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Abstract	 	

The	treatment	of	advanced	cancers	has	greatly	benefited	from	the	introduction	of	new	agents,	
such	as	targeted	therapy	and	checkpoint	inhibitors,	to	supplement	or	bypass	conventional	
therapies.	However,	even	the	most	effective	therapy	usually	fails	over	time	as	cancer	cells	are	able	
to	deploy	a	wide	range	of	molecular	and	microenvironmental	resistance	strategies.	Here	we	
propose	that,	while	molecular	dynamics	largely	govern	response	and	resistance	to	therapy,	
evolutionary	dynamics	determine	survival	and	proliferation	of	treatment-resistant	cells.		We	
hypothesize	that	understanding	these	evolutionary	interactions	may	identify	strategies	to	delay	or	
prevent	proliferation	of	the	resistant	population	using	conventional	therapies	thus	prolonging	
time	to	recurrence.		

Here	we	use	an	off-lattice,	agent-based	framework	to	model	competition	among	sensitive	
and	resistant	populations	during	therapy	in	a	spatially	competitive	resource-limited	tumor	
microenvironment.		Our	model	applies	a	classic	evolutionary	trade-off	between	fecundity	(cellular	
proliferation)	and	survivorship	(drug	sensitivity).	We	simulate	the	application	of	an	anti-
proliferative	drug	on	varying	ratios	of	mixed	sensitive	and	resistant	cells	using	two	general	
treatment	strategies:	a	continuous	schedule	of	maximum	tolerated	dose	or	an	evolution-informed	
schedule	that	incorporates	dose	modulation	and	treatment	vacations	to	sustain	control	of	the	
tumor	through	competition	between	sensitive	and	resistant	cell	populations.	We	find	tumors	
consisting	only	of	sensitive	cells	can	be	cured	with	continuous	treatment,	but	the	presence	of	any	
significant	population	of	resistant	cells	will	lead	to	eventual	recurrence.		We	identify	two	
treatment	strategies	that	control	heterogeneous	tumors:	one	emphasizes	continuous	dose	
modulation,	and	the	other	relies	on	treatment	vacations.	Both	strategies	control	tumors	over	a	
wide	range	of	resistant/sensitive	population	ratios	but	the	average	dose	given	is	significantly	lower	
with	dose	modulation	while	a	more	vacation-oriented	schedule	can	control	more	aggressive	
tumors.		

1.		Introduction	

Despite	major	advances	in	cancer	therapies,	most	metastatic	cancers	remain	fatal	because	tumor	
cells	have	a	remarkable	capacity	to	evolve	drug	resistance,	both	through	genetic	and	non-genetic	
mechanisms	(1).		Most	investigations	of	cancer	treatment	resistance	have	focused	on	identifying	
and	targeting	the	molecular	mechanisms	that	confer	resistance.	However,	defeat	of	one	resistance	
strategy	often	results	in	the	deployment	of	another	(2).	

An	alternative	approach	focuses	on	the	population-level	dynamics	governed	by	Darwinian	
evolutionary	principles	that	define	the	fitness	of	each	cell	within	the	local	environmental	context.		
For	example,	cancer	cells	often	employ	multidrug	resistance	pumps,	in	which	the	synthesis,	
maintenance,	and	operation	require	considerable	investment	of	resources	(up	to	50%	of	the	cell’s	
total	energy	budget)	(3).	In	the	harsh	tumor	microenvironment	this	investment	in	survival	will	
likely	require	diversion	of	resources	that	would	ordinarily	be	devoted	to	invasion	or	proliferation.	
Thus,	while	tumor	cells	may	possess	the	molecular	mechanisms	necessary	for	therapy	resistance,	
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proliferation	of	resistant	cells	is	governed	by	complex	interactions	that	include	the	cost/benefit	
ratio	of	the	resistance	mechanism(s)	and	competition	with	other	tumor	subpopulations.		

A	common	maxim	in	cancer	treatment	is	to	"hit	hard	and	fast"	through	maximum	dose	
dense	strategies	that	administer	the	highest	possible	drug	dose	in	the	shortest	possible	time	
period.	The	maximum	tolerated	dose	(MTD)	principle	has	been	the	standard	of	care	for	cancer	
treatment	for	several	decades	and	is	the	basis	for	clinical	evaluation	for	most	Phase	I	cancer	drug	
trials.	It	has	not,	however,	resulted	in	consistent	cures	in	patients	with	most	disseminated	cancers	
(4).	An	evolutionary	flaw	in	this	strategy	is	the	assumption	that	resistant	populations	are	not	
present	prior	to	therapy.	It	is	now	clear	that	cancer	cells	can	be	insensitive	even	to	treatments	that	
they	have	never	“seen”	before.	Therefore,	MTD	therapy	designed	to	kill	as	many	cancer	cells	as	
possible,	although	intuitively	appealing,	may	be	evolutionarily	unwise.	This	is	because	of	a	well-
recognized	Darwinian	dynamic	from	ecology	termed	“competitive	release”.		Observed,	for	
example,	when	high	doses	of	pesticide	are	applied	for	pest	eradication	(5),	competitive	release	
allows	rapid	emergence	of	resistant	populations	because	of	the	combination	of	intense	selection	
pressure	and	elimination	of	all	potential	competitors.			

Despite	the	growing	recognition	of	the	importance	of	heterogeneity	and	evolution	in	
driving	treatment	failure,	explicit	inclusion	of	Darwinian	principles	in	clinical	trial	design	is	rare	(6-
9).	However,	both	clinical	and	pre-clinical	studies	have	shown	promising	results.	Enriquez-Navas	et	
al.	used	an	evolution-guided	treatment	strategy	to	control	breast	cancer	tumors	in	mice	(10).	They	
found	that	progression	free	survival	can	be	prolonged	when	paclitaxel	treatment	schedules	
incorporate	dose	modulations	and	treatment	holidays	such	that	less	drug	is	given	to	a	responding	
tumor	and	more	to	a	rebounding	tumor.	Two	individual	mice	with	controlled	disease	are	shown	in	
Fig.	1A.		An	ongoing	clinical	trial	at	Moffitt	Cancer	Center	(NCT02415621)	tests	these	evolutionary	
principles	in	patients	with	metastatic	castration	resistant	prostate	cancer	to	try	to	prevent	the	
evolution	of	resistance	to	abiraterone	therapy	(11).	In	this	trial,	abiraterone	is	discontinued	when	
the	blood	Prostate	Specific	Antigen	(PSA)	concentration	falls	below	50%	of	the	initial	value	and	
does	not	resume	until	the	PSA	returns	to	the	pre-treatment	level.	PSA	changes	during	therapy	are	
shown	for	2	patients	in	Fig.	1B.	It	is	important	to	note	that:	1)	each	patient	serves	as	their	own	
control	to	calibrate	the	PSA	as	a	relative	value,	and	2)	the	adaptive	schedules	effectively	
personalize	the	treatment	to	patient	response	so	that	while	one	patient	has	only	2	courses	of	
treatment	in	a	year,	another	gets	3	in	10	months.	Yet	both	remain	under	control. 
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Figure 1. Adaptive	therapy	in	the	laboratory	(A)	and	the	clinic	(B).	The	original	value	of	volume	(A)	or	PSA	(B)	is	shown	
across	time	as	a	red	dashed	line.	The	value	at	which	treatment	vacation	occurs	is	shown	as	a	shaded	gray	region.	The	
dose	over	time	is	shown	in	purple.	A)	Two	mice	implanted	with	human	breast	cancer	were	treated	with	paclitaxel	such	
that	a	20%	decrease	in	tumor	volume	results	in	a	50%	dose	decrease,	where	as	a	20%	increase	in	tumor	volume	results	
in	 a	 50%	dose	 increase	and	otherwise	 the	dose	 remains	 the	 same.	 If	 the	 volume	dips	 below	150	mm3,	 a	 treatment	
vacation	occurs.	These	data	were	previously	published	 in	Enriquez-Navas	et	al	 (10).	B)	Two	prostate	cancer	patients	
treated	with	abiraterone	such	that	treatment	is	stopped	if	PSA	falls	below	50%	of	the	original,	and	resumes	when	the	
PSA	exceeds	the	original	value.			

Two	important	questions	emerge	from	these	results:	(i)	For	which	cancers	is	continuous	
(MTD)	treatment	the	best	strategy	and	when	is	adaptive	better?	(ii)	When	should	a	treatment	
holiday	driven	adaptive	therapy	be	given	instead	of	a	dose	modulation	one?	While	selection	for	
resistance	through	application	of	continuous	cytotoxic	therapy	seems	inevitable,	proliferation	of	
those	cells	may	be	controlled	using	evolutionary	principles.	Importantly,	multiple	experimental	
models	have	shown	that	drug-resistant	cancer	cells	proliferate	slower	than	sensitive	cells	in	the	
absence	of	drug	(12-16).	This	is	because	resistant	tumor	cells,	like	most	drug-resistant	bacteria,	
incur	a	fitness	cost	due	to	the	energy	costs	involved	(17).	Here,	we	computationally	investigate	
these	questions	under	the	hypothesis	that	these	costs	can	be	exploited	to	delay	or	prevent	
proliferation	of	resistant	cells	in	the	tumor.	

2.		Methods	

To	investigate	intratumoral	evolutionary	dynamics	during	treatment,	we	modify	an	off-lattice	
agent-based	model	built	to	investigate	trait	selection	via	spatial	competition.	We	focus	on	the	role	
of	initial	distributions	of	proliferation	rates	on	both	overall	tumor	growth	and	spatial	distribution	
of	subpopulations.	We	then	examine	outcomes	from	varying	treatment	strategies	with	an	anti-
proliferative	drug	focusing	on	progression	of	resistant	populations	and	treatment	failure.	
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Figure 2. Model	rules.	A)	Decision-making	flowchart	for	each	cell	over	each	time	step.	Proliferation	steps	are	shown	in	
green,	quiescence	in	yellow,	and	drug-induced	death	in	red.	The	decisions	that	are	multicolored	reflect	the	phenotypic	
heterogeneity	 in	 cell	 cycle	 times	 and	 sensitivity	 to	 drug.	 Key	 shows	 the	 trade-off	 between	 cell	 cycle	 time	 and	 drug	
sensitivity.	B)	The	off-lattice	model	assumes	space	limited	proliferation,	such	that	a	dividing	cell	with	insufficient	space	
for	non-overlapping	offspring	enters	a	quiescent	state.	

The	flowchart	in	Figure	2	shows	the	decisions	made	for	each	cell	at	each	time	point.	Green	
arrows	and	nodes	represent	proliferation	decisions;	yellow,	quiescence;	multicolored,	decisions	
affected	by	heterogeneity;	and	red,	exit	of	a	cell	due	to	drug-induced	death.	In	this	off-lattice	
model,	we	assume	that	cells	take	up	space	such	that	at	carrying	capacity,	they	enter	quiescence	
due	to	contact	inhibition.	Space	is	deemed	available	if	any	contiguous	set	of	integer	angles	are	
empty	and	sufficient	to	allow	a	cell	to	fit	without	overlap	(described	previously	in	(18)).	When	a	
cell	is	quiescent,	we	assume	that	the	cell	discontinues	decision-making	until	space	is	available,	i.e.	
it	cannot	be	affected	by	drug	and	it	cannot	proliferate.	We	also	assume	that	there	is	no	cell	death	
due	to	regular	turnover	and	that	resources	are	abundant	when	cells	are	not	suppressed	by	lack	of	
space.	

Based	on	a	number	of	experimental	observations,	we	assume	that	the	cost	of	resistance	
results	in	a	decrease	in	the	cell's	proliferation	rate	(12-16).	Thus,	we	assign	the	fastest	proliferation	
rate	to	cells	that	are	100%	sensitive,	and	in	a	linear	fashion,	completely	resistant	cells	have	the	
slowest	proliferation	rate.	This	provides	a	simple	linear	trade-off	between	a	cell’s	fitness	in	the	
absence	of	drug	and	its	fitness	when	the	drug	is	present.		

Regardless	of	the	treatment	strategy,	a	cell’s	response	to	drug	exposure	depends	on	its	
sensitivity	and	the	dose	applied.	We	define	drug	sensitivity,	due	to	the	imposed	trade-off	with	the	
ability	to	reproduce,	as	a	decreasing	linear	function	of	cell	cycle	time:	

                                                                   𝑠 𝑇 =
𝑇!"# − 𝑇
𝑇!"# − 𝑇!"#

 ,                                                            (1)  

where	T	is	the	time	it	takes	to	go	through	a	cell	cycle,	and	Tmin	and	Tmax	are	the	minimum	and	
maximum	allowed	cell	cycle	times,	which	are	10	and	50	hours,	respectively.	We	represent	drug	
efficacy	as	a	typical	Hill	function	for	simplicity	and	generality	(19,20):	

                                                                           𝐸 𝐷 = !!

!!!!!.!!
 ,                                                                   (2)							

where	n=1.5	and	K0.5=0.125.	These	values	are	not	calibrated	to	any	specific	half	maximal	activity,	
but	generically	assume	a	response	function	that	gives	nearly	100%	probability	of	death	at	the	
highest	drug	concentrations,	dropping	off	slowly	at	mid	ranges	and	then	quicker	as	it	gets	to	lower	
concentrations.	The	probability	of	death,	Pdeath,	combines	the	sensitivity	and	dose	effects:	

                                                           𝑃!"#$! 𝑇,𝐷 = 𝑠 𝑇 𝐸 𝐷 = !(!)!!

!!!!!.!!
 .                                              (3)							
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We	explore	treatment	strategies	other	than	conventional	MTD,	which	we	term	“adaptive	
therapy”,	wherein	we	adapt	the	next	treatment	based	upon	the	tumors	previous	response.	More	
specifically,	we	vary	the	dose	D	from	its	previous	value	D0	based	on	the	relationship	of	the	current	
number	of	cells	N	to	the	previous	number	of	cells	N0	according	to	the	following	equation:	

                                              𝐷 𝛼,𝛽 =  

0          if 𝑁 < 0.5𝑁!
1+ 𝛼 𝐷!  if 𝑁 > 1+ 𝛽 𝑁!
1− 𝛼 𝐷!  if 𝑁 ≤ 1− 𝛽 𝑁!

𝐷!   otherwise

  ,                                      4  	

where	α	and	β	are	fixed	values	that	can	affect	responsiveness	of	the	change	in	dose	to	the	change	
in	population	size.	In	Eq.	4,	if	the	number	of	cells	is	below	half	of	the	original,	a	treatment	vacation	
is	enforced.	If	the	change	in	number	of	cells	is	within	a	specified	window	the	dose	remains	the	
same	as	before.	Otherwise,	there	will	be	a	fractional	increase	in	the	dose	by	α	if	the	fractional	
increase	in	population	size	is	greater	than	β	and	a	fractional	decrease	in	dose	by	α	if	the	fractional	
decrease	in	the	population	size	is	greater	than	β.	The	dose	begins	at	the	MTD,	and	never	exceeds	
the	MTD	and	each	new	dose	is	determined	every	3	days	in	accordance	with	the	experiments	
reported	by	Enriquez-Navas	et	al	(10).	If	a	cell	is	targeted	by	the	drug,	there	is	a	15-30h	delay,	
randomly	chosen,	before	it	is	removed	from	the	domain,	to	account	for	the	time	it	takes	for	
apoptosis	to	occur	(21,22).	

3.		Results	

Fitness	differences	and	space	limitations	affect	competition	and	selection		

The	cost	of	resistance	and	the	selection	force	imposed	by	space	limitations	can	be	demonstrated	
through	a	combination	of	experimental	and	mathematical	models.	The	MCF7Dox	cell	line	is	highly	
resistant	to	many	chemotherapy	agents	due	to	upregulation	of	the	membrane	efflux	pump	P-
glycoprotein	or	Multiple	Drug	Resistance	(MDR1)	proteins.	These	cells	were	labeled	with	red	
fluorescence	protein	(RFP).	The	MCF7Dox	cells	are	plated	with	the	parental	MCF7	cell	line	(labeled	
with	green	fluorescent	protein,	GFP),	which	does	not	express	MDR1	and	remains	sensitive	to	
chemotherapeutic	agents.		In	these	experiments,	the	cell	lines	were	mixed	in	a	1:1	ratio	to	observe	
the	relative	dynamics	of	growth.	The	cells	are	grown	for	3-4	days,	harvested,	counted,	split	and	re-
plated	over	46	days.	GFP	and	RFP	were	measured	by	flow	cytometry	at	each	interval	(Fig.	3A).	The	
resistant	cells,	because	of	the	fitness	cost	of	the	MDR	expression,	are	rapidly	outcompeted	by	the	
parental	MCF7	cells	after	only	a	few	generations	in	the	absence	of	chemotherapy	(doxorubicin)	in	
the	media.	

	
Figure	 3.	 Fitness	 differences	 and	 space	 limitation	 affect	 growth	 and	 selection.	 A)	 Sensitive	 (MCF7)	 and	 resistant	
(MCF7Dox)	 cells	 to	doxorubicin	are	grown	 together	 in	 vitro	and	demonstrate	 the	 fitness	 cost	of	 resistance.	The	plot	
shows	over	time	the	percent	of	drug-sensitive	and	drug-resistant	cells.	B)	Model	population	dynamics	showing	fraction	
of	sensitive	phenotype	(40h	cell	cycle)	and	resistant	(60h	cell	cycle)	cells	at	a	ratio	of	1:1	with	100	cells	and	grown	up	to	
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20,000	cells.	In	one	example,	the	cells	were	initially	spread	sparsely	(dish),	and	in	the	other,	cells	are	initially	seeded	in	
a	tight	cluster	configuration.	C)	The	spatial	distribution	for	each	example	is	shown	at	two	time	points,	t1=7	days	and	
t2=30	days,	and	for	the	cluster	also	at	t3=90	days.	A	zoomed-in	view	shows	the	distribution	of	proliferating	(yellow)	and	
quiescent	(green	if	sensitive,	red	if	resistant)	cell	types.	

		 We	then	investigated	these	evolutionary	dynamics	through	our	computational	model	
system	(Fig.	3B)	to	examine	competition	for	space	with	given	fitness	differences	over	time.	We	
assume	that	the	population	mix	consists	of	a	faster	growing	sensitive	phenotype	and	a	slower	
growing	resistant	phenotype.	We	use	the	average	growth	rates	found	at	the	beginning	of	the	
experiment,	which	was	a	40	hour	cycle	time	for	MCF7	and	a	60	hour	cycle	time	for	MCF7Dox.	We	
initially	seeded	100	cells	scattered	throughout	a	circular	domain	with	a	1.5	mm	radius	to	grow	
distinct	colonies,	reflecting	the	distribution	in	the	in	vitro	model.	We	grow	the	population	to	
20,000	cells	and	find	that,	over	time,	the	sensitive	cells	quickly	take	over	the	space	and	prevent	
further	proliferation	of	the	resistant	colonies.	However,	the	in	vitro	environment	with	ample	space	
and	nutrients	is	distinct	from	the	densely	populated	and	resource	depleted	tumor	environment.	In	
solid	tumors,	the	cells	are	less	free	to	move	and	proliferate,	which	adds	additional	selection	
pressure.	If	we	initialize	the	simulation	with	tumor	cells	in	a	more	confined	solid	mass	but	with	the	
same	fractions	of	sensitive	and	resistant,	we	find	that	there	is	a	significant	change	in	the	
population	dynamics;	the	limited	space	causes	greater	competition	between	the	different	
populations,	taking	much	longer	to	grow	to	the	same	population	size.	The	spatial	layout	(Fig.	3C)	
shows	that	when	the	cells	can	grow	as	separate	colonies,	the	“tumor	edge”	is	large	and	
convoluted.	With	the	cells	arranged	in	the	dense	cluster,	there	is	greater	selection	at	the	
boundary,	and	the	sensitive	cells	quickly	take	over	the	expanding	front	trapping	the	sensitive	cells	
within.	Because	proliferation	is	limited	to	the	edge	of	the	mass,	the	population	grows	much	
slower.	

Phenotypic	spread	reduces	coexistence	during	growth	

Sensitivity	to	drugs	is	often	viewed	in	terms	of	binary	states,	where	a	cell	is	simply	sensitive	or	
resistant	and	it	would	respond	with	either	death	or	survival.	However,	in	reality	tumors	have	a	
more	nuanced	mix	of	phenotypes	that	differ	in	their	sensitivity	to	a	drug.	Here	we	investigate	how	
various	mixtures	of	sensitive	and	resistant	cells	compete	to	form	a	solid	tumor	mass.		

We	begin	with	100	cells,	with	phenotypes	drawn	from	a	normal	distribution	of	drug	
sensitivities	(each	tumor	has	a	unique	mean	cell	cycle	time	τ	and	a	standard	deviation	στ).	The	
simulation	is	stopped	when	the	number	of	cells	reaches	15,000,	which	produces	a	mass	around	
1.5	mm	in	diameter,	representing	a	micrometastasis. The	initial	and	final	population	distributions	
are	shown	in	Figure	4	for	each	case,	with	the	percent	makeup	of	the	dominant	phenotype	labeled.	
We	consider	an	array	of	initial	distributions	with	increasing	mean	and	standard	deviation	in	cell	
cycle	times	(corresponding	to	decreasing	sensitivities).	The	difference	between	the	initial	and	final	
compositions	can	tell	us	something	about	the	competition	between	the	phenotypes.	Toward	the	
top	of	the	array,	where	there	is	little	heterogeneity,	the	compositions	remain	rather	
homogeneous,	i.e.	the	sensitive	tumors	remain	mostly	sensitive	and	the	resistant	tumors	retain	
resistance.	However,	with	increasing	initial	heterogeneity,	the	more	sensitive	cells	are	seen	to	
outcompete	the	more	resistant	cells.	In	many	cases,	the	competition	is	so	great	that	the	final	
proportion	of	resistant	cells	is	imperceptibly	small.	Figure	4A-D	shows	the	final	spatial	
configuration	of	some	of	the	more	extreme	cases.	They	all	show	that	the	more	resistant	cells	get	
trapped	in	the	interior	of	the	tumor	by	the	more	sensitive	cells,	which	take	over	the	invading	edge.	
More	coexistence	between	phenotypes	is	seen	in	B	and	D,	but	given	enough	time	the	more	
proliferative	phenotypes	at	the	invading	edges	will	eventually	take	over.	Overall,	the	trend	shows	
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that	for	a	heterogeneous	distribution	of	phenotypes,	the	faster	proliferators	will	take	over	the	
population,	but	the	timing	will	depend	on	the	relative	fitness	differences.	

 
Figure	 4.	Growing	 tumors	 from	many	 different	 initial	 compositions	 of	 cell	 phenotypes.	We	 display	 in	 pie	 charts	 the	
fraction	of	the	population	occupied	by	cells	with	different	proliferation	rates	at	the	beginning	(left)	and	end	(right)	of	
the	simulation.	In	each,	the	initial	distribution	is	defined	by	a	mean	cycle	time	τ	and	a	standard	deviation	στ.	A	pie	piece	
with	a	dashed	border	and	a	number	shows	the	dominant	clone	and	the	percent	occupied	at	that	time	point.	The	color	
key	gives	the	cycle	time	and	sensitivity	over	the	range	of	colors.	Final	spatial	distributions	for	selected	cases	A-D	are	
displayed	below.	

Continuous	treatments	can	cure	some	tumors;	adaptive	treatments	can	control	most	tumors	

Treatment	is	applied	to	the	previously	grown	tumors	(number	of	original	cells	N0=15,000)	and	
stops	when	either	the	tumor	is	cured	(i.e.	the	number	of	current	cells	N=0),	recurs	(i.e.	
N=4/3N0=20,000	cells),	or	the	tumor	reaches	an	age	of	2	years	post-treatment.	We	assume	tumor	
control	if	the	final	number	of	cells	is	below	10,000,	which	is	half	the	value	that	determines	
recurrence	and	accounts	for	fluctuations	during	adaptive	treatments.	For	simplicity,	we	do	not	
simulate	any	short-term	pharmacokinetics,	so	for	the	continuous	therapy,	we	simply	apply	the	
maximum	tolerated	dose	(MTD)	the	entire	duration	and	each	dose	change	in	the	adaptive	strategy	
is	instantaneously	realized.	Only	when	a	cell	is	capable	of	dividing	does	it	become	sensitive	to	drug	
toxicity	and	die	with	the	probability	given	in	Eq.	3.	Further,	we	define	several	metrics	to	describe	
adaptive	treatments:	the	average	dose,	Dave,	gives	the	average	dose	over	the	total	time	period,	
and	the	equivalent	dose,	Deq,	gives	the	equivalent	number	of	MTD	doses	that	equal	the	sum	of	
actual	dose	given	over	the	total	time	period.		
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Figure	 5.	 CT	 and	 AT	 schedules	 applied	 to	 different	 compositions	 of	 tumors:	 initial	 distributions	 before	 growth	with	
mean	 sensitivity	 s	and	 standard	deviation	σs	are	A)	 s=100%,	σs	 =5%;	B)	 s=100%,	σs	 =25%;	C)	 s=60%,	σs	 =5%;	and	D)	
s=60%,	σs	=25%.	The	top	panels	show	the	dose	schedules	(in	%	of	MTD	over	time)	for	each	treatment	strategy.	Below	
those,	the	population	dynamics	for	each	strategy	is	shown.	The	spatial	configurations	for	the	two	strategies	at	several	
different	time	points	are	shown	below	the	plots,	starting	from	the	same	tumor	configurations.	A	link	to	the	movies	is	
given	in	the	Supplement.	

	

We	start	by	comparing	CT	with	an	adaptive	scheme	that	will	change	the	dose	by	25%	(α	
=0.25)	if	the	population	size	changes	by	5%	(β=0.05)	and	otherwise	follows	Eq.	4.	In	general,	there	
is	not	one	therapy	strategy	that	works	best	for	all	tumors,	but	the	response	to	the	treatment	
depends	on	the	tumor	composition.	In	Fig.	5	we	show	the	range	of	response	with	both	treatment	
strategies:	continuous	therapy	(CT)	and	adaptive	therapy	(AT),	using	the	tumors	grown	in	Fig.	4	
(labeled	A-D).	We	see	that	homogeneous	tumors	consisting	of	only	sensitive	cells	(Fig.	4A)	are	
curable	with	CT	and	can	be	controlled	with	AT.	While	cure	by	CT	takes	less	time	(114	days),	AT	
gives	a	lower	average	dose	(Dave=34%),	but	a	larger	total	dose	(81	doses	vs.	39	doses)	over	a	longer	
time	period	(2	years).	Tumor	B	consists	primarily	of	sensitive	cells	but	is	initiated	with	a	broader	
range	of	phenotypes,	including	some	treatment-resistant	phenotypes	that	have	ended	up	in	the	
tumor	interior	surrounded	and	suppressed	by	sensitive	cells.	When	treated	continuously,	the	
tumor	initially	responds	very	well,	but	this	is	followed	by	recurrence	of	a	completely	resistant	
population	after	around	1	year.	However,	the	same	tumor	under	the	adaptive	strategy	can	be	
controlled	with	a	lower	average	dose	(Dave=35%)	and	lower	total	dose	(85	doses	vs.	122	doses)	
over	the	full	2	years.	Tumor	C	is	mostly	a	homogeneous	tumor	with	a	mean	survival	rate	of	around	
60%	to	the	MTD,	which	should	yield	a	net	negative	growth	rate	under	a	full	drug	dose.	However,	
there	is	only	a	slight	response	to	treatment	at	the	maximum	dose	as	the	dominant	sensitive	
phenotype	is	slowly	eliminated	and	the	moderately	resistant	cells	survive	under	CT,	which	leads	to	
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tumor	progression.	Using	the	AT	strategy,	the	change	in	the	population	size	during	treatment	is	so	
slow	that	the	dose	never	modulates.	When	the	population	halves	(N=0.5N0)	at	around	1	year,	
most	of	the	sensitive	cells,	which	were	coexisting	with	the	less	sensitive	cells,	have	already	been	
eliminated.	At	this	point,	the	treatment	vacation	begins,	and	because	the	tumor	is	diffuse,	there	is	
a	large	portion	of	non-quiescent	cells,	so	we	see	a	swift	increase	in	growth	as	resistant	cells	(only	
slightly	<50%	sensitivity)	take	over.	Overall,	this	causes	a	net	loss	of	1	month's	time	over	the	CT	
strategy.	There	is	no	real	advantage	of	one	treatment	strategy	over	the	other	as	both	essentially	
give	the	same	total	dose	(230	doses)	over	the	full	2-year	time	period.	In	tumor	D,	when	there	is	
more	phenotypic	spread,	the	sensitive	cells	again	outcompete	the	more	resistant	cells	during	the	
growth	phase.	We	see	here	that	both	treatments	lead	to	eventual	recurrence,	but	AT	keeps	the	
total	number	of	cells	controlled	longer	than	CT.	Notably,	AT	gives	a	higher	total	dose	(192	doses	
vs.	101	doses),	but	it	recurs	later	(~2	years	vs.	300	days)	and	at	average	of	79%	of	the	MTD.	

From	the	population	dynamics	of	the	whole	array	of	tumor	compositions,	we	can	discern	
why	different	treatments	fail	or	succeed.	Figure	6	shows	how	the	sensitive	and	resistant	
populations	change	with	CT	and	AT	(Fig.	6A)	for	the	same	complete	array	of	tumors	in	Fig.	4.	The	
arrays	show,	for	a	single	run,	how	the	makeup	of	each	tumor	changes	over	the	course	of	
treatment.	The	asterisk	marks,	for	CT,	which	tumors	are	cured	and,	for	AT,	which	tumors	are	
controlled.	We	see	that	for	both	cure	and	control	the	sensitive	population	must	be	maintained	
over	the	treatment	period.	In	some	cases,	the	resistant	population	starts	to	appear	at	the	end,	but	
the	phenotypes	representing	most	of	the	population	are	sensitive	for	the	entire	simulation.		

 
Figure 6. Changes	of	phenotypic	compositions	over	time	for	each	pre-growth	normal	distribution	with	mean	cell	cycle	
times	τ	from	10-30h	(from	left	to	right),	and	heterogeneity	(standard	deviation	in	cell	cycle	time	στ	of	2-10h	from	top	to	
bottom).	Each	square	shows	the	distribution	of	phenotypes	over	time	as	depicted	by	the	key	shown	below	the	figure.	A)	
For	CT,	cure	is	labeled	with	an	asterisk.	For	AT	(α=0.25,	β=0.05),	control	is	labeled	with	an	asterisk.	B)	Best	2	out	of	3	
winning	strategies	for	different	tumor	compositions.	Each	square	is	colored	according	to	the	best-case	scenario	based	
on	3	simulations	according	to	the	key.	Cure	by	CT	is	favored	first,	control	is	favored	next.	If	recurrence	is	most	likely,	the	
treatment	with	the	most	time	gained	before	recurrence	is	favored,	and	the	color	indicates	the	average	time	gained	by	
the	winning	strategy	(time	gained	=|TTRCT-TTRAT|).	

The	descending	order	of	desired	outcomes	is	to:	cure,	maintain,	then	gain	the	most	time	
before	recurrence.	Figure	6B	delineates	these	winning	strategy	choices	for	the	best	2	out	of	3	
trials	over	the	array.	We	find	that	the	top	left	side	of	the	plot	gives	cure	by	CT	as	the	best	and	most	
likely	outcome,	where	the	initial	distribution	is	mostly	sensitive	and	homogeneous.	On	the	lower	
left	and	some	along	the	edge	of	the	cure	region,	control	by	AT	is	most	likely	over	cure	and	
recurrence,	which	is	a	region	where	the	initial	distribution	is	still	mostly	sensitive	but	has	some	
heterogeneity.	In	any	other	case	we	have	recurrence,	and	the	color	bar	on	the	bottom	indicates	
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the	time	gained	by	the	winning	strategy.	We	see	that	for	the	top	left	region,	treatments	produce	
nearly	the	same	time	to	recurrence.	That	is,	the	response	with	such	low	sensitivities	is	so	poor	that	
dose	modulation	is	rare,	such	that	the	AT	treatment	is	nearly	the	same	as	the	CT	treatment	
(constant	MTD).	The	top	right	edge	of	the	cure	region	favors	CT	by	a	few	months,	but	the	middle	
and	lower	right	regions	of	the	array	favor	the	AT	strategy,	because	enough	sensitive	cells	will	have	
trapped	the	resistant	cells	during	growth	and	are	maintained	during	treatment.	The	decoupled	
time	to	recurrence	plots	are	shown	in	Fig.	S1A	(CT	and	AT1).	

A	more	vacation-oriented	strategy	can	control	the	tumor	at	the	expense	of	higher	doses	

The	AT	schedule	used	so	far,	which	we	now	refer	to	as	AT1	(α=0.25,	β=0.05),	was	chosen	
somewhat	arbitrarily.	Changing	α	and	β	changes	the	amount	the	dose	is	modulated	if	the	
population	changes	by	a	threshold	amount,	respectively,	and	these	values	can	have	an	impact	on	
AT	control.	We	test	another	schedule	that	boosts	both	values,	requiring	a	larger	change	in	
population	size	(10%)	to	produce	a	larger	change	in	the	dose	modulation	(50%),	which	we	will	call	
AT2	(α=0.50,	β=0.10).		

 
Figure	7.	Comparing	CT,	AT1	(α=0.25,	β=0.05),	and	AT2	(α=0.50,	β=0.10)	treatments,	where	adaptive	dose	schedules	
are	given	by	Eq.	4.	A-C)	Using	a	tumor	from	a	pre-growth	normal	distribution	of	s=100	%	and	σs=25	%,	we	compare	
these	 treatment	 strategies.	 A)	 The	 dose	 schedules	 (in	 %	 of	MTD)	 for	 each	 treatment.	 B)	 The	 population	 dynamics	
during	each	treatment.	C)	The	spatial	layout	at	various	time	points.	D)	Best	2	out	of	3	winning	strategies	for	different	
tumor	compositions.	Each	square	 is	colored	according	to	the	best-case	scenario	based	on	3	simulations	according	to	
the	key	at	the	bottom.	Cure	by	CT	is	favored	first,	and	control	is	favored	next	with	a	preference	toward	a	lower	dose.	If	
recurrence	is	most	likely,	the	strategy	with	the	most	time	gained	before	recurrence	is	favored,	and	the	square	is	colored	
according	to	the	average	time	gained	by	the	winning	strategy	(time	gained	=|TTRCT-TTRAT|).	E)	The	average	dose	Dave	
over	the	treatment	period	for	the	array	of	initial	distributions	for	CT,	AT1,	and	AT2.	A	link	to	the	movies	is	given	in	the	
Supplement.	
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We	compare	all	treatment	strategies	(CT,	AT1,	and	AT2)	in	Fig.	7	using	a	tumor	with	a	pre-
growth	distribution	that	centers	around	a	sensitive	phenotype	(s=100%)	but	with	a	large	degree	of	
heterogeneity	(σs=25%).	At	the	start	of	treatment	the	resistant	cells	are	trapped	in	the	interior	by	
the	sensitive	cells.	Figure	7A	gives	the	dose	schedules,	Fig.	7B	shows	the	population	dynamics,	and	
Fig.	7C	reveals	the	spatial	layouts	at	various	time	points.	The	tumor	recurs	with	the	CT	strategy	
while	both	AT	strategies	control	the	tumor	for	the	full	2	years.	We	can	see	in	the	AT1	dose	
schedule	that	the	dose	lowers	at	the	start	then	incorporates	both	vacations	and	dose	adjustments	
to	control	the	tumor.	In	the	AT2	schedule,	however,	we	find	that	the	population	does	not	change	
sufficiently	fast	to	invoke	a	dose	change,	so	control	is	achieved	solely	by	having	treatment	
vacations.	However,	the	AT1	schedule	gives	a	much	lower	effective	dose	to	the	patient.	Whilst	the	
CT	treatment	recurs	at	366	days	after	122	doses	of	MTD,	the	adaptive	therapies	allow	for	tumor	
control	over	2	years	with	an	average	of	Dave=35%(76%)	of	the	MTD	resulting	in	Deq=85(185)	doses	
for	AT1(AT2).	With	this	new	AT2	schedule,	we	find	similar	winning	outcomes	when	compared	to	
CT	as	with	the	previous	schedule,	however,	more	importantly	we	see	extended	control	for	tumor	
compositions	that	are	less	sensitive	and	heterogeneous	(Fig.	7D).	The	average	doses	for	the	whole	
array	of	tumor	compositions	are	given	for	CT,	AT1,	and	AT2	in	Fig.	7E.	We	find	that	while	the	
treatment	vacations	do	reduce	the	dose,	modulating	the	dose	substantially	lowers	the	average	
dose	in	regions	that	are	controlled	by	adaptive	schedules.	When	the	proliferating	cells	exposed	to	
the	drug	are	very	sensitive,	cell	kill	can	be	achieved	with	a	smaller	dose.	However,	when	less	
sensitive	phenotypes	are	proliferating,	the	increased	dose	in	AT2	grants	better	control.	

More	treatment	vacations	are	needed	to	control	heterogeneous	invasive	tumors	

For	the	adaptive	schedules	to	work,	the	sensitive	cells	must	impede	the	proliferation	of	the	
resistant	cells	by	competing	for	space	and	trapping	the	resistant	cells	inside	the	tumor.	However,	if	
the	cells	can	move,	the	spatial	structure	that	keeps	the	cells	quiescent	and	hidden	from	the	drug	is	
disturbed.	We	now	examine	the	effect	of	cell	migration	by	allowing	cells	to	move	in	persistent	
random	walk.	Each	cell	is	given	a	persistence	time	(it	will	move	for	a	length	of	time	randomly	
chosen	from	a	normal	distribution	with	80±40	minutes),	after	which	it	turns	at	a	random	angle	and	
starts	again.	All	cells	move	at	a	modest	speed	of	5	μm/h	for	as	long	as	the	cell	is	not	in	the	
quiescent	state	and	doesn't	contact	another	cell,	in	which	case	the	cells	simply	turn	by	a	random	
angle	and	start	again	with	a	new	persistence	time.	
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Figure	8.	Allowing	migration	(5	μm/h)	reduces	the	efficacy	of	control	by	AT.	A-C)	An	example	of	a	tumor	(with	a	pre-
growth	distribution	of	s=100	%	and	σs=25%)	subject	to	strategies	CT,	AT1	(α=0.25,	β=0.05),	and	AT2	(α=0.50,	β=0.10).	
We	show	the	dose	schedules	(A),	the	population	over	time	(B),	and	the	spatial	 layout	(C)	for	each	strategy.	D)	Best	2	
out	 of	 3	 winning	 strategies	 for	 different	 tumor	 compositions.	 Each	 square	 is	 colored	 according	 to	 the	 best-case	
scenario	based	on	3	simulations	according	to	the	key	at	the	bottom.	Cure	by	CT	is	favored	first,	and	control	is	favored	
next	with	a	preference	toward	a	lower	dose.	If	recurrence	is	most	likely,	the	strategy	with	the	most	time	gained	before	
recurrence	 is	 favored,	and	the	square	 is	colored	according	to	the	average	time	gained	by	the	winning	strategy	(time	
gained	=|TTRCT-TTRAT|).	E)	The	average	dose	Dave	over	the	treatment	period	for	the	array	of	initial	distributions	for	CT,	
AT1,	and	AT2.	A	link	to	the	movies	is	given	in	the	Supplement.	

	

Figure	8	shows	an	example	with	the	same	initial	conditions	as	the	previous	example	
(s=100%	and	σs=25%),	but	with	migrating	cells.	Again,	the	dose	schedules	are	given	(Fig.	8A),	the	
population	over	time	(Fig.	8B),	and	the	spatial	layout	(Fig.	8C).	We	see	that	for	the	CT	case,	
compared	to	the	case	without	migration	(Fig.	7),	we	have	a	much	quicker	decline	in	the	population	
followed	by	a	much	faster	relapse	at	153	days.	For	this	strategy,	the	patient	gets	51	doses	at	MTD.	
Due	to	the	spatial	spreading	from	migration,	very	few	cells	are	quiescent	and	the	drug	is	able	to	
affect	more	cells.	This	also	means	that	resistant	cells	escape	sooner	leading	to	a	faster	return	of	
growth.	For	AT1,	the	tumor	population	doesn't	get	small	enough	to	trigger	a	vacation,	but	dose	
modulation	occurs.	The	dose	reduces	then	rises	back	up	at	the	end	when	the	resistant,	
unresponsive	cells	take	over.	This	schedule	ends	up	with	a	recurrent	tumor	at	258	days	after	
Deq=101	doses,	delivered	at	Dave=30%	MTD.	Using	AT2,	the	tumor	is	controlled	for	the	2	year	time	
period	(not	fully	shown).	The	dose	also	modulates	because	the	larger	proliferating	fraction	(and	
therefore	susceptible	to	the	drug)	causes	larger	fluctuations	in	the	population	size	triggering	a	
dose	change.	Importantly,	by	employing	the	quicker	switching	between	fast	growth	during	the	
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vacations	and	fast	death	with	higher	doses,	the	tumor	is	able	to	keep	the	sensitive	population	at	
the	invasive	edge.	This	schedule	gives	Deq=163	doses	at	Dave=67%	MTD.	

The	full	sweep	of	the	array	space	is	shown	in	Fig.	8D	comparing	CT	vs.	AT1	vs.	A2.	We	find	
that	while	most	of	the	original	region	cured	by	CT	remains,	allowing	migration	has	destroyed	the	
control	by	AT1	while	the	regions	previously	controlled	with	AT2	are	somewhat	preserved.	The	
average	doses	for	each	strategy	are	shown	in	Fig.	8E.	In	the	sensitive	region,	which	was	previously	
controlled	by	both	adaptive	strategies	in	tumors	without	migration,	the	doses	are	seen	to	be	lower	
for	both	AT1	and	AT2.	However,	control	is	only	achieved	with	the	AT2	strategy.	As	we	increase	the	
migration	rate	further	to	10	μm/h,	neither	adaptive	treatment	is	favored	to	control	the	tumor	(Fig.	
S1).	

Treatment	vacations	help	delay	recurrence	of	heterogeneous	tumors	with	phenotypic	drift	

We	have	considered	treatment	responses	to	tumors	that	have	pre-existing	heterogeneity	but	
assume	that	progeny	directly	inherit	the	same	phenotypes	as	their	initial	parental	lineage.	
However,	this	ignores	the	potential	impact	of	subsequent	mutations	or	epigenetic	changes	that	
may	alter	the	cell	phenotype	over	generations.	To	test	how	phenotypic	drift	affects	the	response	
to	treatment	strategy,	we	allow	a	cell	the	opportunity	to	change	its	proliferation	rate	slightly	from	
its	mother	cell	upon	division.	In	particular,	there	is	a	10%	probability	at	each	division	that	a	cell	will	
alter	its	cycle	time	by	±1	h	or	stay	the	same	(ensuring	that	the	IMT	stays	within	the	allowed	range	
of	10-50h).	

 
Figure	 9.	 Allowing	 phenotypic	 drift	 reduces	 the	 efficacy	 of	 AT.	 A-C)	 An	 example	 of	 a	 tumor	 (with	 a	 pre-growth	
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distribution	of	s=80%	and	σs	=25%)	subject	to	strategies	CT,	AT1(α=0.25,	β=0.05),	and	AT2	(α=0.50,	β=0.10).	A)	Shows	
the	 schedules,	 B)	 the	 population	 dynamics,	 and	 C)	 the	 spatial	 layout	 for	 each	 strategy.	 D)	 Best	 2	 out	 of	 3	winning	
strategies	 for	 different	 tumor	 compositions.	 Each	 square	 is	 colored	 according	 to	 the	 best-case	 scenario	 based	 on	 3	
simulations	 according	 to	 the	 key	 at	 the	 bottom.	 Cure	 by	 CT	 is	 favored	 first,	 and	 control	 is	 favored	 next	 with	 a	
preference	toward	a	lower	dose.	If	recurrence	is	most	likely,	the	strategy	with	the	most	time	gained	before	recurrence	
is	 favored,	 and	 the	 square	 is	 colored	 according	 to	 the	 average	 time	 gained	 by	 the	 winning	 strategy	 (time	 gained	
=|TTRCT-TTRAT|).	E)	The	average	dose	Dave	over	the	treatment	period	for	the	array	of	initial	distributions	for	CT,	AT1,	
and	AT2.	A	link	to	the	movies	is	given	in	the	Supplement.	

	

In	Fig.	9,	we	show	an	example	with	initial	conditions	of	s=80%	and	σs=25%.	The	treatment	
schedules	for	CT,	AT1,	and	AT2	are	shown	in	Fig.	9A	as	a	percent	of	the	MTD.	The	population	
dynamics	are	shown	in	Fig.	9B.	Finally,	the	spatial	configurations	for	each	treatment	at	various	
time	points	are	displayed	in	Fig.	9C.	In	all	cases,	treatments	eventually	fail.	CT,	as	in	the	previous	
case	with	migration,	automatically	selects	for	the	resistant	cells	and	delivers	the	MTD	for	297	days,	
which	corresponds	to	99	doses	of	MTD.	AT1	lasts	nearly	the	same	amount	of	time	as	the	CT	
strategy,	but	by	using	a	smaller	dose	(Dave=66%	over	285	days	with	Deq=63	doses).	Because	of	the	
drifting	phenotype,	the	sensitive	cells	can	now	become	more	resistant	over	generations.	We	can	
see	that	for	AT1	there	are	individual	hotspots	on	the	tumor's	edge	where	selection	for	more	
resistant	phenotypes	emerges.	This	results	in	separation	of	the	mass	into	several	individual	tumor	
clumps	centered	around	these	regions.	AT2	is	able	to	control	the	tumor	a	little	longer	(387	days)	
by	having	treatment	vacations	and	no	dose	modulation	(Dave=85%	and	Deq=109	doses).		

The	array	of	different	tumor	compositions	is	evaluated	to	compare	CT	vs.	AT1	vs.	AT2	(Fig.	
9D).	The	region	originally	cured	by	CT	is	significantly	reduced,	and	in	both	cases	the	ability	to	
control	the	tumor	through	adaptive	means	is	completely	eliminated.	CT	actually	does	a	better	job	
with	just	a	few	months	gain	over	AT1	in	most	regions.	But	again,	the	AT2	schedule	delays	
recurrence	for	longer	over	the	CT	schedule	for	heterogeneous	tumor	compositions.	Regardless,	
neither	treatment	sustains	the	control	for	long,	as	the	net	gain	with	AT2	is	at	the	most	6	months.	
The	average	doses	for	CT,	AT1,	and	AT2	are	shown	in	Fig.	9E.	In	the	sensitive	region,	which	was	
controlled	when	there	was	no	drift,	the	doses	are	seen	to	be	higher	for	both	AT1	and	AT2.	
Increasing	the	drift	rate	further	to	occur	at	every	division	destroys	any	control	whatsoever	using	
CT,	AT1,	or	AT2	(Fig.	S2).		

Why	do	treatment	vacations	maintain	tumor	sensitivity	for	longer?	

When	migration	and	phenotypic	drift	were	not	allowed,	dose	modulation	granted	a	way	to	control	
a	tumor	while	lowering	the	dose	rate.	However,	an	emphasis	on	treatment	vacations	can	partly	
preserve	this	control.	To	understand	why,	it	is	helpful	to	introduce	the	effective	net	proliferation	
rate:	ρeff=ρ(1-Pdeath/0.5),	where	Pdeath	is	the	probability	of	death,	and	ρ	is	the	proliferation	rate	
unperturbed	by	treatment.	This	value	gives	a	better	understanding	of	how	dose	and	sensitivity	
combine	to	give	a	net	proliferation	rate	across	the	range	of	phenotypes.	It	essentially	modulates	
the	proliferation	rate	by	the	probability	of	death	due	to	a	certain	dose	(%	of	MTD),	such	that	if	
Pdeath=0,	ρeff=ρ,	if	Pdeath=0.5,	ρeff=0	and	at	Pdeath=1.0	the	cells	die	off	as	fast	as	they	divide.	The	
effective	net	proliferation	is	shown	in	the	background	heat	map	of	Fig.	10.	The	highest	sensitivities	
have	both	the	highest	growth	rates	(without	drug)	and	the	highest	death	rates	(at	MTD),	which	are	
the	darkest	colors	at	the	top	row	of	the	heat	map.	Remaining	in	the	red	zone	means	maintaining	
net	cell	kill	over	proliferation.	
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Figure	10.	Effect	of	modulating	dose	on	the	growth	rates	of	different	phenotypes	(sensitivities)	for	different	treatment	
strategies:	 CT,	 AT1	 (α=0.25,	 β=0.05),	 and	 AT2	 (α=0.50,	 β=0.10).	We	 use	 the	 trajectories	 for	 the	 invasive	 (left)	 and	
drifting	 (right)	 phenotypes	 from	 the	 examples	 in	 Fig.	 8A-C	 and	 Fig.	 9A-C,	 respectively.	 The	 background	 heat	 map	
displays	the	effective	growth	rate	of	a	phenotype,	which	modulates	the	given	growth	rate	by	the	probability	of	death	
due	 to	 a	 specific	 dose.	 The	 gray	 dashed	 line	 indicates	 where	 net	 growth	 is	 zero.	 Each	 colored	 line	 shows	 how	 the	
sensitivity	of	the	tumor	population	changes	with	the	given	dose	for	each	strategy.	A	point	is	placed	for	each	month	in	
time	at	the	average	sensitivity	and	the	average	dose	of	each	treatment	over	that	month.	Points	get	 larger	 in	size	at	
each	represented	time	point.	

	

If	we	plot	the	previous	examples	as	trajectories	though	the	space	of	average	sensitivity	
over	average	dose,	we	can	see	why	failures	occur	for	the	invasive	(left)	and	evolving	(right)	
phenotypes	(same	examples	as	from	Fig.	8A-C	and	Fig.	9A-C).	Using	the	CT	strategy	means	a	
constant	dose.	This	is	shown	with	the	black	line	that	does	not	vary	in	the	x-direction.	If	all	
phenotypes	were	to	lie	above	the	dashed	line	(net	zero	proliferation),	cure	is	possible.	However,	
because	there	are	a	variety	of	existing	phenotypes,	the	mean	sensitivity	decreases	over	time.	As	
the	most	sensitive	cells	are	eliminated	and	space	becomes	available	the	line	is	crossed	where	the	
more	resistant	cells	can	have	a	net	positive	growth	and	the	tumor	recurs.	With	the	invasive	
phenotype	AT1	kills	off	the	most	sensitive	clones	sequentially	as	the	dose	is	modulated	to	keep	
the	tumor	at	a	constant	size.	The	dose	modulation	strategy	will	shift	to	doses	lower	than	the	MTD	
to	find	the	lowest	dose	that	still	kills	the	most	sensitive	phenotypes.	Eventually,	the	most	sensitive	
cells	will	be	killed,	but	because	the	dose	is	low	the	next	most	proliferative	cells	will	have	a	net	
positive	proliferation	rate	and	outgrow.	The	increased	growth	then	causes	a	dose	increase	to	keep	
proliferation	in	check.	This	essentially	"picks	off"	sequentially	sensitive	phenotypes	with	ever	
increasing	doses	until	the	more	resistant	cells	take	a	hold	of	the	invasive	edge.	At	that	point,	the	
resistant	cells	have	a	small	(albeit	positive)	growth	rate	and	there	is	limited	chance	of	control.	
With	the	AT2	strategy	that	relies	more	on	treatment	vacations,	there	is	a	sharp	transition	between	
the	quick	drug-free	expansions	and	MTD-induced	contractions.	In	this	case,	with	the	most	
sensitive	cells	at	the	proliferating	edge,	the	net	decline	during	treatment	is	approximately	equal	to	
the	net	increase	when	the	dose	is	zero.	As	long	as	mostly	sensitive	cells	continue	to	lie	on	the	
outer	rim,	the	tumor	can	be	controlled.	

With	a	drifting	phenotype,	cell	sensitivity	can	become	either	more	sensitive	or	more	
resistant.	This	allows	movement	along	the	y-axis.	For	all	treatment	strategies,	the	drug	kills	off	the	
more	sensitive	cells,	so	the	phenotypes	eventually	end	up	further	into	the	resistant	region	where	
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the	net	proliferation	rate	is	always	positive.	While	this	does	not	change	the	outcome	much	for	CT,	
the	outgrowth	of	just	a	few	resistant	phenotypes	causes	a	quicker	dose	increase	for	AT1,	which	
causes	a	quicker	decline	of	the	most	sensitive	cells.	This	results	in	an	eventual	recurrence.	By	using	
the	AT2	schedule	that	shifts	between	extreme	doses,	the	fastest	proliferators	are	maintained	
during	vacations	that	are	also	very	sensitive	during	drug	application	in	order	to	suppress	other	
cells.	Unfortunately,	the	effect	is	not	sustained	for	very	long.	

	

4.	Discussion	

Our	simulations	demonstrate	the	necessity	of	matching	any	cancer	treatment	regimen	to	the	
corresponding	intratumoral	evolutionary	dynamics.		The	term	“precision	medicine”	is	often	
applied	to	strategies	that	match	tumor	treatment	to	specific	predictive	biomarkers.	While	this	
approach	increases	the	probability	of	success	it	neglects	the	reality	that	virtually	all	tumor	
responses	are	followed	by	evolution	of	resistance	and,	thus,	treatment	failure.		Our	results	
indicate	that	precision	medicine	also	needs	to	encompass	the	complex	evolutionary	dynamics	that	
govern	emergence	and	proliferation	of	resistant	phenotypes.	Here	we	present	the	diverse	
Darwinian	interactions	that	can	lead	to	resistance	but	also	corresponding	treatment	strategies	
that	can	exploit	these	dynamics	to	delay	the	time	to	progression.	

		 It	is	clear	from	our	analysis	that	there	is	no	one-size-fits-all	solution	evolutionary	strategy	
for	all	tumors.	Using	a	modified	off-lattice	agent	based	model,	we	find	conventional	MTD	
application	of	cancer	therapy	can	cure	homogeneous	tumors	that	consist	entirely	or	almost	
entirely	of	cells	that	are	sensitive	to	the	applied	treatment.	While	this	is	improbable	at	advanced	
stages,	it	is	observed	clinically	as	some	tumors	that	histologically	appear	homogeneous,	such	as	
testicular	cancer	and	some	lymphomas,	are	frequently	cured	by	conventional	chemotherapy.	
However,	decades	of	clinical	experience,	consistent	with	our	model	predictions,	have	found	cure	is	
not	typically	achievable	in	most	common	cancers	that	are	highly	heterogeneous	and	contain	cells	
that	are	therapy	resistant	due	to	their	inherent	phenotypic	properties	or	environmentally-
mediated	mechanisms	(23).		

In	tumors	that	are	not	curable	by	available	therapy,	our	models	find	that	evolution-based	
strategies	that	exploit	the	fitness	cost	of	resistance	can	delay	treatment	failure	and	tumor	
progression.		Recent	experimental	studies	have	shown	adaptive	therapy	can	enforce	prolonged	
tumor	control	(10),	however,	none	of	the	prior	theoretical	models	have	included	spatial	dynamics	
and	thus	assume	that	the	different	tumor	subpopulations	are	well	mixed	(14,15).	This	is	in	
contrast	to	radiological	and	pathological	images	of	tumor	that	show	marked	spatial	heterogeneity	
(24-27).	Spatial	structure	can	affect	the	emergence	of	resistant	phenotypes	due	to	space	limitation	
(18,28)	and	limited	drug	perfusion	(29,30).	We	present	some	insight	into	how	spatial	context	
might	influence	disease	control,	which	reflects	similar	ideas	presented	in	a	recent	study	with	
growing	bacterial	colonies	of	E.	Coli	(28).	In	this	study,	Fusco	et	al.	showed	how	less	fit	resistant	
clones	can	be	trapped	due	to	spatial	constraints,	but	high	intensity	drug	exposure	leads	to	the	
competitive	release	of	dormant	mutants.	Our	model	shows	the	same	nature	of	competition,	and	
we	are	able	to	test	multiple	treatment	strategies	on	different	compositions	of	phenotypes.		

We	consider	phenotypic	heterogeneity	over	a	wide	spectrum	of	tumor	compositions.	A	
larger	variation	in	cell	phenotypes	beyond	just	sensitive	and	resistant	(with	corresponding	fitness	
differences)	can	drive	changes	in	the	dominating	population	at	different	doses.	By	systematically	
testing	an	array	of	different	initial	phenotypic	distributions	we	can	delineate	different	regions	
where	some	schedules	work	better	than	others.	We	also	find	that	some	AT	strategies	are	better	
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than	others	for	different	situations.	For	example,	with	cell	migration	and	phenotypic	evolution,	we	
can	apply	a	strategy	with	less	dose	modulation	and	more	emphasis	on	treatment	vacations	to	
keep	the	population	sensitive.	The	extreme	dose	changes	keep	the	tumor	responding	quickly	
during	both	the	growth	phase	and	the	treatment	phase	to	either	maintain	the	spatial	structure	in	
the	case	of	migration	or	to	prevent	the	evolution	of	less	sensitive	cells	in	the	case	of	phenotypic	
drift.	

 
Figure	11.	The	model	checks	that	tumors	with	dissimilar	compositions	can	be	controlled	by	adaptive	scheduling	(left).	
We	 tested	 the	 response	 for	 CT,	AT1	 (α=0.25,	β=0.05),	 and	AT2	 (α=0.50,	β=0.10)	 using	 the	 sum	of	 all	 tumor	 cells	 to	
determine	the	dose	for	the	AT	treatments.	The	total	tumor	burden	dynamics	from	all	metastatic	sites	are	shown	at	the	
top,	while	the	individual	spatial	compositions	at	the	end	of	the	simulation	are	given	below	for	each	treatment	strategy.	
Clinically,	this	model	can	be	used	to	couple	the	total	systemic	tumor	burden	to	the	individual	spatial	distributions	found	
from	imaging	(right).			

Comparing	widely	disseminated	cancer,	where	the	distribution	of	tumor	cell	
subpopulations	will	likely	vary	among	the	metastatic	sites,	to	our	model,	which	only	considers	the	
response	of	single	tumors	may	seem	disconnected.	It	is	thus	important	to	ask	how	much	variation	
in	clinical	response	to	CT	and	AT	should	be	expected.	Testing	the	treatments	on	a	set	of	tumor	
metastases	with	mixed	compositions	shows	that	control	can	be	achieved	(Fig.	11).	By	using	the	
total	numbers	of	cells	across	all	tumors	to	represent	a	systemic	measure	of	burden,	we	find	that	
with	the	CT	strategy	the	more	sensitive	tumors	respond	with	complete	eradication,	while	the	less	
sensitive	tumors	eventually	recur.	In	contrast,	both	AT	schedules	can	still	control	the	disease.	
While	the	more	sensitive	tumors	shrink,	the	less	sensitive	ones	grow	in	size	keeping	the	total	
population	relatively	constant.	The	full	dose	schedules	are	shown	in	Fig.	S3	along	with	a	case	
where	the	metastases	are	heterogeneous	but	have	all	the	same	composition.	In	the	latter	
situation,	we	get	very	similar	results	to	what	would	happen	with	single	independent	tumors.	
Modeling	the	different	spatial	distributions	of	multiple	tumors	can	also	be	used	in	conjunction	
with	the	periodic	systemic	measure	of	tumor	burden	to	be	tested,	calibrated,	and	validated	using	
blood	biomarkers	and	imaging	data.	Clearly,	there	are	timescale	issues	when	using	data	from	in	
vitro	models	(days),	in	vivo	models	(months),	and	clinical	trials	(years)	(Fig.	1),	but	a	more	rigorous	
approach	to	fit	data	could	be	done	to	extract	specific	growth	and	response	rates	for	conversion	
across	scales.	
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The	methods	for	actually	measuring	tumor	burden	non-invasively	and	frequent	enough	to	
direct	treatment	decisions	are	not	well	developed	for	all	cancers.	In	the	ongoing	adaptive	therapy	
trial	on	prostate	cancer	(11),	PSA	is	used	as	a	marker	for	disease	burden.	PSA	may	not	be	a	perfect	
indicator,	but	it	is	readily	available,	standardized,	and	utilized	(31).	Other	biomarkers	are	used	for	
surveillance	of	various	cancers	with	degrees	of	specificity	and	sensitivity	(32).	As	technologies	for	
serum	biomarkers,	circulating	tumor	cells,	and	cell-free	DNA	continue	to	be	developed	(33),	we	
hope	this	challenge	can	be	addressed	to	better	manage	advanced	and	disseminated	cancers	
through	periodic	blood	draws.	

The	model	presented	here	is	greatly	simplified	and	abstracted	to	study	the	impact	of	
spatial	intratumoral	heterogeneity	on	controlling	tumor	progression	using	adaptive	therapy.	We	
have	ignored	pharmacokinetics	(34),	spatially	weighted	dose	dependence	(35,36),	
microenvironmental	influence	(37),	therapy-induced	acquired	drug	resistance	(37),	and	of	course	
the	3rd	dimension	(38).	All	of	these	are	possible	extensions	and	modulations	of	this	work,	but	we	
have	chosen	a	simple	starting	point	to	understand	how	a	spectrum	of	cell	phenotypes	compete	for	
space	under	different	drug	strategies.	Our	work	illustrates	clearly	the	importance	of	using	
treatment	response	as	a	key	driver	of	treatment	decisions,	rather	than	fixed	strategies	that	ignore	
it.	We	strongly	believe	that	the	future	of	precision	medicine	shouldn’t	be	in	the	development	of	
new	drugs	but	rather	in	the	smarter	evolutionary	enlightened	application	of	preexisting	ones.	
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