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SUMMARY 1 

Cells decode information of signaling activation at a scale of tens of minutes by downstream 2 

gene expression with a scale of hours to days, leading to cell fate decisions such as cell 3 

differentiation. However, no system identification method with such different time scales exists. 4 

Here we used compressed sensing technology and developed a system identification method 5 

using data of different time scales by recovering signals of missing time points. We measured 6 

phosphorylation of ERK and CREB, immediate early gene expression products, and mRNAs of 7 

decoder genes for neurite elongation in PC12 cell differentiation and performed system 8 

identification, revealing the input–output relationships between signaling and gene expression 9 

with sensitivity such as graded or switch-like response and with time delay and gain, 10 

representing signal transfer efficiency. We predicted and validated the identified system using 11 

pharmacological perturbation. Thus, we provide a versatile method for system identification 12 

using data with different time scales.  13 

 14 

Keywords: 15 

cell differentiation, ERK, gene expression, system identification, compressed sensing, signal 16 

recovery, different time-scale data 17 
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Highlights: 1 

• We developed a system identification method using compressed sensing. 2 

• This method allowed us to find a pathway using data of different time scales. 3 

• We identified a selective signaling-decoding system by gene expression. 4 

• We validated the identified system by pharmacological perturbation. 5 

 6 

eTOC Blurb: 7 

We describe a system identification method of molecular networks with different time-scale data 8 

using a signal recovery technique in compressed sensing. 9 
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INTRODUCTION 1 

In intracellular signaling systems, information of an extracellular stimulus is encoded into 2 

combinations of distinct temporal patterns of phosphorylation of intracellular signaling 3 

molecules that are selectively decoded by downstream gene expression, leading to cell fate 4 

decisions such as cell differentiation, proliferation, and death (Behar and Hoffmann, 2010; Purvis 5 

and Lahav, 2013). For instance, in rat adrenal pheochromocytoma PC12 cells, nerve growth 6 

factor (NGF) induces cell differentiation mainly through sustained phosphorylation of ERK 7 

(Gotoh et al., 1990; Marshall, 1995; Qiu and Green, 1992; Traverse et al., 1992), whereas 8 

pituitary adenylate cyclase-activating polypeptide (PACAP) induces cell differentiation mainly 9 

through cAMP-dependent CREB phosphorylation (Akimoto et al., 2013; Gerdin and Eiden, 10 

2007; Saito et al., 2013; Vaudry et al., 2002; Watanabe et al., 2012). We showed that cell 11 

differentiation in PC12 cells can be divided into two processes: a latent processes (0–12 h after 12 

the stimulation) in preparation for neurite extension and a subsequent neurite extension process 13 

(12–24 h) (Chung et al., 2010). We identified the three genes essential for cell differentiation, 14 

Metrnl, Dclk1, and Serpinb1a, which are induced during the latent process and required for 15 

subsequent neurite extension, and named LP (latent process) genes (Watanabe et al., 2012). 16 

Although NGF and PACAP selectively induce the different combinations and temporal patterns 17 

of signaling molecules, both growth factors commonly induce the LP genes (Watanabe et al., 18 

2012). The expression levels of LP genes, but not the phosphorylation level of ERK, correlate 19 

with neurite length regardless of growth factors (Watanabe et al., 2012), indicating that the LP 20 

genes are the decoders of neurite length. Thus, how the distinct patterns of signaling molecules 21 
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are decoded by LP gene expression is critical for understanding the unknown mechanism 1 

underlying cell differentiation in PC12 cells. Decoding the combinations and temporal patterns 2 

of signaling molecules by downstream gene expression is a general mechanism underlying 3 

various cellular functions (Behar and Hoffmann, 2010; Purvis and Lahav, 2013; Sumit et al., 4 

2017). 5 

 Mathematical modeling is useful for the analysis of decoding mechanisms (Janes and 6 

Lauffenburger, 2013). If the signaling pathways are well characterized, kinetic modeling based 7 

on biochemical reactions reported in the literature is often used (Janes and Lauffenburger, 2006; 8 

Kholodenko et al., 2012; Price and Shmulevich, 2007). For example, growth factor–dependent 9 

ERK activation in PC12 cells has been modelled by the kinetic model based on prior knowledge 10 

of pathway information (Brightman and Fell, 2000; Filippi et al., 2016; Nakakuki et al., 2010; 11 

Ryu et al., 2015; Santos et al., 2007; Sasagawa et al., 2005). In general, however, decoding by 12 

downstream genes involves more complex processes such as transcription and translation and 13 

information on the precise pathway is not available. 14 

 To identify decoding mechanisms by gene expression, the system identification method (also 15 

referred to as data-driven modeling) was developed for identifying quantitative input–output 16 

relationships from time series data without detailed knowledge of signaling pathways (Janes and 17 

Lauffenburger, 2006; Janes and Yaffe, 2006; Kholodenko et al., 2012; Ljung, 2010; Price and 18 

Shmulevich, 2007; Zechner et al., 2016). We previously developed a system identification 19 

method based on time series data of signaling molecules and gene expression, denoted as the 20 

nonlinear autoregressive exogenous (NARX) model, and applied it to the signaling-dependent 21 
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immediate early gene (IEG) expression during cell differentiation in PC12 cells (Saito et al., 1 

2013). The NARX model involves the determination of lag-order numbers and use of the Hill 2 

equation and the linear autoregressive exogenous (ARX) model (Saito et al., 2013). 3 

Determination of lag-order numbers infers the selection of input molecules (Input) for an output 4 

molecule (Output), which is referred to as the Input-Output (I-O). The Hill equation characterizes 5 

sensitivity with a nonlinear dose-response curve (Hill, 1910). The linear ARX model 6 

characterizes temporal changes with time constant and gain, the latter of which is an I-O 7 

amplitude ratio, and indicates signal transfer efficiency (Ljung, 1998). The NARX model 8 

requires equally spaced dense time series data. If the time scale between upstream and 9 

downstream are similar, such as signaling molecules (scale of tens of minutes) and IEG 10 

expression (a few hours) in PC12 cells, it is not difficult to acquire a sufficient number of equally 11 

spaced dense time series data (Saito et al., 2013). However, if the time scale of upstream and 12 

downstream molecules is largely different, such as signaling molecules (tens of minutes) and LP 13 

gene expression (a day) (Doupé and Perrimon, 2014), it is technically difficult to obtain 14 

sufficient equally spaced dense time series data because of experimental and budget limitations. 15 

 Measuring gene expression often requires a longer time scale than measuring protein 16 

phosphorylation. Obtaining equally spaced dense time series data with a longer time scale is 17 

labor and cost intensive, because, unlike live-cell imaging experiments, snapshot experiments 18 

such as western blotting, RT-PCR, and quantitative image cytometry (QIC) (Ozaki et al., 2010) 19 

require the same number of experiments as the number of time points. In addition, experimental 20 

noise and variation increases as the number of experiments increases because differences in 21 
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experimental conditions such as plates, gels, reagents, and cell culture conditions increase as well. 1 

Therefore, in reality, for a longer time scale experiment, unequally spaced sparse time series data 2 

rather than equally spaced dense time series data are desired. For example, under conditions in 3 

which stimulation by cell growth factors triggers rapid and transient phosphorylation and slow 4 

and sustained gene expression, time series data should be obtained with dense time points during 5 

the transient phase and eventually with sparse time points. The timing and dynamic 6 

characteristics of temporal changes may differ between upstream and downstream molecules, 7 

such that time points and intervals for measuring upstream and downstream molecules may be 8 

different. Thus, a system identification method using unequally spaced sparse time series data 9 

with different time scale needs to be developed. 10 

 To solve this problem, here we used the signal recovery technique based on a low-rank 11 

approach proposed in the field of compressed sensing to generate a sufficient number of time 12 

points for equally spaced dense time series data from unequally spaced sparse time series data 13 

with different time points and intervals. We applied this nonlinear system identification method 14 

to the signaling-dependent gene expression underlying cell differentiation in PC12 cells and 15 

identified the signaling-decoding system by gene expression. 16 

 Unequally spaced sparse time series data can be regarded as equally spaced dense time series 17 

data with missing time points, and therefore we can generate equally spaced dense time series 18 

data by applying a signal recovery technique, which has been studied in the field of compressed 19 

sensing (Candès and Wakin, 2008; Donoho, 2006). Compressed sensing is a signal processing 20 

method for efficient data acquisition by recovering missing signals/images from a small number 21 
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of randomly sampled signals including unequally spaced sparse data based on sparseness of a 1 

vector (Candès et al., 2008) or low rankness of a matrix (Fazel, 2002). Both the sparse approach 2 

and the low-rank approach have been applied to various fields, such as sampling and 3 

reconstructing magnetic resonance images (Lustig et al., 2008; Ongie and Jacob, 2016), 4 

super-resolution imaging (Candès and Fernandez-Granda, 2014; Yang et al., 2010), image 5 

inpainting (Takahashi et al., 2012; Takahashi et al., 2016), and collaborative filtering (Candès 6 

and Recht, 2009). In this study, we applied a matrix rank minimization algorithm (Konishi et al., 7 

2014) to recover missing time points from unequally spaced time series data, and we generated 8 

equally spaced time series data with the same time points from signaling and gene expression 9 

data with different time scales. We previously developed a system idenfitication method from 10 

equally spaced dense time series data of signaling and gene expression using the NARX model 11 

(Saito, 2013). We developed a new system identification method from unequally spaced sparse 12 

time series data with different time scales by integrating this signal recovery method using the 13 

matrix rank minimization algorithm (Konishi et al., 2014) and the NARX model (Saito et al., 14 

2013). We applied the method to system identification of signaling-dependent gene expression in 15 

cell differentiationin PC12 cells, revealing a selective signaling-decoding mechansim by gene 16 

expression. 17 

 18 

RESULTS 19 

Signal Recovery Using Compressed Sensing from Unequally Spaced Data 20 

In this study, we regarded unequally spaced sparse time series data as equally spaced dense time 21 
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series data with missing time points, and equally spaced time series data were generated by 1 

restoring missing time points using a low-rank approach (Konishi et al., 2014). In the low-rank 2 

approach for image recovery, we assumed that the value of each pixel is represented by a linear 3 

combination of its neighbor pixels, which is mathematically represented by an autoregressive 4 

(AR) model. Then a Hankel-like matrix composed of pixel values has a low rank because each 5 

column is represented by the linear combination of the other columns (Figures 1 and S1A). This 6 

means that the Hankel-like matrix is a low-rank matrix whose rank is determined by the system 7 

order. Missing data can be recovered by estimating missing elements of the matrix so that the 8 

rank of this matrix [Y] is r. When system order r is unknown, based on the idea that the system 9 

can be described with as few parameters as possible, missing elements of this Hankel-like matrix 10 

are recovered so as to minimize the rank of the matrix [Y]. Based on the low rankness of the 11 

Hankel matrix, the signal recovery problem of the missing pixles can be formulated as a matrix 12 

rank minimization problem, and we can restore an image by solving this problem (Takahashi et 13 

al., 2012; Takahashi et al., 2016) (Figure 1). 14 

 We performed system identification from unequally spaced time series data of input 15 

molecules (Inputs) and output molecules (Outputs). Although an AR model is used for image 16 

recovery, we used an ARX model where the value at a time point is represented by a linear 17 

combination of two kinds of signals, Inputs and Outputs. Therefore, we modified the 18 

rank-minimization-based signal recovery method of the AR model to the ARX model and 19 

performed system identification (Figures 1 and S1B). Several methods for system identification 20 

using a linear ARX model with signal recovery of missing points of input and output based on 21 
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matrix rank minimization have been proposed (Liu et al., 2013; Markovsky, 2013). They can 1 

recover missing time series input–output data even when missing time points of input are not 2 

equal to those of output. 3 

 However, we cannot directly apply the method because we used the NARX model rather than 4 

the ARX model due to the nonlinearity of signaling-dependent gene expression (Kudo et al., 5 

2016; Saito et al., 2013). Therefore, by combining the nonlinear ARX system identification 6 

method (Saito et al., 2013) and the signal recovery method based on the matrix rank 7 

minimization problem (Konishi et al., 2014), we derived the signal recovery algorithm applicable 8 

to the nonlinear ARX system and performed system identification using recovered equally 9 

spaced time series input–output data (see “NARX Model and Data Representation” and 10 

“Extension ARX System Identification from Unequally Spaced Time Series Data to the NARX 11 

System” sections in the STAR METHODS). 12 

 13 

System Identification by Integrating Signal Recovery and the NARX Model 14 

In the NARX model used in our previous work, time series data of Inputs are nonlinearly 15 

transformed using the Hill equation, which are then used as inputs for the ARX model (Saito et 16 

al., 2013) (Figure 2A). The Hill equation, which is nonlinear transformation function ���� 17 

widely used in biochemistry (Hill, 1910), can represent sensitivity with a graded or switch-like 18 

response by the values of n and K (Figure 2A). The ARX model in the NARX model can 19 

represent how the Output efficiently responds to the temporal change of the nonlinearly 20 

transformed Inputs by the time constant and gain (Figure 2A). Thus, from the estimated 21 
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parameters of the Hill equation and ARX model, the sensitivity with graded or switch-like 1 

response and the time constant and gain are obtained, respectively. In this study, the parameters 2 

of this NARX model were estimated using a signal recovery scheme based on a low-rank 3 

approach (Konishi et al., 2014), as follows (Figure 2B, see details in “Procedure for System 4 

Identification by Integrating Signal Recovery and the NARX Model” section in the STAR 5 

METHODS). 6 

 To estimate the I-O relationship, we selected a combination of Inputs for each Output and 7 

prepared a data set of all combinations of Inputs for each Output. The each data set was divided 8 

into test dataset for one stimulation condition and training data set for the rest of two stimulation 9 

conditions, leave-one-out (LOO) cross-validation was performed. We estimated the parameters 10 

of the NARX model (the NARX parameters) for the training data set in each Input–Output 11 

combination using the following method. First, the initial values of � and � are given by 12 

� � 1 and a random number, respectively, and nonlinear transformation of input unequally 13 

spaced time series data by using the Hill equation was performed (Figure 2B, step i). A 14 

Hankel-like matrix was constructed from unequally spaced time series Output data and from 15 

unequally spaced time series Inputs nonlinearly transformed by the Hill equation. Next, signal 16 

recovery was performed with an iterative partial matrix shrinkage (IPMS) algorithm to minimize 17 

the rank of the Hankel-like matrix composed of Output and Inputs transformed by the Hill 18 

equation (Konishi et al., 2014) (Figure 2B, step ii). The rank of the recovered Hankel-like matrix 19 

corresponds to the lag order; from the recovered Hankel-like matrix, the parameters of the ARX 20 

model 	 and 
 were uniquely obtained (Figure 2B, step iii; Figure S1B). Further estimation of 21 
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� and � was performed by using recovered data, ARX parameters obtained until step iii, and 1 

other combination of � and � given random numbers (Figure 2B, step iv). By using the 2 

inverse function of the Hill equation, we recovered the missing time points data of input before 3 

transformation by the Hill equation. For the other 200 combinations of � and � given by 4 

random numbers, we performed simulation of the NARX model using the recovered data, ARX 5 

parameters obtained until step iii, and the given combination of � and �. 6 

 We calculated the Akaike information criterion (AIC) from the residual sum of squares 7 

between the experiment and simulation, number of parameters, and number of data to determine 8 

the parameters n and K. AIC is a measure of the relative quality of statistical models based on the 9 

trade-off between the goodness-of-fit of the model and the complexity of the model (Akaike, 10 

1974). In step iv, we selected the combination of � and � with the minimum AIC and carried 11 

out signal recovery again using these � and �. We repeated steps i–iv 500 times, and selected 12 

the � and � and ARX parameters that minimize AIC for the training data set ��
��������  in 13 

total (Figure 2B, step v). Let parameters with minimum ��
��������  be parameters obtained 14 

from the training data set (Figure 2B, step v). Once these parameters were obtained, test data 15 

(still unequally spaced time series data) was added to the recovered Hankel-like matrix and 16 

signal recovery of the test data was performed (Figure 2B, step vi). With the parameters of the 17 

NARX model estimated from the training data set, we simulated the NARX model for test data 18 

and calculated ������
	 , the residual sum of squares between experiment and simulation for test 19 

data set by stimulation condition � (NGF, PACAP, or PMA) (Figure 2B, step vii). 20 

 Because ������
	  was obtained for each combination of training and test data set �, we took 21 
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the sum of ������
	  for test data set � as ������ (Figure 2B, step viii). We obtained the 1 

combination of Inputs as the identified I-O relationship that minimizes ������ for all 2 

combination of Inputs (Figure 2B, step ix). The I-O relationship indicates that a set of Inputs are 3 

selected as upstream molecules for each Output. In the final step, using this combination of input 4 

molecules, the parameters of the final NARX model were estimated by the procedure from step i 5 

to step v using all stimulation conditions as training data sets (Figure 2B, step x). Note that we 6 

used two different criterions ��
��������  and ������; ��
������� to determine n, k, and ARX 7 

parameters, and ������ to select Inputs in order to save computational cost. 8 

 These estimated NARX parameters were used for further study (Figs. 3–6). The sensitivity 9 

with graded or switch-like response was obtained from the parameters of the Hill equation, and 10 

the gain and time constant were obtained from the parameters of the ARX model (Figure 2B, see 11 

“Calculation of Gain and Time Constant from the Linear ARX Model” section in the STAR 12 

METHODS). An example of the transformation of Inputs by the Hill equation and signal 13 

recovery following the ARX model and simulated Output is shown in Figure S2. We applied this 14 

method to identify the signaling-decoding system by gene expression underlying cell 15 

differentiation in PC12 cells using unequally spaced time series data with different time scales. 16 

 17 

System Identification of Signaling-Dependent Gene Expression 18 

We stimulated PC12 cells by NGF, PACAP, and PMA and measured the amount of 19 

phosphorylated ERK1 and ERK2 (pERK) and CREB (pCREB) and protein abundance of 20 

products of the IEGs, such as c-Jun, c-Fos, Egr1, FosB, and JunB by using QIC (Ozaki et al., 21 
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2010) (Figure 4). We chose these growth factors because they use different signaling pathways: 1 

NGF, PACAP, and PMA use Ras-, cAMP-, and PKC-dependent signaling pathways, respectively 2 

(Farah and Sossin, 2012; Gerdin and Eiden, 2007; Ravni et al., 2006; Vaudry et al., 2002). We 3 

also measured mRNA expression of LP genes such as Metrnl, Dclk1, and Serpinb1a using 4 

qRT-PCR (Figure 4). We measured the signaling molecules and gene expression with different 5 

sets of the time points because of the different time scales of temporal changes in signaling 6 

molecules and gene expression (Figure 4). Using the unequally spaced time series data with the 7 

different sets of the time points, we performed the system identification using integration of 8 

signal recovery and the NARX model (Figure 5A–C). 9 

 Using these time series data sets, we selected three sets of Inputs–Outputs combinations from 10 

upstream to downstream and performed system identification for each set (Figure 5A). The 11 

system identification consists estimating the I-O relationship, dose-response by the Hill equation, 12 

and gain and time constant by the linear ARX model (Figure 3, see “Calculation of Gain and 13 

Time Constant from the Linear ARX Model” section in the STAR METHODS). 14 

 We selected pERK and pCREB as Input candidates for each Output, c-Jun, c-Fos, and Egr1, 15 

based on previous studies (Akimoto et al., 2013; Saito et al., 2013; Watanabe et al., 2012) (Figure 16 

5A). We selected pERK, pCREB, c-Jun, c-Fos, and Egr1 as Input candidates for each Output, 17 

FosB and JunB (Akimoto et al., 2013; Saito et al., 2013; Watanabe et al., 2012) (Figure 5A). We 18 

selected pERK, pCREB, c-Jun, c-Fos, Egr1, FosB, and JunB as Input candidates for each Output, 19 

Metrnl, Serpinb1a, and Dclk1 (Watanabe et al., 2012) (Figure 5A). 20 

 For c-Jun and Egr1, pERK was selected as an Input, and for c-Fos, pERK and pCREB were 21 
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selected as Inputs (Figure 5). For FosB, c-Jun and c-Fos were selected as Inputs, and for JunB, 1 

pCREB was selected as Input (Figure 5B). For Metrnl, FosB, c-Fos and JunB were selected as an 2 

Inputs; however, contributions of c-Fos and JunB were negligible (Figure S2), indicating that 3 

FosB is a main Input for Metrnl. For Serpinb1a and Dclk1, JunB was selected as an Input (Figure 4 

5B). It is noteworthy that FosB and JunB, but not signaling molecules and other IEGs, were 5 

mainly selected as Inputs of the LP genes and the inputs for Metrnl and Dclk1 were different 6 

despite their similar temporal patterns. 7 

 We characterized the dose-response by the Hill equation and gain and time constant by the 8 

linear ARX model (Figure 5C, Table 1). The dose-responses from c-Jun and c-Fos to FosB 9 

showed typical switch-like responses, whereas others showed graded or weaker switch-like 10 

responses. Note that the gain from the converted c-Jun to FosB was much smaller than that from 11 

the converted c-Fos (Table 1), indicating that FosB is mainly regulated by c-Fos but not c-Jun. 12 

The time constants for c-Jun, c-Fos, Egr1, Metrnl, and Dclk1 were less than 1 h, whereas those 13 

for FosB, JunB, and Serpinb1a were more than 100 min (Table 1), indicating that induction of 14 

FosB and JunB temporally limit the overall induction of the LP genes from signaling molecules. 15 

The transformation of Inputs by the Hill equation followed by the ARX model is shown in Figure 16 

S2. In addition, when we integrated these three sets of the NARX model and simulated the 17 

response using only pERK and pCREB as Inputs, we obtained a similar result (Figure S3). 18 

 19 

Prediction and Validation of the Identified System by Pharmacological Perturbation 20 

We validated the identified system by pharmacological perturbation. One of the key issues in 21 
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PC12 cell differentiation is whether ERK or CREB phosphorylation mediates expression of the 1 

downstream genes (Ravni et al., 2006; Vaudry et al., 2002; Watanabe et al., 2012). Therefore, we 2 

selectively inhibited ERK phosphorylation by a specific MEK inhibitor, trametinib (Gilmartin et 3 

al., 2011; Watanabe et al., 2013; Yamaguchi et al., 2007) in PACAP-stimulated PC12 cells. We 4 

found that PACAP-induced ERK phosphorylation, but not CREB phosphorylation, was 5 

specifically inhibited by trametinib (Figure 6A, black dots). 6 

 For c-Jun, c-Fos, Egr1, and JunB, we recovered signals of the unequally spaced time series 7 

data of Inputs and Output. For c-Jun, c-Fos, and Egr1, we simulated Outputs responses using 8 

these recovered data and the identified NARX model (Figure 6A black lines, see also 9 

“Simulation of the Integrated NARX Model” section in the STAR METHODS). For other 10 

downstream molecules, FosB, JunB, Metrnl, Serpinb1a, and Dclk1, we used the recovered data 11 

of pCREB and the simulated time series data of c-Jun, c-Fos, and Egr1 as Inputs for the 12 

identified NARX model (Figure 6A, black lines). The simulated time courses of Outputs were 13 

similar with those in experiments, except those of FosB and Metrnl (Figure 6A, black lines and 14 

black dots). In the simulation, FosB and Metrnl did not respond to PACAP in the presence of 15 

trametinib, whereas in the experiment both molecules did so, suggesting the possibility of failure 16 

of the system identification of FosB and/or Metrnl. Therefore, we investigated whether FosB and 17 

Metrnl can be reasonably reproduced when experimental and recovered data of c-Fos and c-Jun 18 

and of FosB, respectively, were used rather than the simulated ones (Figure 6B). When 19 

experimental and recovered data were used as Inputs, Metrnl, but not FosB, responded to PACAP 20 

in the presence of trametinib both in the simulation and experiment (Figure 6B), indicating that 21 
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the failure of the system identification of FosB and Metrnl in Figure 6A arose from the failure of 1 

the system identification of FosB. Thus, all Outputs except FosB showed similar responses in the 2 

experiment and simulation when the experimental and recovered data were used as Inputs, 3 

indicating that in most cases the identified system is validated by pharmacological perturbation. 4 

 5 

DISCUSSION 6 

In this study, we identified the system from signaling molecules to gene expression using the 7 

unequally spaced time series data for 720 min after the stimulation. Given that expression levels 8 

of the LP genes were highly correlated with neurite length regardless of growth factors 9 

(Watanabe et al., 2012) and expression continues for 720 min after the initial addition of NGF 10 

(Chung et al., 2010), the identified system is the selective growth factor–signaling decoding 11 

system for neurite length information, one of the most critical steps for cell differentiation in 12 

PC12 cells. 13 

 We previously identified the systems leading from pERK and pCREB to the IEGs using the 14 

equally spaced dense time series data with a uniform 3-min interval during 180 min (Saito et al., 15 

2013). The identified I-O relationships in this study are the same, except for the inputs of FosB 16 

and JunB. In this study, for FosB c-Jun was selected as an Input in addition to c-Fos. However, 17 

the gain from the converted c-Jun to FosB was much smaller than that from the converted c-Fos 18 

(Table 1), indicating that the effect of c-Jun is negligible. For JunB, c-Fos was not selected as an 19 

Input in this study, whereas c-Fos was selected in the previous study (Saito et al., 2013). The gain 20 

from the converted c-Fos to JunB at lower frequency was much smaller than that from the 21 
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converted pCREB (Saito et al., 2013), indicating that the effect of c-Fos is negligible in the 1 

previous study. Thus, the identified I-O relationships in this study are consistent with our 2 

previous work. 3 

 The estimated NARX parameters were also generally consistent with those in our previous 4 

study (Saito et al., 2013). The peak of c-Fos by NGF stimulation was approximately 0.9, whereas 5 

it was approximately 0.6 in our previous study (Saito et al., 2013). The difference may come 6 

from the difference in the algorithm for parameter estimation, because of the procedure of signal 7 

recovery is included in this study. Overall, the inferred the I-O relationship, the Hill equation, 8 

and the linear ARX model in this study are consistent with our earlier observations, indicating 9 

that system identification using unequally spaced time series data can give the same performance 10 

as using equally spaced time series data and that the system is time invariant during 720 min. 11 

Furthermore, the identified system can reasonably reproduce the time series data using 12 

extrapolated data with trametinib, except for FosB. Taken together, these results demonstrate the 13 

validity of the predicted response of the identified systems. The reason for the failure of system 14 

identification of FosB is unclear, but it may reflect the failure of parameter estimation due to the 15 

insufficient number of experimental data points, the limitation of the NARX model structure, or 16 

the existence of unknown regulatory molecules. Further studies are necessary to address these 17 

issues. 18 

 One key issue is whether ERK and/or CREB mediates cell differentiation through 19 

downstream gene expression in PC12 cells (Ravni et al., 2006; Vaudry et al., 2002; Watanabe et 20 

al., 2012). We previously found that the LP genes are not induced by NGF in the presence of 21 
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U0126, another MEK inhibitor (Watanabe et al., 2012), and that the MEK inhibitor blocks 1 

NGF-induced phosphorylation of both ERK and CREB in PC12 cells (Akimoto et al., 2013; Uda 2 

et al., 2013; Watanabe et al., 2012). By contrast, the MEK inhibitor blocked phosphorylation of 3 

ERK, but not CREB, in PACAP-stimulated PC12 cells (Akimoto et al., 2013; Uda et al., 2013) 4 

(Figure 6), suggesting that PACAP induces phosphorylation of CREB through a 5 

cAMP-dependent pathway, rather than the ERK pathway. These results demonstrate that NGF 6 

selectively uses the ERK pathway, whereas PACAP selectively uses the cAMP pathway for 7 

induction of the LP genes. Considering that LP genes are the common decoders for neurite length 8 

in PC12 cells regardless of growth factors (Watanabe et al., 2012), the identified system in this 9 

study (except for FosB) reveals the selective NGF- and PACAP-signaling decoding mechanisms 10 

for neurite length information. 11 

 Recently, fluorescence resonance energy transfer probes, optogenetics, and microfluidic 12 

devices have been developed to achieve observation and time control of ERK phosphorylation 13 

temporal patterns. These methods allow us to focus on quantitative relationships between various 14 

ERK phosphorylation temporal patterns and phenotypes such as cell differentiation (Albeck et al., 15 

2013; Aoki et al., 2013; Doupé and Perrimon, 2014; Ryu et al., 2015; Sumit et al., 2017; 16 

Toettcher et al., 2013; Zhang et al., 2014). Although the relationship between signal transduction 17 

and phenotype has been extensively studied, it remains unclear how the signaling molecules 18 

quantitatively regulate the downstream gene expressions over a longer time scale, leading to cell 19 

fate decisions. In this study, we revealed the quantitative regulatory mechanism between 20 

signaling activation at a short time scale (tens of minutes) and gene expression at a longer time 21 
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scale (day) by using a system identification method integrating a signal recovery technique and 1 

the NARX model based on compressed sensing. 2 

A linear or spline interpolation is often used to convert unequally spaced time course data into 3 

equally spaced time course data in biological data analysis. However, such interpolation methods 4 

are not likely to be reliable because the interpolation methods ignore biochemical property of 5 

molecular network. By contrast, the interpolation used in this study is based on the NARX model, 6 

which reflects biochemical property. Thus, the proposal method in this study is biologically more 7 

plausible than a linear or spline interpolation. 8 

There are obscure points for an application of this method to biological data analysis. The 9 

relationship between a number of observed time points and accuracy of signal recovery is 10 

theoretically unknown. In addition, how to select time points is also unknown. Intuitively, dense 11 

time points may be required for transient response, while sparse time points may be sufficient for 12 

sustained response. Further study is necessary to address this issue. 13 

 In molecular and cellular biology, molecular networks—the I-O relationship in this 14 

study—are generally examined by gene disruption or pharmacological perturbation experiments, 15 

meaning that the I-O relationship is examined using static and qualitative data. In this study, we 16 

used Inputs–Outputs time series data for system identification, allowing us to determine the I-O 17 

relationship using dynamic and quantitative data. Our system identification method does not 18 

require detailed knowledge of pathway information, which means that it can be used as a 19 

pathway finder directly from time series data. Moreover, additional information such as 20 

sensitivity with graded or switch-like response, time delay, and gain can be obtained. One of the 21 

advantages of using time series data rather than static perturbation experiments is simultaneously 22 
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obtaining the I-O relationship, sensitivity, and time constant, which characterize the system 1 

behavior. This is based on the idea that input–output time series data implicitly include 2 

information on the I-O relationship. However, we must note that the I-O relationship obtained by 3 

using this method may be an apparent relationship inferred from time series data and is not 4 

necessarily the direct I-O relationship. Therefore, the obtained I-O relationship should be 5 

validated by gene disruption or pharmacological perturbation experiments, as shown in Figure 6. 6 

 In conclusions, we have devised a system identification method using unequally spaced 7 

sparse time series data by signal recovery. Because of technical and budget limitations in 8 

biological experiments, it is generally difficult to obtain sufficient numbers of equally spaced 9 

dense time series data of molecules with different time scales. Thus far, system identification 10 

based on time series data has been limited to phenomena with similar time scales. However, our 11 

system identification method can solve this time-scale problem and can be applied to any 12 

biological system with different time scales, such as the cell cycle, development, regeneration, 13 

and metabolism involving ion flux, metabolites, phosphorylation, and gene expression. 14 
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STAR �METHODS 1 

Detailed methods of this study are provided and include the following: 2 

● KEY RESOURCES TABLE 3 

● CONTACT FOR REAGENT AND RESOURCE SHARING 4 

● EXPERIMENTAL MODEL AND SUBJECT DETAILS 5 

〇 Cell Culture and Treatments 6 

● METHOD DETAILS 7 

〇 Quantitative Image Cytometry (QIC) 8 

〇 qRT-PCR Analysis 9 

〇 NARX Model and Data Representation 10 

〇 Extension of ARX System Identification from Unequally Spaced Time Series Data to the 11 

NARX System 12 

〇 Procedure for System Identification by Integrating Signal Recovery and NARX Model 13 

〇 Calculation of Gain and Time Constant from Linear ARX Model 14 

〇 Simulation of the Integrated NARX Model 15 
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Figure legends 

 

Figure 1. Signal recovery based on compressed sensing technology from unequally spaced 

data. (Top) An example of recovered equally spaced image data from unequally spaced image 

data by the signal recovery technique using rank minimization of the Hankel-like matrix Y 

composed of signals in pixels. We assume that the value of each pixel is represented by a linear 

combination of those of its neighboring pixels, which is mathematically represented by an 

autoregressive (AR) model. (Bottom) An example of recovered equally spaced time series data 

from unequally spaced time series data by the signal recovery technique using rank minimization 

of the Hankel-like matrices Y and U, composed of time series data of input molecules (Inputs) 

and output molecules (Outputs), respectively. We assume that the value at a certain time is 

represented not only by the linear combination of values of the output molecule at past points but 

also by the linear combination of the values of the input molecule at past points, which is 

mathematically represented by an autoregressive exogenous (ARX) model. The recovered time 

series input–output data have the equally spaced time series data with the same time points even 

if the missing time points of input and output are different. 

 

Figure 2. System identification by integrating signal recovery and the NARX model. (A) 

The nonlinear ARX (NARX) model consists of static nonlinear conversion of input signal by the 

Hill equation, followed by time delay by ARX model (Saito et al., 2013). The former gives the 

sensitivity with a graded or switch-like response and the latter gives the time constant. (B) 
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Algorithm flowchart for system identification by integrating signal recovery and the NARX 

model. See details in “Procedure for System Identification by Integrating Signal Recovery and 

the NARX Model” section in the STAR METHODS. 

 

Figure 3. Transformation of Inputs by the Hill equation and signal recovery followed by the 

ARX model. Signal transformation in the nonlinear ARX model of c-Fos is shown. The signals 

of pERK and pCREB were transformed by the Hill equations and recovered. Then the 

transformed signals were temporally transformed by the linear ARX model. The sum of the 

transformed signals by the linear ARX model was c-Fos, the final output of the nonlinear ARX 

model of c-Fos. 

 

Figure 4. Experimental data of growth factor–dependent changes of signaling molecules 

and gene expression in PC12 cells. PC12 cells were stimulated with NGF (50 ng/ml, red), 

PACAP (100 nM, blue), or PMA (100 nM, green). Phosphorylation of signaling molecules, such 

as ERK and CREB, the product of IEGs such as c-Jun, c-Egr1, c-Jun, FosB, and JunB, and 

mRNA expression of LP genes such as Metrnl, Dclk1, and Serpinb1a were measured with 

different time points. These data were used for system identification by the NARX model in 

Figure 5–C. 

 

Figure 5. System identification of I-O relationships between the signaling, IEGs, and LP 

genes. (A) The sets of combinations of Inputs and Outputs for system identification. (B) The 
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identified I-O relationships. Arrows indicate the estimated I-O relationships for each set of inputs 

and outputs. The colors of the arrows indicate the same sets of combinations of inputs and 

outputs as in (A). Dots, experimental data; pluses, the recovered signal data; solid lines, 

simulation data of the NARX model; red, NGF stimulation; blue, PACAP stimulation; green, 

PMA stimulation. (C) The dose-response curves obtained by the Hill equation. For each panel, 

conversion of Inputs by the identified Hill equation is shown. The colors of the arrows and 

plotted lines indicate the same Inputs, respectively. 

 

Figure 6. Prediction and validation of the identified system by pharmacological 

perturbation. (A) The predictive simulation result and experimental result by PACAP 

stimulation in the presence (black) or absence (blue) of trametinib. Lines, simulation; dots, 

experimental and recovered data. Experimental and recovered data of pERK and pCREB, and 

the simulated data of c-Jun, c-Fos, Egr1, FosB, and JunB are given as Inputs, and simulation was 

performed using the NARX model in Figure 5 (see Method). In the experiment, PC12 cells were 

treated in the absence (blue dots) or in the presence (black dots) of trametinib (10 μM) added at 

30 min before stimulation with PACAP (100 nM). Note that the PACAP stimulation data are 

used, as in Figure 4. (B) Simulation using experimental and recovered data as Inputs. For each 

set of the Inputs (left panel for each) and Outputs (right panel for each), the unequally spaced 

time series data were recovered (pluses) (right panel for each), and the responses of Outputs were 

simulated by the NARX model identified in Figure 5A–C (solid lines) (right panel for each).  
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Table 

Table 1. The identified I-O relationships, parameters of the Hill equation, and gain and time 

constant calculated from the linear ARX model in Figure 4. 

I-O relationship Hill equation Linear ARX model 

Input Output K (EC50) 
n (Hill 

coefficient) 
Gain 

Time 

constant 

(min) 
pERK c-Jun 0.9999 1 4.4315 56.4 

pERK c-Fos 0.2274 1.276 1.137 20.8 

pCREB c-Fos 0.7189 6.118 0.8218 22 

pERK Egr1 0.998 1.225 3.2058 21.3 

c-Fos FosB 0.792 81.79 4.682 413 

c-Jun FosB 0.0813 78.58 0.1215 6.5 

pCREB JunB 0.9733 1.58 2.9857 108.9 

c-Fos Metrnl 0.9948 60.7 0.8347 16.8 

FosB Metrnl 0.5998 3.01 1.1256 10.7 

JunB Metrnl 0.8735 89.61 0.2128 21.7 

JunB Serpinb1a 0.3161 7.594 0.8797 275.4 

JunB Dclk1 0.2584 2.234 0.6889 4 
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STAR �METHODS 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse anti-phospho-ERK1/2 (Thr 202/Tyr 

204) 

Cell Signaling 

Technology 

Cat: 9106; RRID: 

AB_331768 

Rabbit anti-phospho-CREB (Ser 133) Cell Signaling 

Technology 

Cat: 9198; RRID: 

AB_2561044 

Rabbit anti-c-Jun Cell Signaling 

Technology 

Cat: 9165; RRID: 

AB_2130165 

Rabbit anti-c-Fos Cell Signaling 

Technology 

Cat: 2250; RRID: 

AB_2247211 

Rabbit anti-Egr1 Cell Signaling 

Technology 

Cat: 4154; RRID: 

AB_2097035 

Rabbit anti-FosB Cell Signaling 

Technology 

Cat: 2251; RRID: 

AB_2106903 

Rabbit anti-JunB Cell Signaling 

Technology 

Cat: 3753; RRID: 

AB_2130002 

Alexa 488 goat anti-mouse IgG (H+L) Invitrogen Cat: A11029; 

RRID: AB_138404 
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Alexa 546 goat anti-rabbit IgG (H+L) Invitrogen Cat: A11035; 

RRID:AB_143051 

Chemicals, Peptides, and Recombinant Proteins 

DMEM Sigma Cat: D6046 

Fetal bovine serum Sigma Cat: 172012 

Horse serum Gibco Cat: 16050-122 

poly-L-lysine Sigma Cat: P4707 

NGF R&D Systems Cat: 1156-NG 

PACAP Sigma Cat: A1439 

PMA Sigma Cat: P1585 

Trametinib Selleckchem Cat: S2673 

Can Get Signal immunostain solution A Toyobo Cat: NKB-501 

Hoechst 33342 Invitrogen Cat: H-3570 

Power SYBR Green PCR Master Mix Applied Biosystems Cat: 4367659 

Critical Commercial Assays 

Agencourt RNAdvance Tissue Kit Beckman Coulter Cat: 32646 

High Capacity RNA-to-cDNA Kit Applied Biosystems Cat: 4387406 

Experimental Models: Cell Lines 

PC12 rat adrenal pheochromocytoma cells Masato Nakafuku (Ohio) 

Sasagawa et al., 2005 

N/A 
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Oligonucleotides 

Primers for qRT-PCR, see Table S2 This paper N/A 

Software and algorithms 

Iterative partial matrix shrinkage algorithm Konishi et al., 2014 http://dx.doi.org/10

.1016/j.sigpro.201

4.01.014 

MATLAB MathWorks https://www.math

works.com/ 

7300 System SDS software version 1.3.1.21 Applied Biosystems N/A 

Other 

Biomek NX Span-8 liquid handling system Beckman Coulter N/A 

Thermoshake heater-shaker Variomag Model number: 

7100146-B 

Robotic incubator STX-40 Liconic N/A 

CellInsite NTX Thermo Fisher Scientific N/A 

7300 Real Time PCR System Applied Biosystem N/A 

 

CONTACTS FOR REAGENT AND RESOURCE SHARING 

Further information and requests for reagents and resources should be directed to and will be 

fulfilled by the Lead Contact, Shinya Kuroda (skuroda@bs.s.u-tokyo.ac.jp). 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell Culture and Treatments 

PC12 cells (kindly provided by Masato Nakafuku, Cincinnati Children’s Hospital Medical 

Center, Cincinnati, OH, USA) (Sasagawa et al., 2005) were cultured at 37°C under 5% CO2 in 

complete medium, Dulbecco’s modified Eagle’s medium (DMEM) (Sigma, Zwijndrecht, The 

Netherlands) supplemented with 10% fetal bovine serum (Sigma) and 5% horse serum (Gibco, 

Bethesda, MD, USA). For stimulation, PC12 cells were plated on poly-L-lysine-coated 96-well 

microplates (0.5×104 cells/well) in the complete medium for 24 h and then treated with the 

complete medium in the presence or absence of the indicated doses of NGF (R&D Systems, 

Minneapolis, MN, USA), PACAP (Sigma), and PMA (Sigma) (Saito et al., 2013; Uda et al., 

2013). Stimulations for cells seeded in 96-well microplates were performed by using a liquid 

handling system (Biomek NX Span-8, Beckman Coulter, Fullerton, CA, USA) with an integrated 

heater-shaker (Variomag, Daytona Beach, FL, USA) and robotic incubator (STX-40, Liconic, 

Mauren, Liechtenstein). For the inhibitor experiment, we stimulated cells with PACAP in the 

presence of 10 μM trametinib (Selleckchem, Houston, TX, USA). The inhibitor was added 30 

min before stimulation with PACAP. 

 

METHOD DETAILS 

Quantitative Image Cytometry 

QIC was performed as previously described (Ozaki et al., 2010). Briefly, after stimulation by the 

growth factors, the cells were fixed, washed with phosphate-buffered saline, and permeabilized 
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with blocking buffer (0.1% Triton X-100, 10% fetal bovine serum in phosphate-buffered saline). 

The cells were washed and then incubated for 2 h with primary antibodies diluted in Can Get 

Signal immunostain Solution A (Toyobo, Osaka, Japan). The cells were washed three times and 

then incubated for 1 h with second antibodies. After immunostaining, the cells were stained for 

the nucleus by incubating with Hoechst 33342 (Invitrogen, Carlsbad, CA, CA). The images of 

the stained cells were acquired by using a CellInsite NTX (Thermo Fisher Scientific) automated 

microscope with a 20× objective lens. For QIC analyses, we acquired different field images of 

the cells in each well, until the number of obtained cells exceeded 1000. Liquid handling for the 

96-well microplates was performed using a Biomek NX Span-8 liquid handling system. 

Intensities of the signaling activity and the IEGs between experiments were normalized by an 

internal control of each 96-well plate in QIC. Note that for the QIC assays, all the cells within a 

plate were fixed simultaneously to prevent the exposure of cells to formaldehyde vapor during 

the treatment. 

 

qRT-PCR analysis 

Reverse transcription–polymerase chain reaction (RT-PCR) was performed as previously 

described (Watanabe et al., 2012). Briefly, total RNA was prepared from PC12 cells using an 

Agencourt RNAdvance Tissue Kit according to the manufacturer’s instructions (Beckman 

Coulter, La Brea, CA, USA). RNA samples were reverse transcribed by using a High Capacity 

RNA-to-cDNA Kit (Applied Biosystems, Carlsbad, CA, USA) and the resulting cDNAs were 

used as templates for qRT-PCR. qRT-PCR was performed with Power SYBR Green PCR Master 
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Mix (Applied Biosystems); the primers are shown in supplementary information Table S2. As an 

internal control for normalization, the β-actin transcript was similarly amplified using the 

primers. qRT-PCR was conducted using a 7300 Real Time PCR System (Applied Biosystems), 

and the data were acquired and analyzed by the 7300 System SDS software version 1.3.1.21 

(Applied Biosystems). The sequences of the primers for the LP genes are shown in Table S2 

(Watanabe et al., 2012). 

 

NARX model and data representation 

Assuming that the input molecules (Input) and output molecules (Output) signals satisfy the 

following NARX model, Eqs. (1) and (2), the system identification is performed by estimating 

unknown parameters in the NARX model,  

 �

�,	 � � ��

�


�

���

�
��
�,	 � � � ��

����
��
�,	 , ��, ���


�

�������

 (1) 

 ���, �, �� � ��

�����
, (2) 

where �

�,	 and �


�,	 are experimental values of Input and Output at time step �, p and q 

respectively denote indices of Output and Input defined in the following sets, 

 
� � � �

�c-Jun, Egr1, c-Fos, FosB, JunB, )*+,�-, �*,�.��1�, /0-�1A2, 
(3) 

 3 � 4� 5 4 � �pERK, pCREB, c-Jun, Egr1, c-Fos, FosB, JunB2, (4) 

and � is an index of stimulation conditions defined as follows, 

 � � �NGF, PACAP, PMA2 (5) 

, 

. 
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4� is the index set of Input defined for each Output � � � (Fig. 5A). The nonlinear function 

���� in Eq. (2) is the Hill equation that is one of the steady state solutions of biochemical 

reaction and widely used in the field of biology (Hill, 1910). The coefficients ��
�and ��

�, the 

orders >� and >� in Eq. (1), �� and �� in Eq. (2), and set 4� are unknown parameters. 

For each molecule under stimulation condition � (NGF, PACAP, and PMA), the unequally 

spaced time series data are obtained in this study. We consider them as equally spaced time data 

�

�,	and �


�,	with missing time points and identify the unknown NARX parameters after 

recovering missing time points based on the low rankness of the Hankel-like matrix, which is 

described in the next section. 

 

Extension of ARX System Identification from Unequally Spaced Time Series Data to the 

Nonlinear ARX System 

To deal with the nonlinear ARX system, we extend ARX system identification from unequally 

spaced time series data to the nonlinear ARX system. First consider the simple case of the linear 

ARX model and then extend it to the NARX model. To perform system identification from 

unequally spaced time series data, equally spaced time series data are generated by signal 

recovery of unknown values of missing time points. Because the Input and Output data of a 

linear system are missing and the order of the system is unknown as in this study, the system 

identification using the recovered Input and Output data based on the low rankness of the 

Hankel-like matrix has been proposed (Liu et al., 2013). This is a method to recover missing data 

by solving the matrix rank minimization problem and to generate equally spaced sampled data. 
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In this study, we apply this matrix rank minimization approach to simultaneously identify the 

NARX model and recover missing data. 

 First, for simplicity, let us consider the case of the linear ARX model with single Input and 

single Output described by 

 �
 � ∑ ���
�� � ∑ ���
��

�

��� � @


�

��� , (6) 

where �
  and �
  are the Output and Input at time step �, and @
  is the noise. When only 

��
2
�Ω� and ��
2
�Ω�  are obtained, that is, the part of the Input and Output data ��
2
��
�  and 

��
2
��
� , we consider the problem of recovering unknown Input and Output data. Here, Ω� and 

Ω� are index sets and are a subset of the set �1,2, … , D2. We define Hankel-like matrices E and 

F by Eqs. (7) and (8), where we assume that D is sufficiently larger than ,. 

 E �
G
HH
H
I �� �� �� J ��

�� �� �� J ������ �� �� J ����K K K L K
������ ������ ������ J �� M

NN
N
O
 (7) 

 F �
G
HH
H
I �� �� �� J ��

�� �� �� J ������ �� �� J ����K K K L K
������ ������ ������ J �� M

NN
N
O
. (8) 

Hankel-like matrices E and F are matrices called Hankel matrices if they are square matrices, 

and they are matrices in which the same components are entered from the lower left to the upper 

right in the matrix. Considering @
 � 0 in Eq. (6), that is, considering an ideal case without 

noise, Eq. (9) holds for the matrix [E FQ in which the matrices E and F are arranged 

horizontally (Fig. S1B). 

 rankTE FQ � m� � , V 2, (9) 
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Thus, the matrix [E FQ is a low-rank matrix whose rank is determined by the order of the system. 

If >� is known in Eq. (9), the missing data can be recovered by restoring the unknown 

components of the matrix so that the rank of the matrix [E FQ becomes >� � ,. Because the 

order >� is unknown in this study, we recover the unknown components so as to minimize the 

rank of the matrix [E FQ based on the idea that it is better to describe the system with as few 

parameters as possible. That is, the missing data are recovered by solving the matrix rank 

minimization problem as follows, 

 

Minimize rankTE FQ 

subject to �
 � �]
 for all � � Ω� 

�
 � �]
  for all � � Ω�, 

(10) 

where �]
 and �]
  are observed values. Eq. (10) is a nonconvex optimization problem, which is 

generally a Non-deterministic Polynomial time (NP)-hard problem in the field of the 

computational complexity theory. Therefore, we relax this problem in Eq. (11) in which the 

objective function is replaced by the nucleus norm, the sum of the singular values of the matrix, 

and obtain a low-rank matrix by solving this optimization problem with the iterative partial 

matrix shrinkage (IPMS) algorithm (Konishi et al., 2014). 

 

Minimize `TE FQ` ,� 

subject to �
 � �]
 for all � � Ω� 

 �
 � �]
  for all � � Ω�, 

(11) 

where `·` ,� represents the sum of singular values that are smaller than the rth greater singular 

value. The IPMS algorithm is a technique to provide a low-rank solution of Eq. (10) by solving 
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Eq. (11) repeatedly for increasing , by 1, starting at , � 0, and provides recovered data with 

small energy loss after recovery and less distortion by preferentially estimating from a singular 

value of a large value (Konishi et al., 2014). 

 In the case of a multi-Input system, for each Input, a Hankel-like matrix F! corresponding to 

the matrix F is generated, and by solving the matrix rank minimization problem of matrices 

arrayed side by side such as [E F� … F�Q, Inputs and Output data can be similarly recovered. Also, 

when data under multiple stimulation conditions are obtained, Input and Output data can also be 

recovered by arranging the matrices vertically for each stimulation condition. For example, when 

there is a data set of NGF stimulation and PACAP stimulation and simulation condition � is 

� � �NGF, PACAP2, a matrix composed of �

	 and �


	  is vertically arranged for each stimulation 

condition � to construct E and F, and Input and Output data can be recovered by solving the 

matrix rank minimization problem for [E FQ. 
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 In the NARX model used in this study, because the observed Input data is nonlinearly 

transformed using the nonlinear function f in Eq. (2) and the Input data after transformation and 

the Output data follow the ARX system, signal recovery and system identification can be 

performed on the nonlinearly transformed Input data and Output data by the above method. 

Based on this idea, we performed nonlinear ARX system identification. 

 

Procedure for System Identification by Integrating Signal Recovery and the NARX model 

To estimate an I-O relationship, we prepare data sets of all combinations of input molecules 

(Inputs) for each output molecule (Output). For each data set, leave-one-out cross-validation is 

performed by preparing all combinations with only one test data set and the rest as the training 

data set. We have three stimulation conditions, NGF, PACAP, and PMA, and use two of them as 

the training data set and the other one as the test data set. Therefore, there are three combinations 

to divide the test and training data sets. 

 In nonlinear systems such as the NARX model in this study, even if all the Input and Output 

data are known, obtaining �� and �� is a nonconvex optimization problem, for which it is 
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difficult to obtain an exact solution. Therefore, �� and �� are estimated by 500 trials with 

multiple random initial values. By repeating the following procedures from step i to step v, �� 

and �� are estimated so as to minimize the AIC for the training data set, while Inputs and 

Output of the NARX model are recovered. Subsequently, signal recovery of the test data set is 

performed in step vi, and the residual sum of square (RSS) is calculated for a test data set in step 

vii. Step vii is performed with all three combinations of training and test data sets, and take the 

sum of RSS for test data sets. Step viii is performed with all combinations of Input, and then in 

step ix a combination of Input with the minimum sum of RSS for test data sets is selected. This 

combination of Inputs is used for the I-O relationship. Using the combination of the Input 

molecules in step x and the data set of all stimulation conditions as the training data set, we 

estimate the parameters of the NARX model, which is used as the finally obtained NARX model 

(Figures 5 and 6). 

 

Step i: Nonlinear transformation of Input data by the Hill equation. �

�,	, which is Input 3 

at time step � under the stimulation condition �, is transformed into �

�,	 � ���


�,	� by Eq. (2), 

the Hill equation. The initial values of �� and ��
�� are given by �� � 1 and a uniform 

random number between 0 to 1, respectively, for each Input q. Using the observed Output �

�,	 

and the nonlinearly transformed Input �

�,	, the following Hankel-like matrix is constructed for 

Output � while assigning the previous closest observation value to the initial value of missing 

points. Note that this is a notation in the case of a single Input. Hereafter, two training data sets 

and one test data set are referred as +,�.�.�b 1 and +,�.�.�b 2 and +*�+, respectively. 
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 (15) 

 

Step ii: Signal recovery of training data. Solve the matrix [E FQ rank minimization problem of 

Eq. (11) by the IPMS algorithm and recover converted Input data �

�,	 and Output data �


�,	. 

Note that, in the case of multi-Input, for each Input, a matrix F! corresponding to the matrix F 

is generated, and by solving the matrix rank minimization problem of matrices arrayed side by 

side such as [E F� … F�Q, Inputs and Output data can be similarly recovered. 

 

Step iii: Calculate ARX parameters, 	 and 
. Based on the relationship between the 
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Hankel-like matrix and ARX parameters (Fig. S1B), obtain the ARX parameters ��
� and ��

� in 

Eq. (1) for Output � and each Input 3 using the recovered transformed Input data �

�,	 and 

Output data �

�,	. The order of the system, the lag order of the ARX model, is determined based 

on the matrix rank obtained in step ii. 

 

Step iv: Estimate c( and d(
)�  using the recovered data and ARX parameters. Using the 

inverse function f of Eq. (2), recover the missing time point data of Input before transformation 

by using Eq. (2). For the recovered �

�,	 and �


�,	, �� in Eq. (2) is given again by uniform 

random numbers >1 and ≤100 and ��
�� ≥0.001 and ≤1, and 200 combinations of �� and 

��
��are generated. For each combination, perform simulation of the ARX model and calculate 

AIC for the training data set, ��
�������� . Select the combination of �� and ��
�� with the 

minimum ��
�������� . Using this �� and ��
��, Input and Output data in the matrix [E FQ 

composed of E and F in Eqs. (14) and (15) is recovered again by the IPMS algorithm. 

 

Step v: Select NARX parameters with the minimum efg*+,-)-).. Repeat steps i to iv 500 

times. Select �� and ��
�� and ARX parameters that minimize ��
�������� . 

 

Step vi: Signal recovery of test data. Using the ��, ��
�� and ARX parameters selected in step 

v, add test data to the recovered matrix [E FQ in Eqs. (14) and (15) like in Eqs. (16) and (17). 

Test data are also recovered by solving the test data added matrix [E FQ rank minimization 

problem with the IPMS algorithm. Note that training data sets have already been recovered until 
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step v, and signal recovery of only test data is performed in this step. 
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Step vii: NARX model simulation and calculate hii011
2  for test data set j. Simulate the 

test data using equally spaced time series data recovered in step vi and parameters of the Hill 

equation and ARX parameters. Calculate the ������
	 , the residual sum of square for the 

stimulation condition of the test data set. 

 

Step viii: Calculate hii011 by taking the sum of hii011
2  for each stimulation j. Perform 

steps i to vii for all three combinations of training and test data sets. Let ������ be the sum of 

������
	  for each stimulation s of test data set. 

 

Step ix: Obtain the Input combination with minimum hii011. Perform steps i to viii for all 

combinations of Inputs. Select the combination of Inputs with the minimum ������ for the I-O 

relationship. 

 

Step x: Estimate the NARX model with signal recovery using all data sets. Using the 

combination of Input determined in step ix, estimate the NARX parameter with signal recovery 

by the procedure from steps i to v using all stimulation conditions as training data sets. 

 Note that, when simulating with the ARX model, set the value of Output to 0 before time 0, 

otherwise the value of the Output obtained by the simulation is used to obtain the next time value. 

For stimulation in Figure 6, signal recovery was performed by step vi using experimental data 

with trametinib as the test data set. 
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Calculation of Gain and Time Constant from the Linear ARX Model 

Gain and time constant k were calculated from the frequency response function obtained from 

the linear ARX model. For simplicity, we consider here the case of a single Input single Output 

ARX model like Eq. (6), which can be re-described as follows, 

 
�
 l ���
�� l ���
�� l J l �
�

�
�
�
 � ���
�� � ���
�� � J �

�
�
�
, 

(18) 

and its Z-transform are given by 

 
m�
 l ��n�� l ��n�� l J l �
�

n�
�o ��n� 

� p��n�� � ��n�� � J � �
�
n�
�q��n�. 

(19) 

Then a discrete-time transfer function, a function to convert Input to Output through the system, 

r�n� can be described using these ARX parameters, 

 r�n� � y�z�
��n� � ��n�� � ��n�� � J � �
�

n�
�

1 l ��n�� l ��n�� l J l �
�
n�
�

 (20) 

To consider the frequency response function and calculation of gain and phase, n is substituted 

by .t, 

 r�.t� � .��t�� l ��t�� � J � �
�
�.t��
�

1 l .��t�� � ��t�� l J l .�
�
�.t��
�

 (21) 

 b�.� � |r�.t�|, �v��* � wr�.t�  (22) 

where . is an imaginary unit and t is frequency. Therefore, gain and phase can be calculated 

from ARX parameters. The frequency response curve and phase diagram at each Input and 

Output of the identified linear ARX model are shown in Figure S4. Note that gain indicated in 

Table 1 is steady-state gain. From the frequency response function, cutoff frequency �3��455, an 

. 
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inverse of time constant k, is obtained by calculating the frequency at which the gain 

corresponds to 
�

√�
 of the steady-state gain. Because Eq. (23) is established between �3��455 and 

the time constant k, we can obtain k from the ARX parameters through the above procedure. 

 k � 1
2x�3��455

 (23) 

 

Simulation of the Integrated NARX Model 

The simulation of the integrated NARX model was performed as follows. Experimental and 

recovered data of pERK and pCREB, and the simulated data of c-Jun, c-Fos, Egr1, FosB, and 

JunB were given as Input data and simulation was performed using the NARX model in Figure 

5. 
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