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Abstract 

Objective: Metformin is the recommended initial drug treatment in type 2 Diabetes Mellitus, but there is no clearly 

preferred choice for an additional drug when indicated. We use electronic health records to infer the counterfactual 

drug effectiveness in reducing HbA1c levels and effect on body-mass index (BMI) of four second line diabetes drug 

classes. 

Study design and setting: Retrospective analysis of the electronic health records of US-based patients in the Explorys 

database using causal inference methodology to adjust for censored patients and confounders. 

Participants and Exposures: Our cohort consisted of roughly 25,000 patients with type 2 diabetes, prescribed 

metformin along with a drug out of four second line drug classes – sulfonylureas, thiazolidinediones, DPP-4 inhibitors 

and GLP-1 agonists, during the years 2000-2013. 

Main outcome measures: Glycated hemoglobin (HbA1c) and BMI of these patients after six and twelve months of 

treatment. 

Results: We show that all four drug classes reduce glycated hemoglobin levels, but the effect of sulfonylureas after 

12 months of treatment is less pronounced compared to other classes. We also predict that thiazolidinediones increase 

body weight while DPP-4 inhibitors decrease it. 

Conclusion: Our results are in line with current knowledge on second line drug effectiveness and effect on BMI. They 

demonstrate that causal inference from Electronic health records is an effective way for conducting multi-treatment 

causal inference studies. 

 

  

WHAT IS ALREADY KNOWN ON THIS TOPIC 

The effect of type 2 diabetes second-line drugs on glycosylated hemoglobin levels and on Body-Mass Index 

have been evaluated in clinical studies. However, the clinical implication of these studies is limited by small 

number of participating individuals and the homogeneity of the study populations. Meta-analysis studies have 

increased sample size but potentially suffer from the similar homogeneity biases. 

WHAT THIS STUDY ADDS 

This study performs, for the first time, a large-scale analysis of the therapeutic and adverse effects of type 2 

diabetes second-line drugs in real-world population using electronic health records. We confirm current 

knowledge for glycosylated hemoglobin levels, while showing similar effects on BMI for inhibitors of 

Dipeptidyl peptidase 4 (DPP-4), Glucagon-like peptide-1 receptor agonists (GLP-1). 



  

Introduction 

Type 2 Diabetes Mellitus (T2DM) affects more than 29 million people in the United States and is the 7th leading cause 

of death (1),(2). The American Diabetes association standards of medical care (3), supported by several studies (4,5), 

recommends dietary changes and physical exercise as the initial treatment, followed by administration of metformin 

if life style changes fail to reach glycemic control. According to the standards of medical care, if metformin does not 

achieve glycemic target within three months, one of the following six second-line medications should be added: 

Sulfonylureas (SU), thiazolidinediones (TZD), inhibitors of Dipeptidyl peptidase 4 (DPP-4), Glucagon-like peptide-

1 receptor agonists (GLP-1), SGLT2 inhibitors, or insulin. Currently, the guidelines do not prefer one class over the 

others. The effectiveness, costs and risk of complication of those drug classes were compared in clinical trials (6) and 

meta-analyses of their results (7–9). These comparisons found no significant difference in drug class effect on the 

percentage of blood glycated hemoglobin (HbA1c), thus no specific recommendation about the choice of a second 

drug could be made (10).  

Notably, clinical trials are laborious and costly. Trials often include small samples with limited representativeness of 

the target population (e.g., between 2005 and 2012, the FDA approved drugs based on a median number of two clinical 

trials and median number of patients enrolled was 760 (11)). Meta-analyses of clinical trials may have higher power 

and be more generalizable, but are vulnerable to publication bias, small-study effects and limited degree of 

heterogeneity (12). Electronic health records (EHRs) hold promise as an alternative way to conduct causal inference 

experiments, that can address some of these meta-analyses limitations (13,14).  

Here, we demonstrate the usefulness of a real world evidence approach for T2DM. We simulate a multi-arm clinical 

trial of four classes of drugs for diabetes which are commonly used as second line treatment (SU, TZD, DPP-4 and 

GLP-1) and compare the counterfactual effectiveness (HbA1c levels) and body-mass index (BMI) outcomes of 25,098 

patients over the course of twelve months, adjusting for confounders and censored patients. For reference, a recent 

meta-analysis of anti-diabetes drugs (8) was based on data of about 18,000 patients. Our results are in line with current 

knowledge and thus demonstrate that causal inference from EHRs is an effective way for conducting multi-treatment 

causal inference studies. 

 

Research Design and Methods 

Data 

We used the Explorys database (IBM Inc.), which includes EHR records of 47 million patients, pooled from multiple 

different healthcare systems in the US. Data consists of a combination of clinical EHRs, healthcare system outgoing 

bills, and adjudicated payor claims and is standardized and normalized using common ontologies, searchable through 

a HIPAA-enabled, de-identified database tools. The EHR data includes patient demographics, diagnoses, procedures, 

prescribed drugs, vitals and laboratory values. 



  

Cohort definition 

We defined a cohort of T2DM patients based on the Northwestern University diabetes phenotyping algorithm (15). 

We included patients having at least two types of evidence for T2DM out of a T2DM diagnosis, T2DM drugs and 

indicative lab values (glucose or HbA1c levels). Included were patients who were first prescribed metformin and 

subsequently prescribed, during the years 2000-2013, a second line drug belonging to any of four classes: 

sulfonylureas (SU), thiazolidinediones (TZD), inhibitors of dipeptidyl peptidase 4 (DPP-4) and Glucagon-like peptide-

1 receptor agonists (GLP-1) (Table S1 lists drugs for each drug class). The first completed prescription of the second-

line drug was considered the “index-date”. Drug combinations of two or more second line drug classes were 

considered as prescription of the two drug classes at the same day. Patients prescribed two or more second line drugs 

were censored (see “causal inference scheme” for further details).  

We required the patients to have at least twelve months of documented observation period prior to the index-date and 

a documented fifteen months of observation for the follow-up period. Additionally, we required each patient to have 

at least one HbA1c measurement during the observation period and at least one measurement for each of the follow-

up time points of six and twelve months (±three months each) from the index-date. Finally, we excluded patients with 

type 1 Diabetes Mellitus, identified by either a type 1 Diabetes diagnosis code, or prescription of pramlintide (approved 

also for T2DM patients who use insulin). 

Feature extraction 

We extracted patient characteristics using the feature engineering framework of (16). The comprehensive set of 

features included demographic information (age, sex, ethnicity), insurance type, patient aggregated diagnoses using 

Clinical Classifications Software (CCS) categories, Charlson comorbidity index (CCI) (17) and Elixhauser 

comorbidity index categories (18), prescribed drugs (active ingredients) and laboratory results values over the baseline 

period. Categorical features, such as insurance type or ethnicity, were split into binary features. As a preliminary step, 

we filtered features which were dominated (>95% of patients) by a single value or were spurious (>80% with missing 

values), resulting in 523 features. 

Causal inference scheme 

We considered two potential biases: (1) selection bias due to censoring; and (2) confounders, affecting both treatment 

choice and measured outcome (HbA1c levels or BMI).  

For HbA1c inference, we marked as censored patients who, during the follow-up period, were switched to or added 

any other anti-diabetic drug (including classes which were not evaluated in this work: insulin, sodium-glucose co-

transporter 2 inhibitors, meglitinides and α- glucosidase inhibitors). We also censored patients who underwent 

bariatric surgery during the follow-up period. For BMI prediction, we followed the same censoring criteria as in 

HbA1c inference and additionally censored patients lacking BMI measurements in either of the two follow-up time 

points of six and twelve months. We corrected for censoring by re-weighing the uncensored population using inverse 

probability weighting (IPW) (19). 

We defined the set of confounders in two ways: (1) confounders identified by an internist and through literature search; 

and (2) treating all 523 extracted features as confounders. In total, 30 domain-expert confounders for HbA1c inference 

(Table S2) and 6 domain-expert confounders for BMI inference (Table S3) were identified. We corrected for 



  

confounders using either standardization or stabilized inverse probability weighting (IPW) (20). For standardization, 

we used ridge regression with five-fold cross validation to adjust the regularization coefficient and for the inverse 

probability weighting, we used multi-class logistic regression. 

We checked the balancing of confounders in our IPW scheme by applying the diagnostics of (21). We further applied 

our scheme to patient height as a negative control, a measurement that is unaffected by treatment type. 

Patient involvement 

No patients were involved in setting the research question or the outcome measures, nor were they involved in 

developing plans for design or implementation of the study. No patients were asked to advise on interpretation or 

writing up of results. There are no plans to disseminate the results of the research to study participants or the relevant 

patient community. 

 

Results 

 

Study cohort 

Our cohort included 25,098 patients. Of these, 16,327 also had available BMI before and after the prescription of 

second line drugs and were used for inference of BMI (treating the rest as censored) (Table 1). There were significantly 

more patients on TZD, GLP-1 or DPP-4 that switched or added another drug than patients on SU (censored patients, 

p<9e-4, Table 1). TZD and SU had significantly higher percentage of patients with missing BMI measurements during 

the follow-up than GLP-1 and DPP-4 (p<8e-6, Table 1). Finally, the patients on GLP-1 were about five years younger 

on average (p<4e-57) and included significantly higher rate of women (p<2e-24, Table 1). 

Causal inference scheme  

We applied causal inference methods to compute the counterfactual HbA1c levels and BMI (for each one of the four 

drug classes) at each of the two follow-up time points, adjusting for censored patients and confounders (Methods). 

Using height as a negative control, we found no significant differences between patients on different drug classes. 

HbA1c 

HbA1c measurements were available for 82% of the patients from up to 90 days prior to initiation of second-line 

treatment, and for 94% of the patients up to 180 days (see Figure S1 for complete temporal distribution). The 

counterfactual HbA1c levels were significantly correlated with actual HbA1c levels in both time points (Pearson 

ρ≥0.32, p<e-36 using domain expert confounders and ρ≥0.41, p<e-50 using the comprehensive confounder set, Table 

S4). 

The differences in predicted HbA1c levels between causal inference methods (standardization and IPW (19)) and 

between manual and automatic selection of confounders were lower than 0.2% and significant only between causal 

inference methods for SU patients (Wald test, below false discovery rate, FDR, of 0.05, Table S5). All four drug 

classes were predicted to reduce HbA1c levels below 7.08% after twelve months of treatment, with a 0.18% (GLP-1) 

to 0.64% (SU) reduction in HbA1c levels relative to baseline (Table S5, Figures 1, S2). Twelve months HbA1c levels 

inferred for SU were higher than for TZDs, DPP-4 and GLP-1 by 0.05%-0.21%, significant under standardization re-



  

weighting (Wald test, p<3e-5, Table S6). Notably, both actual and inferred HbA1c levels were lower than those 

computed using the mixed-treatment comparison (MTC) of clinical trials of McIntosh et al (7,8). 

BMI 

BMI measurements were available for 77% and 82% of the patients as recent as 90 and 180 days prior to treatment 

date, respectively (see Figure S3 for complete time distribution). Counterfactual BMI was highly correlated with the 

actual BMI in both time points (ρ≥0.78, p<e-97).  

The predicted BMI was significantly lower for patients on DPP-4 than for patients on SUs or TZDs (p<0.02, Figures 

2, S4; Tables S7-S8). On average, patients on GLP-1 had higher BMI (by 2.5-2.7 kg/m2, Table S7) before the 

prescription of second line treatment compared to patients prescribed one of the other studied drug classes. These 

patients had their BMI lowered by an average of 0.74 kg/m2. However, our predicted BMI shows no significant 

advantage for GLP-1 over TZD and SU in a population with lower initial BMI (Table S8, see also discussion on BMI 

and GLP-1).  

Discussion 

We presented a causal inference analysis of EHR data to compare the effect of adding a second line treatments for 

T2DM on HbA1c and BMI, in patients already treated with metformin. Our inferred HbA1c levels for up to twelve 

months of follow-up suggest that the effect of TZD, DPP-4 and GLP-1 inhibitors is comparable, whereas that of SU 

is smaller. At the same time, TZD increase BMI, whereas DPP-4 and GLP-1 reduce BMI and SU have a negligible 

effect on it after 12 months of treatment. 

Our study has several limitations. We note three potential challenges encountered when performing causal inference 

with EHR data: (1) missing information for patients seen in clinics which are not included in the Explorys database; 

(2) incomplete tracking of prescriptions, leading to incomplete information about treatment changes; and (3) potential 

confounders not available in EHR data, such as life style. We consider HbA1c and BMI as good proxies for future 

patient risk (22), but there are other considerations in selecting a second line drug beyond its effect on these measures, 

such as risks of adverse reactions and of diabetes-related complications. While we did not directly address adverse 

reactions, patients who were switched drug classes may indirectly point to such effects. These outcomes should be 

studied in subsequent work, potentially observing patients for longer follow-up periods to gain stronger statistical 

power. Other extensions should focus on differences between individual drugs from the same class, which could have 

different outcomes (such as different drugs from the SU class (23)).  

Patients prescribed SU were less likely to be added a third drug or switched to another drug than patients on the other 

drugs studied. This, despite the effect of SU on HbA1c being somewhat smaller. Possible explanations for this 

observation may include the low cost of SU, the availability of a metformin-SU pill (24) and the option of once-a-day 

dosing. Additionally, SU and TZD patients had significantly lower availability of BMI measurements during the 

follow-up period. Possible explanations for this are that when GLP-1 or DPP-4 treatments are prescribed, either the 

physician or the patient is more likely to have been concerned with the BMI, thus measures it more frequently; or that 



  

costs of these drugs tend to be lower and would be more frequently prescribed to patients with a lower socioeconomic 

state, which tend to be less well followed up on. 

GLP-1 agonists are prescribed significantly more to women. Difference between men and women response to GLP-1 

was reported in 2005 (25) and a study from 2013 found that the effect of one such GLP-1 agonist, exanatide, was 

larger in women (26). All patient in our study were treated with GLP-1 after 2005 and 58% of them treated after 2013, 

suggesting physicians may have considered this evidence when prescribing GLP-1. Also, patients on GLP-1 are 

typically younger than patients on other drug classes, in line with an observation made by others (27). Finally, patients 

with higher BMI tend to be prescribed GLP-1, and this is likely due to its known positive effect on weight (28,29).  

TZD is the only class to maintain HbA1c at a stable level in six and twelve months, whereas HbA1c levels are 

increased over time in the other studied classes. A gradual weaning of the effect of SU on HbA1c levels had been 

previously described (13). 

While we found good correspondence between standardization and IPW estimates in most of our analyses, the two 

differ significantly on BMI predictions for GLP-1. We suspect that the IPW corrections in this case were more 

susceptible to small sample size and should be re-evaluated with larger cohorts.  

The estimates of HbA1c (8) included in the meta-analysis (MCT) we used for reference were higher than our EHR-

based inference. We note that we predicted HbA1c in exact periods, while the MCT method combined heterogeneous 

time point measurements across the different clinical trials, some listed as having up to five years of follow-up. This 

may suggest that the meta-analysis captured later stages in the progression of T2DM, characterized by higher HbA1c 

levels (30).  

As demonstrated by our analysis, as well as by others (31), EHR data can support causal inference and allows 

replication of clinical trial results. The advantages of this approach in terms of the labor and costs required to expand 

evidence-based medicine are clear. As the availability of EHR data increases and the many theoretical and technical 

challenges associated with detecting and correcting for confounders are addressed, we expect causal inference based 

on observational data to become more widely used. 
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Tables and Figures 



  

Table 1. Descriptive statistics of patients on T2DM second line drug classes. 

Drug class Number 

of patients 

Number of censored 

patients * 

Average 

age † 

% females * % of patients with 

missing follow-up 

BMI values* 

SU 14,967 2,788 (18.6%, -) 62.5 (2e-43) 48.0%, (-) 0.45% (8e-6) 

TZD 3,725 920 (24.7%, 9e-4) 61.7 (-) 45.6%, (-) 0.60% (2e-101) 

GLP-1 1,019 298 (29.2%, 4e-7) 55.6 (4e-57) 64.0%, (2e-23) 0.34% (-) 

DPP-4 5,387 1,687 (31.3%, 3e-62) 60.4 (2e-20) 50.5%, (0.003) 0.32% (-) 

 

* Hypergeometric probability. Missing entries (-) are not significant with FDR<0.05 

† Wilcoxon ranked sum test. Missing entries (-) are not significant with FDR<0.05 

 

 

Figure 1. Predicted and observed HbA1c levels using standardization adjusting for either a comprehensive set of 

confounders (Left panel) or a set of confounders provided by a domain expert (Right panel). X marks indicate the 

actual measurements of patients at baseline (before second-line treatment), after six and twelve months. Black dots 

(with error bars) represent the counterfactual predictions and 95% confidence intervals, supposing all patients were 

treated with that drug class. The results of the Bayesian mixed-treatment comparison meta-analysis by McIntosh et. 

al (7,8) are marked MTC. 



  

 
Figure 2. Predicted and observed BMI levels using standardization adjusting for either a comprehensive set of 

confounders (Left panel) or a set of confounders provided by a domain expert (Right panel). X marks indicate the 

actual measurements of patients at baseline (before second-line treatment), after 6 and 12 months. Black dots (with 

error bars) represent the counterfactual predictions and 95% confidence intervals, supposing all patients were treated 

with that drug class. 

 

  



  

Appendix: Supporting Tables and Figures 

Table S1. Drugs included in the compared drug classes. Missing drugs like the TZD drug lobeglitazone or GLP-1 

drugs lixisenatide and dulaglutide were not prescribed to any patient in our data.  

Drug class Active ingredient 

Sulfonylureas 

Glimepiride 

Glipizide 

Chlorpropamide 

Glyburide 

Glyclazide 

Tolazamide 

Tolbutamide 

Acetohexamide 

Thiazolidinediones 

Pioglitazone 

Rosiglitazone 

Troglitazone 

DPP-4 

Sitagliptin 

Saxagliptin 

Linagliptin 

Alogliptin 

GLP-1 

Exenatide 

Liraglutide  

Albiglutide 

 

Table S2. Selected confounders for HbA1c by domain expertise and literature (6),(13) 

Confounder category Confounder name 

Demographics 
Gender 

Age 

Vitals 
BMI 

Diastolic and systolic blood pressure 

Prior conditions 

Dementia or Alzheimer’s disease (CCS category) 

Coronary or atherosclerosis condition (CCS category) 

Ischemic heart disease 

Diabetes neuropathy 

Diabetes retinopathy 

Diabetes nephropathy 

Myocardial infarction 

Cardiac arrest  

Palliative care  

History of noncompliance with medical treatment 

Bed confinement 

Syncope 

Dizziness 



  

Irritable colon / Irritable bowel syndrome (CCS category) 

Osteoporosis 

Hypertension 

Hyperlipidemia 

Hyperglycemia 

Lab values 

Baseline HbA1c measurement before second line prescription 

Creatinine in blood 

Total cholesterol and HDL cholesterol in blood 

Triglycerides in blood 

Albumin and microalbumin in urine 

Protein in blood 

Duration of T2DM 

Time to events 
Duration of metformin use 

# of days between last HbA1c measurement and second line prescription 

  

Table S3. Selected confounders for BMI by a domain expert 

Confounder 

category 

Confounder name 

Demographics 
Gender 

Age 

Vitals BMI 

Prior conditions 
Concomitant SSRI, SNRI or tricyclic antidepressants 

Bariatric surgery 

Lab values TSH (blood) 

  

Table S4. Pearson correlations (ρ) between actual and inferred HbA1c measurements. P-value<e-36 for all 

comparisons. 

Drug class 

Standardization, 

comprehensive set 

Standardization, domain 

expert set 

6 

months 

12 months 6 months 12 months 

SU 0.43 0.42 0.34 0.34 

TZD 0.50 0.48 0.45 0.43 

GLP-1 0.56 0.52 0.47 0.46 

DPP-4 0.44 0.41 0.33 0.32 

 

Table S5. Inferred HbA1c levels in % (95% confidence intervals) for each drug class. 

Drug 

class 
Baseline 

Standardization, 

comprehensive 

set 

Standardization, 

domain expert 

IPW, 

comprehensive 

set 

IPW,  

domain expert 



  

6 

months 

12 

months 

6 

months 

12 

months 

6 

months 

12 

months 

6 

months 

12 

months 

SU 7.7 6.92 

[6.90, 

6.94] 

7.02 

[7.00, 

7.04] 

6.92 

[6.90, 

6.94] 

7.03 

[7.00, 

7.05] 

6.95 

[6.92, 

6.98] 

7.06 

[7.03, 

7.08] 

6.97 

[6.94, 

6.99] 

7.08 

[7.05, 

7.10] 

TZD 7.3 6.83 

[6.79, 

6.87] 

6.87 

[6.83, 

6.90] 

6.87 

[6.83, 

6.91] 

6.89 

[6.84, 

6.93] 

6.87 

[6.79, 

6.94] 

6.94 

[6.83, 

7.04] 

6.93 

[6.87, 

6.99] 

6.96 

[6.88, 

7.05] 

GLP-1 7.2 6.79 

[6.72, 

6.86] 

6.85 

[6.78, 

6.92] 

6.77 

[6.69, 

6.84] 

6.81 

[6.72, 

6.91] 

6.86 

[6.76, 

6.97] 

6.94 

[6.81, 

7.07] 

6.90 

[6.80, 

7.00] 

6.97 

[6.85, 

7.09] 

DPP-4 7.5 6.87 

[6.83, 

6.90] 

6.93 

[6.89, 

6.97] 

6.84 

[6.80, 

6.87] 

6.91 

[6.87, 

6.94] 

6.90 

[6.86, 

6.94] 

6.98 

[6.92, 

7.03] 

6.89 

[6.84, 

6.93] 

6.97 

[6.93, 

7.01] 

 

Table S6. Inferred HbA1c differences between drug classes (Compared drug class serves as baseline in each row). 

Significant comparisons appear in bold. 

Compared 

drug class 

Drug 

class 

HbA1c of compared drug class relative to drug class (p-values *) 

Standardization, 

comprehensive set 

Standardization, 

domain expert 

IPW, 

comprehensive set 

IPW,  

domain expert 

6 

months 

12 

months 

6 

months 

12 

months 

6 

months 

12 

months 

6 

months 

12 

months 

SU TZD -0.09 

(2e-4) 

-0.16 

(2e-12) 

-0.05 

(0.01) 

-0.14 

(2e-9) 

-0.08 

(0.02) 

-0.12 -0.03 -0.11 

(0.009) 

SU GLP-1 -0.13 

(6e-4) 

-0.17  

(6e-6) 

-0.16 

(e-4) 

-0.21 

(4e-5) 

-0.09 -0.11 -0.07 -0.11 

SU DPP-4 -0.05 -0.09  

(3e-5) 

-0.09 

(e-5) 

-0.12 

(5e-10) 

-0.05 -0.08 

(0.001) 

-0.08 

(2e-4) 

-0.11 

(2e-4) 

TZD GLP-1 -0.04 -0.02 -0.10 

(0.01) 

-0.07 -0.00 0.01 -0.03 0.01 

TZD DPP-4 0.04 0.07 

(0.009) 

-0.03 0.02 0.04 0.04 -0.05 0.00 

GLP-1 DPP-4 0.08 0.08 0.07 0.09 0.04 0.03 -0.01 -0.01 

 

* Significant p-values after multiple hypothesis correction (false discovery rate= 0.05)  

 

Table S7. Inferred BMI (95% confidence intervals) for each drug class. 

 

Drug 

class 
Baseline 

Standardization, 

comprehensive set 

Standardization, 

domain expert 

IPW, 

comprehensive set 

IPW,  

domain expert 

6 

months 

12 

months 

6 

months 

12 

months 

6 

months 

12 

months 

6 

months 

12 

months 

SU 33.7 33.8 

[33.6, 

33.9] 

33.7 

[33.6, 

33.9] 

33.8 

[33.7, 

33.9] 

33.7 

[33.6, 

33.9] 

33.9 

[33.7, 

34.2] 

33.9 

[33.6, 

34.1] 

33.8 

[33.7, 

33.9] 

33.8 

[33.6, 

33.9] 

TZD 33.8 34.0 

[33.6, 

34.3] 

34.0 

[33.7, 

34.3] 

34.2 

[33.9, 

34.4] 

34.2 

[33.9, 

34.5] 

33.5 

[32.9, 

34.1] 

33.6 

[33.0, 

34.2] 

34.0 

[33.7, 

34.3] 

34.0 

[33.7, 

34.3] 



  

GLP-1 37.4 33.8 

[33.4, 

34.2] 

33.7 

[33.2, 

34.2] 

33.5 

[33.2, 

33.9] 

33.4 

[33.0, 

33.8] 

36.0 

[35.4, 

36.6] 

35.9 

[35.2, 

36.5] 

35.5 

[35.0, 

36.0] 

35.3 

[34.9, 

35.8] 

DPP-4 33.9 33.4 

[33.2, 

33.6] 

33.4 

[33.1, 

33.6] 

33.4 

[33.2, 

33.5] 

33.3 

[33.1, 

33.4] 

33.5 

[33.2, 

33.8] 

33.4 

[33.1, 

33.7] 

33.3 

[33.1, 

33.5] 

33.2 

[33.0, 

33.4] 

 

Table S8. Inferred BMI differences between drug classes.  

Compared 

drug class 

Drug 

class 

BMI of compared drug class relative to drug class (*) 

Standardization, 

comprehensive set 

Standardization, 

domain expert 

IPW, 

comprehensive set 

IPW,  

domain expert 

6 

months 

12 

months 

6 

months 

12 

months 

6 

months 

12 

months 

6 

months 

12 

months 

SU TZD 0.16 0.25 0.35 

(0.01) 

0.43 

(0.005) 

-0.43 -0.27 0.15 0.24 

SU GLP-1 0.04 -0.01 -0.27 -0.33 2.05  

(4e-10) 

1.99  

(4e-8) 

1.67 

(5e-11) 

1.58 

(e-11) 

SU DPP-4 -0.37 

(0.004) 

-0.37 

(0.007) 

-0.45 

(e-9) 

-0.49 

(2e-11) 

-0.45 

(0.02) 

-0.46 

(0.01) 

-0.47 

(3e-8) 

-0.53 

(6e-8) 

TZD GLP-1 -0.12 -0.26 -0.62 

(0.002) 

-0.77 

(8e-4) 

2.48 

(3e-9) 

2.26 

(e-6) 

1.51 

(4e-7) 

1.34 

(6e-6) 

TZD DPP-4 -0.53 

(0.01) 

-0.61  

(4e-4) 

-0.80 

(7e-8) 

-0.93 

(e-7) 

-0.03 -0.19 -0.63 

(5e-4) 

-0.77 

(e-5) 

GLP-1 DPP-4 -0.41 -0.35 -0.18 -0.16 -2.50  

(7e-14) 

-2.45  

(e-11) 

-2.14 

(9e-15) 

-2.11 

(3e-19) 

 

* In parentheses, significant p-values after multiple hypothesis correction (false discovery rate= 0.05) 



  

 

Figure S1: Distribution of the time difference between last baseline HbA1c measurement and initiation of second-

line treatment (days). 



  

 

Figure S2: Predicted and observed HbA1c levels using inverse probability weighting adjusting for either a 

comprehensive set of confounders (Left panel) or a set of confounders provided by a domain expert (Right panel). X 

marks indicate the actual measurements of patients at baseline (before second-line treatment), after six and twelve 

months. Black dots (with error bars) represent the counterfactual predictions and 95% confidence intervals, supposing 

all patients were treated with that drug class. The results of the Bayesian mixed-treatment comparison meta-analysis 

by McIntosh et. al (8) are marked MTC. 



  

 

Figure S3: Distribution of the time difference between last BMI measurement and initiation of second-line treatment 

(days). 



  

 

Figure S4: Predicted and observed BMI levels using inverse probability weighting adjusting for either a 

comprehensive set of confounders (Left panel) or a set of confounders provided by a domain expert (Right panel). X 

marks indicate the actual measurements of patients at baseline (before second-line treatment), after six and twelve 

months. Black dots (with error bars) represent the counterfactual predictions and 95% confidence intervals, supposing 

all patients were treated with that drug class 
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