrix 

polysaccharides appeared important for predicting both saccharification and TWG, including low 

abundance monosaccharides. In particular, fucose and mannose contents negatively correlated with 

TWG, apparently by negatively associating with biomass production. Both biomass production and 

saccharification, and hence TWG, negatively correlated with arabinose and rhamnose contents, 

suggesting that these low abundance monosaccharides represent markers/targets for improving 

feedstocks. 

 

 

Keywords: Saccharification, lignocellulosic biomass, Populus, wood properties, biochemical 

conversion. 

 

Significance statement 

 

Lignocellulosic biomass from trees represents a source of sugars to produce renewable commodities 

instead of petroleum-based products. However, both the production processes and feedstocks need to be 

improved for large-scale implementation. This study provides information and tools for the selection or 

the engineering of trees for use as renewable feedstocks. We generated 40 genetically engineered 

Populus lines and characterized their biomass properties in relation to the estimated sugar yield after 

enzymatic hydrolysis. Mathematical modeling was used to predict sugar yield based on wood traits and 

to identify diagnostic traits that represent tentative tools for selecting superior trees. 
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Introduction 
 
Sugars extracted from wood biomass represent a promising source of renewable biofuels and other green 

chemicals to sustainably replace petroleum-based products (1-4). In particular, the biochemical 

conversion of lignocellulosic biomass holds great potential (3), although improvements are needed at 

every step of the process (3), starting with the feedstocks. 

 Tree species from the Populus genus represent interesting lignocellulosic feedstocks 

because they exhibit rapid growth even on marginal lands and are widely and efficiently cultivated (5,6). 

Furthermore the genomes of several Populus species have been sequenced (5, 6). Research efforts have 

focused on improving the biomass production of Populus feedstock (7-10). However, for biochemical 

conversion it is important to also consider woody biomass recalcitrance hindering the release of sugars 

from the wood, which therefore requires harsh pretreatments, synonymous of higher costs (11). 

Biomass recalcitrance has been studied in natural variants of the Populus genus (12-14), 

showing that lignin amount and composition affected saccharification (14), and revealing parts of the 

genetic relationships underlying lignin as well as other biomass traits (12, 13). Parallel approaches relied 

on targeted genetic engineering of xylem cell walls, resulting in trees less recalcitrant to enzymatic 

saccharification, although sometimes at the expense of growth (15-22). Interestingly, saccharification 

or sugar conversion could be improved by altering the composition of matrix polysaccharides (16, 17), 

reducing the amount of lignin (18) or modifying lignin composition (19, 20). Together, these studies 

provide useful information for future breeding or genetic engineering programs as well as potential 

feedstocks. However, translating these tools and knowledge into practice requires further research into 

aspects such as trade-off between reduced recalcitrance and increased biomass production. 

The present study contributes to bridging this knowledge gap by characterizing the 

relationship between biomass traits and susceptibility to enzymatic saccharification in a population of 

transgenic hybrid aspen (Populus tremula x tremuloides; hereafter Populus) known as the BioImprove 

collection. We estimated the glucose yield after pretreatment and 72h enzymatic hydrolysis from the 

total wood biomass of each tree to identify diagnostic traits for the creation and selection of not only 

less recalcitrant but overall superior trees with increased sugar yield. Such selection could be applied in 

current breeding programs to enhance biochemical conversion rates. Furthermore, our collection of 

transgenic trees theoretically comprises combinations of traits that are not currently found in nature, 

paving the way for a deeper biological understanding of woody biomass and of the ways to improve it. 

 
Results 
 
The BioImprove Populus collection provides a trait library for characterizing wood biomass 

properties and glucose yield. We investigated the relationships between wood traits and the potential 

of woody biomass for enzymatic saccharification in Populus trees by altering the expression of genes 

putatively regulating wood biomass properties. Thus, the expression of 39 genes was targeted in a 

collection of 40 transgenic Populus lines (Dataset S1). These lines, as well as the wild-type T89 clone, 

were analyzed for 3 growth-related traits, 20 cell wall chemistry traits, 20 wood anatomy and structural 

traits and 22 saccharification traits (Dataset S2), thus generating a broad wood-related trait library. 

Notably, a wide variation was observed for major growth traits such as height and diameter (Fig 1a,b), 

for traits critical for biomass recalcitrance such as lignin content and lignin monomer composition (Fig 

1c,d) and for analytical saccharification traits such as glucose release after 72h of enzymatic hydrolysis 

without or after pretreatment (Fig 1e,f). This variation in quantitative traits between lines is valuable as 

it allows us to decipher how wood properties influence traits of interest, such as glucose yield. 

 Notably, saccharification is usually expressed as the relative amount of sugar released 

per unit of biomass, which reflects the recalcitrance rather than the yield of an entire tree. Trees with 
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high saccharification may concomitantly suffer from growth defects, which may nullify the in fine yield 

of these trees. Instead, ideal trees for biochemical conversion of biomass should combine high 

saccharification with sufficient growth to ensure superior yield from their total wood biomass. To reflect 

this, we created a combinatorial trait – a tree’s “total-wood glucose yield” (TWG; Fig 2a), as glucose is 

the most prominent product of saccharification, with diverse uses. The TWG was used for ranking the 

Populus trees based on how much glucose could be released from their whole stems after pretreatment 

and 72h enzymatic hydrolysis. Interestingly, several BioImprove Populus lines exhibited significantly 

different TWG compared with the wild-type trees (Fig 2b). 

To identify variation in traits that could separate the lines based on TWG, we first 

performed a principal component analysis (PCA). The resultant PCA model displayed nine significant 

principal components (PCs; Dataset S3) explaining 78.6% of the variation in the data: 30.2% were 

explained by the two first PCs. Neither of the two first PCs (Fig S1) nor any other combination of PCs 

could separate the lines based on their TWG. Hence, TWG varied differently between lines than the 

traits underlying the main biological variation, implying the need for a different method to identify 

biomass properties associated with TWG. 

 

Certain traits are associated with total wood glucose yield. To overcome the limitations of the PCA 

analysis, we compared the 38 Populus lines whose TWG could be calculated (Fig 2b) using a supervised, 

predictive multivariate analysis. Orthogonal projection of latent structures (OPLS; (23)) enables us to 

distinguish the variation related to a variable of interest, for instance TWG, from the unrelated 

(orthogonal) systematic variation. An OPLS model was generated which could separate the Populus 

lines with respect to TWG (Fig 3a) in a significantly predictive manner (Q2 = 0.75). 

 In order to identify the traits which contribute most to predicting TWG in the BioImprove 

collection, we calculated each trait’s VIP (variable importance for the projection) values for both the 

TWG-predictive and TWG-orthogonal parts of the OPLS model (Fig 3b). Attempts to use VIP in order 

to reduce the number of traits used to predict TWG also strongly reduced the model’s predictivity. 

Although the model relied on all 65 traits, VIP values (Fig 3b) indicated that some traits contributed 

more to predicting TWG than others. We therefore relied on VIP to focus our interpretation on the traits 

which appeared more important for TWG prediction (Fig 3c). 

Among the traits related to biomass production, wood chemistry and wood structure and 

anatomy, 12 traits were significantly associated with TWG in the OPLS model (Fig 3c). Height, diameter 

and wood density were positively associated with TWG (Fig 3c), as expected from the fact that TWG is 

a composite trait which integrates these measurements. Consistent with the contribution of density to 

TWG, increased wood stiffness (modulus of elasticity) and cell wall thickness were also associated with 

higher TWG (Fig 3c). Interestingly, galacturonic acid content was positively associated with TWG while 

arabinose, rhamnose and fucose contents were negatively associated with TWG (Fig 3c), showing that 

quantitatively minor cell wall compounds could influence TWG. Increases in S-type lignin content and 

in the ratio of S- to G-type lignin were weakly but significantly negatively associated with TWG in the 

OPLS model. 

 

Mathematical modeling predicts TWG from a subset of wood biomass traits. The OPLS analysis 

revealed the possibility of predicting TWG from wood biomass traits in our dataset. However, our OPLS 

model relies on all traits, making it informative but difficult to apply to predict TWG from future 

datasets. Hence, we attempted to generate a model to predict TWG from only a subset of wood biomass 

traits and which could also be used with future datasets to verify the general applicability of this model. 

 First, separate models were generated for each of the four traits, height, diameter, wood 

density and glucose release after pretreatment, from which TWG is calculated (Dataset S4). Then, by 

replacing each term in the TWG equation (Fig 2a) with the corresponding model, we obtained a 
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composite model to predict TWG (Dataset S4). In that way, the potential effect of predictive traits on 

TWG could be traced down to an effect on saccharification, on biomass production, or even both. The 

resulting composite model could predict TWG (Fig 4) with significant accuracy (Q2 = 0.80). In contrast 

to the OPLS model, which included all the traits in the dataset, our composite mathematical model relied 

solely on twenty-two biomass traits (Table 1). Any attempt to reduce this number of traits also greatly 

reduced the model’s predictivity, suggesting that TWG is a complex trait emerging from intricate 

biological interactions. 

The use of four individual models to construct the composite model enables predicting 

the four individual variables which compose TWG. While stem height, diameter and wood density are 

easily measured traits and therefore do not need to be predicted from wood biomass traits, it remains 

informative for future feedstocks improvement strategies to know how wood anatomical and chemical 

traits influence not only saccharification but also biomass production. In addition, one of the individual 

models allows for predicting glucose release after pretreatment, a difficult trait to measure, based on 

only seven traits and with acceptable accuracy (Q2 = 0.49; Dataset S4). As expected (14), this model 

found the ratio of S- to G-type lignin to positively correlate with saccharification, but to negatively 

correlate with stem diameter (Dataset S4). Three other traits that predicted glucose release were also 

associated with stem height and/or diameter (Dataset S4), demonstrating the interplay between biomass 

recalcitrance and biomass production. Of particular interest, low abundance cell wall monosaccharides 

such as rhamnose and arabinose were associated with both glucose release and biomass production 

(Dataset S4). While rhamnose was negatively associated with both biomass production and 

saccharification, and therefore with TWG (Table 1), arabinose had a non-linear relationship to 

saccharification and a negative impact on biomass production (Dataset S4), also resulting in a mainly 

negative impact on TWG (Table 1), consistent with the OPLS model. Hence, our modeling approach 

revealed quantitatively minor matrix polysaccharides as targets for selection or engineering of woody 

biomass in Populus. 

 

Discussion 
 
Our study identified putative diagnostic wood traits for the selection of trees with overall enhanced 

glucose yield. Previous studies had started unravelling the links between saccharification and other wood 

properties by studying populations of natural variants (12-14). Our work provides new, additional 

information despite relying on a smaller population of younger trees thanks to a different approach. We 

measured numerous traits from transgenic lines, which allowed us to analyze biological replicates, and 

to generate combinations of traits which may not occur in nature. Furthermore, the estimated TWG 

enabled us to circumvent potential trade-offs between biomass production and recalcitrance. Examples 

exist in the literature of (genetically modified) trees with improved saccharification (18, 19) which is 

offset by a concomitant growth reduction (19) or counter-acted by defects in xylem hydraulics (18, 21, 

22). Consequently, the use of the TWG calculation or of similar proxies that integrate biomass 

production and sugar release, in addition to traditionally monitored saccharification, may help future 

studies to identify superior trees. 

 

Lignin content and composition are considered major determinants of biomass recalcitrance to 

saccharification, as verified in a large population of undomesticated Populus trichocarpa in which the 

S- to G-lignin ratio was positively correlated with glucose release after pretreatment (14). Consistently, 

in our model for glucose release after pretreatment the S- to G-lignin ratio was a positive contributor 

(Dataset S4), confirming the relationship between lignin composition and biomass recalcitrance. 

However, when considering TWG, which integrates biomass production and saccharification, both our 

OPLS model and composite model revealed a negative impact of the S- to G-lignin ratio (Fig 3c, Table 
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1), likely because of its detrimental effect on stem diameter (Dataset S4). This observation interrogates 

the usefulness of increased S- to G-lignin ratio to improve the overall sugar yields in biochemical 

conversion of feedstocks. 

In an earlier study, lignin content negatively correlated with saccharification in Populus 

trees with a ratio of S- to G- lignin below 2 (14), a range within which nearly all our trees fell (Fig 1d). 

Unexpectedly, lignin content did not negatively correlate with glucose release after pretreatment in our 

PCA analysis (Fig S1; Dataset S3) or in pairwise comparison (Spearman’s rank correlation rs = -0.09). 

Furthermore, lignin content did not contribute to predicting glucose release after pretreatment in the 

corresponding model (Dataset S4), indicating that lignin content did not greatly contribute to 

recalcitrance in our trees. Such discrepancy between studies in the effect of lignin content on 

saccharification may be explained by differences in methods, age of the trees, genetic background, 

degree of domestication, and/or growth environment. Indeed, analysis of a set of Populus trichocarpa 

trees grown at two locations revealed different degrees of negative correlation between lignin content 

and glucose release depending on growing site (12). On the other hand, these negative correlations 

between lignin content and saccharification were never statistically significant (12). In addition, Studer 

et al. (14) noted that a number of trees did not follow the general correlations between lignin content or 

composition and saccharification, leading them to propose that factors other than lignin can greatly 

influence biomass recalcitrance. Hence, the above observations are consistent with the emerging view 

that the woody biomass recalcitrance to saccharification is more complex than previously thought (for 

review see (11)), and that lignin does not necessarily affect sugar release. 

  

An important source of variation between our lines may have been associated with tension wood (Fig 

S1). Tension wood is regarded as a determinant of wood recalcitrance because it has been found to 

improve saccharification in willow, although at the expense of biomass production (24). In the Populus 

genus, tension wood is associated with changes in cell wall monosaccharide composition such as 

decreases in xylose and mannose contents and concomitant increases in rhamnose, galacturonic acid and 

galactose contents (25, 26).  Monosaccharide contents were also associated with TWG in our models 

(Table 1). The negative association of TWG with xylose and mannose contents together with the positive 

association of galactose content with TWG (Table 1) are consistent with an overall beneficial role of 

tension wood on TWG. However, the negative associations of rhamnose, non-crystalline glucose and 

arabinose contents with TWG (Fig 3c, Table 1) cannot be explained by tension wood, suggesting that 

differences in pectin and hemicelluloses composition unrelated to tension wood also influence TWG. 

This observation is in line with studies in Arabidopsis thaliana (27, 28) and Populus (15, 29) suggesting 

hemicelluloses as a promising target for biotechnological engineering of biomass to increase 

saccharification without growth penalty. 

It is interesting to note that among the matrix polysaccharides significantly associated 

with TWG (Fig 3c, Table 1, Dataset S4), fucose, mannose, rhamnose and arabinose constitute 

quantitatively modest components of the wood biomass. Neither mannose nor fucose contributed to 

predicting saccharification but they negatively correlated with stem diameter and stem height, 

respectively (Dataset S4). Consequently, the composite model identified mannose as a negative 

contributor to TWG (Table 1) while fucose negatively correlated with TWG in both the composite model 

and the OPLS model (Fig 3c, Table 1). Arabinose and rhamnose were associated with both 

saccharification and biomass production in the individual models constituting our composite model 

(Dataset S4) such that they had an overall negative association with TWG in both the composite model 

(Table 1) and the OPLS model (Fig 3c). Hence, lower arabinose and rhamnose contents represent 

markers for increased biomass production combined with lower recalcitrance, either for the engineering 

or the selection of superior feedstocks. These results exemplify the importance of measuring 

quantitatively modest traits in future studies. 
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Our work relies on the use of transgenic lines designed to target specific genes, which allows us to 

discuss the potential genetic basis for the observed phenotypes. For instance, we found four Populus 

lines displaying significantly (p < 0.1) higher TWG than the wild type. While the causal link between 

the targeted genes and the improved TWG will require further investigation, three out of these four 

genes (in BI-2, BI-3 and BI-36) have not yet been characterized in relation to wood formation. This 

suggests that there probably remains a wealth of uncharacterized candidate genes which may provide 

markers for the selection of superior Populus trees or which represent targets for the biotechnological 

improvement of growth and biomass properties. 

In conclusion, we uncovered a set of putative diagnostic traits for a combination of 

improved growth and biomass properties for saccharification which provides tentative tools for selecting 

Populus genotypes with high TWG. Indeed, Populus trees have been subject to domestication for a long 

time and there consequently exist numerous breeding populations (30-32) from which promising 

individuals could be selected. 

 

Materials and Methods 
 

More detailed descriptions of the Materials and Methods are available in the Supplementary 

Information. 

 

Plant material and growth conditions.  

To create the BioImprove collection, transgenic hybrid aspen (Populus tremula x tremuloides Michx.) 

T89 clones were derived partially from a gene mining program performed at SweTree Technologies AB 

and partially from individual research groups at Umeå Plant Science Centre. The genes and the types of 

transgenic modifications are described in Dataset S1. Trees were grown for two months in previously 

described greenhouse conditions (33). Each tree’s height, diameter and mean internode length were 

measured and 8 cm-long sections of wood were harvested 20 cm above ground to perform most analyses. 

 

Cell wall compositional analyses and saccharification. 

Relative contents of cell wall lignin and carbohydrates, as well as lignin composition, were measured 

by pyrolysis-gas chromatography/mass spectrometry and the data were processed as previously 

described (34). 

 Cell wall monosaccharides were extracted by methanolysis with 2M HCl/MeOH, 

derivatized by trimethylsilyl and measured as previously described (17). 

 Pretreatment and analytical saccharification by enzymatic hydrolysis were performed 

according to the same study (17), but using half the amount of enzyme mixtures for hydrolysis. 

 

Wood anatomical and structural features. 

SilviScan (CSIRO, Australia) measurements conducted at INNVENTIA were performed incrementally 

along a parallelepipedic radial piece of wood as described previously (35), followed by normalization 

to reflect the total cross-sectional area that it represents in the wood. 

 

Statistics, data analysis and modeling. 

Average trait values of all the lines were compared by ANOVA. The lines were compared pairwise by 

post-ANOVA Fisher’s tests while Spearman’s rank correlations allowed the comparison of traits across 

lines, both using Minitab 17 (Cleverbridge AG, Germany). 

 The PCA and the corresponding post-PCA OPLS (25) analyses were performed on all 

lines and all but 3 lines (BI-13, 21 and 26), respectively, using SIMCA 14.1 (MKS Data Analytics 
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Solutions, Sweden). In the OLPS, traits related to saccharification were disregarded in our interpretation 

of TWG prediction because the effort intensive process of measuring saccharification, in addition to 

other traits, would allow direct calculation of TWG. 

 The composite model to predict TWG was composed of four individual models generated 

to predict stem height, stem diameter, wood density and glucose release after pretreatment. These 

models were selected based on their predictivity (Q2) out of numerous (≥30) models generated using R. 
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Figure 1: The BioImprove poplar collection provides a 
wide variation in major traits
(a,b) Growth-related traits: stem height (a) and stem 
diameter (b).
(c,d) Biomass recalcitrance-related traits: relative lignin 
content within the detected pyrolysate from biomass (a) 
and ratio of S- to G-units within the lignin polymer (b).
(e,f ) Sacchari�cation-related traits: glucose release after a 
72h enzymatic hydrolysis without (e) or after (f ) pretreat-
ment.
Each histogram represents the average value for a trans-
genic line (color) or wild-type (black). Error bars represent 
standard deviation. * and ^ indicate statistically signi�cant 
di�erences from wild-type (p<0,05 and p<0,1 respectively) 
following a post-ANOVA Fisher’s test (n=3-5).
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Figure 2: The BioImprove lines display di�erent 
potential for total wood glucose yield (TWG)
(a) Formula for estimation of a tree’s total-wood glucose 
yield after pretreatment and 72h enzymatic hydrolysis, 
assuming conical shape, negligible bark contribution to 
diameter and homogeneous wood density.
(b) TWG of the BioImprove poplar lines (in g).
Each histogram represents the average value for a trans-
genic Populus line (color) or wild-type (black). Error bars 
represent standard deviation. * and ^ indicate statiscally 
signi�cant di�erences from wild-type (p<0,05 and p<0,1 
respectively) following a post-ANOVA Fisher’s test (n=3-5).
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Figure 3: Certain traits contribute more than others to predicting TWG
(a) OPLS scatter plot showing the separation of Populus lines (dots) horizontally along the predictive component for TWG. 
Vertical separation indicates variation not correlated with TWG. The lines were coloured by TWG. 
(b) Plots showing the variable importance for the projection (VIP) value for each trait for the predictive part of the model 
(up) and for the orthogonal part of the model (down). VIP values over 1 indicate important traits.
(c) Contribution of each trait to the OPLS model. Appart from sacchari�cation traits, traits with a VIP value over 1 for the 
predictive part of the model were emphasized by black text and arrows. Traits marked by (*) and annoted in grey are 
important (VIP value over 1) for both the predictive and the orthogonal part of the model.
Q2 scores over 0.5 indicate signi�cant predictivity of a model.
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Figure 4: TWG can be predicted by a speci�c subset of 
traits in a composite model
Scatter plot showing for each poplar line (dots) the 
observed TWG (x-axis) versus the predicted TWG (y-axis). 
This plot displays the results of a composite model which 
is distinct from the OPLS model.
Q2 scores over 0.5 indicate signi�cant predictivity of a 
model.
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* The direction of the contribution of this trait to TWG is based on the wild-type level because 
this trait’s relationship with TWG is overall non-monotonic (i.e. the direction is not constant).

Table 1: Wood traits contributing to predicting TWG in 
the composite model

Traits (contributing to either of the models) Direction of contribution of a trait to 
predicting TWG in the composite model

Proportion of S lignin Positive
Ratio of S-type to G-type lignin Negative

Arabinose content Negative
Rhamnose content Negative

Fucose content Negative
Modulus of elasticity (stiffness) Positive

Cell wall thickness Positive
Xylose content Negative

Mannose Content Negative
4-O-methylglucuronic acid content Negative

Galactose content Positive
Extractable glucose content (non crystalline) Negative

Proportion of G lignin Positive
Proportion of H lignin Positive

Proportion of non-annotated phenolic coumpounds Positive
Proportion of overall lignin Positive

Ratio of cell wall carbohydrates to lignin Positive
Fraction of wood (cross-sectional) area occupied by fibers Positive

Average (cross-sectional) longest radial width of fibers Negative
Average (cross-sectional) longest tangential width of fibers Negative

Average number of fibers per wood area Negative
Average cross-sectional area of fibers Negative

* 
* 

* 

* 
* 

* 
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