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Abstract 

 

(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) is known as a dual specific 

phosphatase 1/6 or MAPK inhibitor. However, its precise anti-lung cancer mechanism remains unknown. In this 

study, the effects of BCI on cell viability were investigated in the non-small cell lung cancer cell lines NCI-

H1299, A549, and NCI-H460. We confirmed that BCI significantly inhibited the cell viability of NCI-H1299 

compared to those of NCI-H460 and A549 cells. The anti-cancer effects of BCI were evaluated by MTS assay, 

annexin V-fluorescein isothiocyanate/propidium iodide staining, cell cycle analysis, reverse transcription-PCR, 

western blotting, and JC-1 staining in NCI-H1299 cells. BCI induced cellular morphological changes and 

inhibited viability of NCI-H1299 cells in a dose-dependent manner. BCI enhanced Bax expression and induced 

processing of caspase-9, caspase-3, and poly (ADP-ribose) polymerase as well as the release of cytochrome c 

from the mitochondria into the cytosol. BCI also down-regulated Bcl-2 expression but enhanced Bax expression 

in a dose-dependent manner in NCI-H1299 cells. In addition, BCI did not modulate death receptor expression or 

the extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-

H1299 cells. On the basis of these results, we conclude that BCI induces apoptosis through a mediated intrinsic 

pathway, but not extrinsic pathway in NCI-H1299 cells. These results suggest that BCI can be used as a 

therapeutic agent in lung cancer. 
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1 Introduction 

A large number of people die from lung cancer worldwide.1 Particularly, among patients with lung cancer, 

approximately 75% die from non-small cell lung cancer (NSCLC)2 and most are diagnosed at advanced, 

inoperable stages.3 Although surgery and chemotherapeutics can be employed, most patients with lung cancer 

eventually die. Therefore, new chemotherapeutic agents are needed to prolong the survival of patients with 

NSCLC.4 

A tumor is a disease state characterized by uncontrolled cell proliferation and loss of apoptosis. Apoptosis is a 

genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of 

physiological and pathological stimuli. There are distinct mechanisms that execute apoptosis according to 

various apoptotic stimuli. Apoptosis can be induced by two major pathways: the intrinsic pathway 

(mitochondria-dependent pathway) and extrinsic pathway (death receptor-dependent pathway).4 5 To maintain 

the balance between cell proliferation and death, homeostasis and apoptosis are programmed by our body 

system. The features of apoptosis are cell shrinkage and chromatin condensation, among others. The apoptotic 

process involves a cascade of events that inactivate critical survival pathways in multicellular organisms.  

Inhibition of apoptosis can prevent physiological cell death, which leads to the development and progression of 

tumor malignancy.6 7 

Recent studies have revealed apoptosis as an ideal method for eliminating cancer cells.8 However, most 

cancer cells avoid apoptosis through genetic or morphological modifications. Defects in the apoptosis 

machinery provide a survival advantage to cancer cells and confer resistance of cancer cells to current 

anticancer therapies. Targeting critical apoptosis regulators is an attractive new cancer therapeutic strategy.9 

Therefore, searching for agents that trigger apoptosis of tumor cells is a promising strategy in anti-cancer drug 

discovery.10 

Many chemotherapeutic agents induce mitochondria-targeted apoptosis. The mitochondria-dependent 

(intrinsic) pathway is activated from inside the cell by severe cell stress, such as DNA or cytoskeletal damage, 

decreasing mitochondrial membrane potential, and transcription or post-translation activation of BH3-only 

proapoptotic B-cell leukemia/lymphoma 2 (Bcl-2) family proteins.11 The decreasing membrane potential 

induces the release of apoptotic proteins, including cytochrome c, from the mitochondria into the cytosol.12 

Cytochrome c assembles with apoptotic protease-activating factor-1 (Apaf-1) to activate caspase 9. In turn, this 

caspase activates the effector caspases 3, 6, and 7 to carry out apoptosis.11 

In this study, we assessed the effects of (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one 
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(BCI), which is known as a dual specific phosphatase 1/6 or MAPK inhibitor and chemotherapeutic agent, on 

human lung cancer cells. We demonstrated the effects of BCI on apoptosis through the intrinsic pathway in 

NCI-H1299 cells.  

2 Materials and methods 

2.1 Reagents and antibodies  

CellTiter 96 AQueous One Solution Cell Proliferation Assay Reagent [MTS, 3-(4, 5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] was purchased from Promega (Madison, WI, USA). 

Propidium iodide (PI) was purchased from Sigma-Aldrich (St. Louis, MO, USA). NE-PER Nuclear and 

Cytoplasmic Extraction Reagents were purchased from Pierce (Rockford, IL, USA). Antibodies specific to 

PARP, caspase-3, caspase-8, caspase-9, p53, Bcl-2, Bcl-xL, Bax, Bid, pRb, p-pRb, and cytochrome C were 

purchased from Cell Signaling Technology (Beverly, MA, USA). The anti-rabbit IgG horseradish peroxidase 

(HRP)-conjugated secondary antibody and anti-mouse IgG HRP-conjugated secondary antibody were purchased 

from Millipore (Billerica, MA, USA). Antibodies specific to p27, p21, and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). JC-1 

(5,50,6,60 -tetrachloro-1,10,3,30-tetraethyl benzimidazolycarbocyanine chloride) was purchased from Enzo 

(Farmingdale, NY, USA). General-caspase inhibitor Z-VAD-FMK was purchased from R&D Systems 

(Minneapolis, MN, USA). The FITC-Annexin V Apoptosis Detection Kit I was purchased from BD Biosciences 

(Franklin Lakes, NJ, USA). 

 

2.2 Cell culture  

Human NSCLC cell lines, including human lung adenocarcinoma cell line A549, human lung adenocarcinoma 

cell line NCI-H1299, and human large cell lung carcinoma cell line NCI-H460, were purchased from the 

American Type Culture Collection (Manassas, VA, USA). Cells were cultured in RPMI medium (Welgene 

Incorporation, Daegu, Korea) containing 10% (v/v) heat-inactivated fetal bovine serum (Hyclone, Logan, UT, 

USA). Cells were incubated at 37°C in an atmosphere of 5% CO2/95% air with saturated humidity. 

 

2.3 Cell viability assays  
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Cell viability was assessed by the MTS dye reduction assay, which measures mitochondrial respiratory function. 

Lung cancer cells were seeded (1 × 104 cells/mL) in 100 μL medium/well in 96-well plates, incubated overnight, 

and treated with various concentrations of BCI, as described in the figure legends, for 24 h. Cell viability was 

calculated by assessing MTS metabolism, as previously reported.38 Briefly, media samples (100 μL) were 

removed and incubated with 100 μL of MTS-PMS mix solution for 1 h at 37°C. Optical absorbance was 

measured at 492 nm using an ELISA reader (Apollo LB 9110, Berthold Technologies GmbH & Co. KG, Bad 

Wilbad, Germany). 

 

2.4 Annexin V and propidium iodide staining 

 NCI-H1299 lung cancer cells (1.5 × 105 cells/mL) were seeded into 60-mm culture dishes and incubated 

overnight. Cells were treated with BCI for 24 h, harvested using trypsin-EDTA, and washed with PBS. Annexin 

V and PI staining were performed using the FITC-Annexin V Apoptosis Detection Kit I according to the 

manufacturer’s instructions. Data were analyzed by flow cytometry, using a FACSCalibur instrument and 

CellQuest software (BD Biosciences). 

 

2.5 Cell cycle analyses by flow cytometry  

The cell cycle was analyzed by PI staining and flow cytometry. H1299 cells (1.5 × 105 cells/mL) were seeded 

into 60-mm culture dishes and treated with various concentrations of BCI for 24 h. Cells were harvested with 

trypsin-EDTA and fixed with 80% ethanol. Next, the cells were washed twice with cold PBS and centrifuged, 

after which the resulting supernatants were discarded. The pellet was resuspended and stained with PBS 

containing 50 μg/mL PI and 100 μg/mL RNase A for 20 min in the dark. DNA content was analyzed by flow 

cytometry using a FACSCalibur instrument and CellQuest software.  

 

2.6 Western blot analysis  

Cells were treated with the specified concentrations of BCI for 24 h, harvested, washed with PBS, and 

recentrifuged (1,890 ×g, 5 min, 4°C). The resulting cell pellets were resuspended in lysis buffer containing 50 

mM Tris (pH 7.4), 1.5 M sodium chloride, 1 mM EDTA, 1% NP-40, 0.25% sodium deoxycholate, 0.1% sodium 
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dodecyl sulfate (SDS), and a protease inhibitor cocktail. The cell lysates were incubated on ice for 1 h and 

clarified by centrifugation at 17,010 ×g for 30 min at 4°C. Protein content was quantified by the Bradford assay 

(Bio-Rad, Hercules, CA, USA), using an UV spectrophotometer. Cell lysates were separated by 12–15% SDS 

polyacrylamide gel electrophoresis. Proteins were transferred onto polyvinylidene difluoride membranes 

(Millipore, Billerica, MA, USA), which were blocked in 5% non-fat dried milk dissolved in Tris-buffered saline 

containing Tween-20 (2.7 M NaCl, 53.65 mM KCl, 1 M Tris-HCl, pH 7.4, 0.1% Tween-20) for 1 h at room 

temperature. The membranes were incubated overnight at 4°C with specific primary antibodies. After washing, 

the membranes were incubated with the secondary antibodies (HRP-conjugated anti-rabbit or anti-mouse IgG) 

for 1 h at room temperature. After washing, the blots were analyzed using West-queen and a western blot 

detection system (iNtRON Biotechnology, SungNam, South Korea). 

 

2.7 Nuclear and cytoplasmic fractionation  

The BCI-treated cells were collected and fractionated using NE-PER Nuclear and Cytoplasmic Extraction 

Reagents (Thermo Fisher Scientific Inc., Waltham, MA, USA) according to the manufacturer’s protocol. 

 

2.8 Analysis of mitochondrial membrane potential (MMP) 

MMP (Δψm) was evaluated by JC-1 staining and flow cytometry. NCI-H1299 cells were seeded into 60-mm 

culture dishes (1.5 × 105 cells/mL) and treated with various concentrations of BCI. Cells were harvested with 

trypsin-EDTA and transferred into 1.5-mL tubes. JC-1 (5 μg/mL) was added to the cells and mixed until it was 

completely dissolved, after which the cells were incubated in the dark for 10 min at 37°C in an incubator. The 

cells were centrifuged (300 ×g, 5 min, 4°C), washed twice with PBS, and resuspended in 200 μL PBS. The 

solutions were divided using a FACS Calibur instrument and analyzed by Cell Quest software. The protocol was 

performed in minimal light. 

 

2.9 Reverse-transcription polymerase chain reaction (RT-PCR) 

Cells treated with CTS were harvested. RNA was extracted using an easy-BLUETM Total RNA Extraction Kit 
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(iNtRon Biotechnology, SungNam, Korea) according to the manufacturer’s instructions. cDNA products were 

obtained using M-MuLV reverse transcriptase (New England Biolabs, Ipswich, MA, USA). Each sample 

contained one of the following primer sets: FAS, 5′-AGG GAT TGG AAT TGA GGA AG-3′ (forward), 5′-ATG 

GGC TTT GTC TGT GTA CT-3′ (reverse); FASL, 5′-GCA GCC CTT GAA TTA CCC AT-3′ (forward), 5′-

CAG AGG TTG GAC AGG GAA GAA-3′ (reverse); TRAIL, 5′-GTC TCT CTG TGT GGC TGT AA-3′ 

(forward), 5′-TGT TGC TTC TTC CTC TGG CT-3′ (reverse); GAPDH, 5′-GGC TGC TTT TAA CTC TGG 

TA-3′ (forward), 5′-TGG AAG ATG GTG ATG GGA TT-3′ (reverse); DR5, 5′-CAG AGG GAT GGT CAA 

GGT CG-3′ (forward), 5′-TGA TGA TGC CTG ATT CTT TGT GG-3′ (reverse); DR6, 5′-TGC AGT ATC 

CGG AAA AGC TC-3′ (forward), 5′-TCT GGG TTG GAG TCA TGG AT-3′ (reverse); DR3, 5′-CTA CTG 

CCA ACC ATG CCT AG-3′ (forward), 5′-TCG CCA TGT TCA TAG AAG CC-3′ (reverse); FADD, 5′-GGG 

GAA AGA TTG GAG AAG GC-3′ forward), 5′-CAG ATT CTC AGT GAC TCC CG-3′ (reverse); TRADD, 5′-

CTA TTG CTG AAC CCC TGT CC-3′ (forward), 5′-AGA ATC CCC AAT GAT GCA CC-3′ (reverse); 

 

2.10 Caspase inhibitor assay 

The apoptosis mechanism was analyzed using caspase inhibitors. NCI-H1299 cells (1.5 × 10５cell/mL) were 

seeded into each well of a 60-mm cell culture dishes and treated with different 20 μM pan caspase inhibitors. 

After 3 h, 5 μM BCI was added to each plate. After 24 h, the cells were harvested and used in western blot 

analyses. 

3 Results 

3.1 BCI dose-dependently inhibits tumorigenic proliferation of H1299 lung cancer cells 

 The effect of BCI on the viability of several cell lines was determined by the MTS assay. We calculated the 

viability of BCI-treated cells compared to untreated control cells. Selected lung cancer cell lines (NCI-H1299, 

NCI-H460, and A549) were treated with various concentrations and for different time periods. As shown in Fig 

1A, the viability of lung cancer cells was decreased in a dose- and time-dependent manner by BCI. The viability 

of NCI-H460 and NCI-H460 cells was slightly decreased by BCI (Fig 1). A549 cell viability was decreased by 

BCI for 24 h, but less than 48 h. The A549 cells were affected in a time- and dose-dependent manner, but these 

effects were greater in NCI-H1299 cells (Fig 1A–C). A549 and NCI-H460 cells were slightly inhibited by a 

high concentration of BCI (Fig 1B, C). Since BCI showed large effects on NCI-H1299 cells at 24 h of treatment, 

we used these cells in subsequent experiments. Thus, we examined the mechanism underlying apoptosis induced 
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by BCI in NCI-H1299 lung cancer cells. 

 

3.2 BCI induces morphological changes and apoptosis in NCI-H1299 cells 

 Features of apoptosis include membrane shrinkage, nuclear fragmentation, and blebbing.13 Therefore, we 

evaluated changes to the cell membrane. Phase-contrast microscopy showed that BCI induced cell death and 

morphological changes in NCI-H1299 cells in a dose-dependent manner after a 24-h treatment (Fig 2A). When 

apoptosis is induced, the lipid phosphatidyl serine (PS) was translocated from the inner to outer cell membrane 

via a flip-flop movement. Annexin V, a calcium-dependent protein, binds PS with high affinity.7 Therefore, we 

performed annexin V-FITC/PI staining to evaluate changes in the orientation of PS. Annexin V-FITC/PI 

staining is generally used to detect apoptosis. NCI-H1299 cells treated with 1.25–5 μM BCI for 24 h showed a 

dramatically increased population of apoptotic cells compared to control cells, indicating that BCI induced 

apoptosis (Fig 2B). Thus, BCI may induce apoptosis in NCI-H1299 cells.  

 

3.3 BCI increases sub-G1 population 

 Next, we induced cell cycle progression to investigate the effects of BCI on cell cycle regulation. Cell cycle 

dysregulation is a major feature of cancer cells. Therefore, we examined whether BCI could regulate cell cycle 

in NCI-H1299 cells. To measure the effects of BCI on cell cycle progression, we assessed cell cycle progression 

by flow cytometry. The sub-G1 population contains hypodiploid fragmented DNA, which is a distinguishing 

feature of apoptosis. As shown in Fig 3A–B, compared to non-treated control cells, BCI-treated NCI-H1299 

cells showed increased accumulation in subG1 phase. However, expression of cell cycle-related factors such as 

cyclin D1, cyclin E, and cyclin A were not significantly changed by BCI treatment in NCI-H1299 cells (Fig 3C). 

As shown in Fig 3D, p21 expression level was dose-dependently decreased by BCI. In contrast, p27 expression 

level was slightly increased by BCI. Since NCI-H1299 cells are p53 gene knock-out cells, p53 expression level 

was not detected by western blotting. In summary, these results show that BCI dramatically increased subG1 

populations, but did not significantly increase cell proportion in the G0/G1, S, and G2 phases. 

 

3.4 BCI activates the intrinsic pathway by regulating the Bcl-2 family 

 Apoptosis is induced through two distinct signaling pathways; the death receptor pathway is typically triggered 

by ligation of death receptors such as Fas or tumor necrosis factor receptor, which recruits Fas-associated 

protein with death domain (FADD) and procaspase-8 to form a death-inducing signaling complex, leading to 
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caspase-8 proteolytic activation. Activated caspase-8 can not only directly activate downstream caspase-3, but 

can also cleave Bid to truncated Bid (tBid), which in turn activates the mitochondrial pathway.14 Consistent with 

the results observed for caspase-8, BCI treatment did not affect the levels of DR3, DR5, DR6, FADD, TRAIL, 

TRADD, FasL, and Fas (Supplementary 1A). These data suggest that the extrinsic pathway is not involved in 

BCI-induced apoptosis. Next, we investigated whether the intrinsic pathway is involved in BCI-induced 

apoptosis. Mitochondrial dysfunction is the most important factor in the intrinsic pathway. The intrinsic 

pathway involves release of mitochondrial cytochrome C into the cytosol. Once released, cytochrome c 

combines with apoptotic protease activating factor 1 (Apaf-1) and procaspase-9 to form the apoptosome in the 

presence of ATP, resulting in activation of caspase-9 and caspase-3.15 To confirm that Bcl-2 family members 

play important roles in controlling the release of cytochrome c from the mitochondria, we performed western 

blotting in NCI-H1299 cells. Upon apoptotic signals, pro-apoptotic protein BAX was activated; in contrast, anti-

apoptotic Bcl-2 was inhibited by BCI treatment in NCI-H1299 cells, but anti-apoptotic protein Bcl-xL was not 

affected (Fig 4C). Imbalance in the expression of pro- and anti-apoptotic proteins is associated with cell death.16 

Since collapse of mitochondria membrane potential (MMP) is a characteristic feature of the intrinsic pathway, 

the effect of BCI on the MMP level was also examined by flow cytometry of JC-1-stained NCI-H1299 cells. JC-

1 aggregation is a feature of healthy cells, whereas JC-1 monomers are a feature of apoptotic cells. As shown in 

Fig 4A, levels of the MMP in NCI-H1299 cells treated with various concentrations of BCI were significantly 

right-shifted compared to that in control cells. Thus, the levels of the MMP were decreased by BCI treatment in 

NCI-H1299 cells. To further confirm the release of mitochondrial cytochrome c into the cytosol, we evaluated 

cytochrome c by fractionation and western blotting in NCI-H1299 cells. As shown in Fig 4B, cytochrome c was 

released into the cytosol. Taken together, these results indicate that BCI induced apoptosis via the intrinsic 

pathway. 

 

3.5 Effects of BCI on apoptosis related-factors in NCI-H1299 cells 

To further investigate the apoptosis induced by BCI, we performed western blotting to evaluate apoptosis-

related factors. A family of cysteine proteases known as caspases mediates apoptosis in mammalian cells.17 To 

maintain the apoptotic program under control, caspases were expressed in cells as inactive pro-caspases. At the 

time of apoptosis, initiator caspases such as caspase-9 and caspase-8 can be activated by cleavage. Furthermore, 

they cleave the precursor forms of effector caspases such as caspase-6, caspase-7, and caspase-3.18,19 In Fig 5A, 

caspase-9, which forms assembled apoptosome with Apaf-1 and cytochrome c, was cleaved by BCI in NCI-
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H1299 cells. Additionally, BCI treatment increased caspase-3 cleavage, followed by subsequent cleavage of 

poly (ADP-ribose) polymerase (PARP) (Fig 5A). Cleaved PARP is a major characteristic of programmed cell 

death.17 To confirm caspase-dependent apoptosis, we performed western blot analysis by Z-VAD-FMK, a pan 

caspase inhibitor. As shown in Fig 5B, pre-treatment with Z-VAD-FMK prevented BCI-induced cleavage of 

PARP and caspases such as caspase-3 and caspase-9. In summary, these results show that caspase-dependent 

apoptosis was induced by BCI.  

 

4 Discussion 

BCI is a cell-permeable cylohexylamino-indenone compound that acts as an allosteric inhibitor against 

substrate binding-induced MAPK phosphatase activity of DUSP 1/6. Extracellular signal-regulated kinase 

phosphorylation is enhanced in HeLa cells overexpressing human Dusp 1 and Dusp 6. BCI also blocked Dusp 6 

activity and enhanced fibroblast growth factor target gene expression in zebrafish embryos. In vitro studies 

supported a model in which BCI inhibits Dusp6 catalytic activation by ERK2 substrate binding. 20 However, it 

remains unclear how BCI induces apoptosis in lung cancer cells. Therefore, we evaluated the mechanism by 

which BCI induces apoptosis. 

The main purpose of our study was to confirm the anti-cancer effect and associated mechanisms of BCI in 

human lung cancer cells. In this study, we investigated the anti-cancer effects of BCI in NCI-H1299 cells. We 

found that BCI inhibited tumor growth by inducing apoptosis in NCI-H1299 cells in a dose-dependent manner, 

as well as caspase activation and PARP cleavage (Fig 2A, Fig 5A–B). As shown in Fig 1A–C, the results 

showed greater anti-proliferative effect of BCI against NCI-H1299 cells than against NCI-H460 and A549 cells. 

Thus, NCI-H1299 cells were used as an experimental cell line because BCI was more effective in NCI-H1299 

cells than in other cell lines. The present study evaluated the cytotoxic mechanism of BCI against NCI-H1299 

cells. 

Apoptosis can be induced by two major pathways: the intrinsic pathway or extrinsic pathway. The intrinsic 

pathway is induced by mitochondrial membrane permeabilization and cytochrome c release from the 

mitochondria into the cytosol.21,22 In the cytosol, cytochrome c was assembled into the apoptosome with Apaf-1 

and caspase-9. Thus, activated-caspase-9 is an effector caspase.23 The extrinsic pathway receives signals 

through the binding of extracellular receptor ligand to proapoptotic death receptors located on the cell surface.24 

Death receptors with ligand form a death-inducing signaling complex composed of death receptor, FADD, and 

caspase-8.25 These DISCs promote a downstream signaling cascade resulting in apoptosis.26-28 The imbalance 
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between anti-apoptotic proteins such as Bcl-xl and Bcl-2 and pro-apoptotic proteins such as BAX and Bad 

determines the fate of cells.29 Mitochondria play an important role in death signal amplification and transduction 

of the apoptotic response. An important role of mitochondria in apoptotic signaling is the translocation of 

cytochrome c from the mitochondrial intermembrane into the cytosol. Once cytochrome c is released, 

cytochrome c together with Apaf-1 activate caspase-9, and the latter then activates caspase-3.30 The release of 

cytochrome c and cytochrome c-mediated apoptosis is regulated by Bcl-2 family members such as Bcl-2 and 

Bax, which are important regulators. In response to a variety of anticancer drugs, Bax translocates to the 

mitochondria and binds to the mitochondria membrane, allowing the release of cytochrome c.31 However, Bcl-2 

prevents cytochrome c efflux by binding to the mitochondria membrane and forming a heterodimer with Bax, 

resulting in the neutralization of proapoptotic effects.32 Thus, the balance of Bcl-2 and Bax is important for 

determining cell fate, such as survival or death. We found that BCI treatment increased the ratio of Bax/Bcl-2. 

These results may be important in BCI-induced apoptosis. 

In this study, we found that the process of BCI-induced apoptosis involved activation of caspase-3 and 

caspase-9, and treatment with a pan caspase inhibitor markedly prevented the BCI-induced cell apoptotic effects. 

Therefore, our results demonstrate that BCI-induced apoptosis depends on the activation of caspases, 

particularly caspase-3 and caspase-9 (Fig 5B). However, BCI treatment did not promote caspase-8 or its 

upstream molecules such as FasL and Fas. Taken together, BCI activates apoptosis through the intrinsic 

pathway, but not the extrinsic pathway. Apoptosis and cell cycle arrest are considered major cause of cell 

proliferation inhibition.33 When cells divide, the G2/M phase contains more DNA than the G0/G1 phase. The 

cells in SubG1 phase have hypodiploid fragmented DNA, which is an important marker of apoptosis.34 Cyclins 

such as cyclin D, A, and E promote cell cycle progression. Moreover, each cyclin is involved in a specific phase 

of the cell cycle.35 PI is an intercalating agent that cannot penetrate cell membranes of living cells, but can 

penetrate cell membranes of dead cells to distinguish living cells from dead cells.36 Our results suggest that BCI 

treatment did not induce cell cycle arrest in NCI-H1299 cells. However, BCI treatment increased sub-G1 

populations in NCI-H1299 cells. To determine whether BCI induces cell death, we performed the annexin V-

FITC/PI staining method. When apoptosis occurs, a flip-flop of lipid molecules occurs on the surface of the cell, 

and annexin V binds to the cell surface to detect cell death. 37 BCI-treated cells showed significantly induced 

apoptosis compared to untreated cells.  

In conclusion, our results show that BCI has marked anti-cancer effects against lung cancer cells and 

increases subG1 populations in NCI-H1299 cells (Fig 3A–B). Our results revealed that BCI through the 
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imbalance of Bcl-2 family proteins such as Bcl-2, Bax, and MMP, leads to apoptosis via the intrinsic pathway 

(Fig 6). This is the first study to demonstrate the molecular mechanism of BCI-mediated inhibition of lung 

cancer cell proliferation. Thus, BCI shows potential as a therapeutic agent for human lung cancer. 
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Figure Legends 

 

Figure 1. Effects of BCI on viability in human NSCLC cell lines.  

Cytotoxic effects of BCI on several lung cancer cell lines; (A) NCI-H1299, (B) NCI-H460, (C) A549 cells. 

These cells were treated for 24-48 h with various concentration of BCI. Cell viability was determined by MTS 

assay. The data are presented as the mean standard deviation. (n = 3) *p < 0.05, **p < 0.01 versus negative 

control groups. 

 

Figure 2. Effects of BCI on apoptosis in NCI-H1299 lung cancer cells. 

(A) Microscopic images of NCI-H1299 cells treated with BCI for 24 h. The photographs were taken by phase-

contrast microscopy at a magnification of x100. BCI induces morphological changes in NCI-H1299 cells. (B) 

After treatment with the indicated concentration of BCI for 24 h, NCI-H1299 cells were stained with annexin V-

FITC/PI.  

Figure 3. Effects of BCI on cell cycle progression in NCI-H1299 lung cancer cells. 

The cells were treated with various concentration of BCI in NCI-H1299 cells. After treatment with 0–5 μM BCI 

for 24 h, cells were fixed and stained with propidium iodine (PI). (A) Cell cycle profiles of BCI-treated NCI-

H1299 cells. (B) The population of cells in various phases. (C) Western blots of cell cycle regulatory factors. 

GAPDH was used as an internal control. 

 

Figure 4. Effects of BCI on mitochondria membrane potential (MMP) in NCI-H1299 lung cancer cells.  

(A) Histogram profiles of JC-1 aggregation (FL-1, green) were obtained using flow cytometry. (B) Cytochrome 

C release was increased in a dose-dependent manner following BCI treatment. (C) Western blot analysis of the 

proapoptotic factors Bax and anti-apoptotic factors Bcl-xl and Bcl-2 in the NCI-H1299 cells following BCI 

treatment.  

 

Figure 5. Effects of BCI on apoptosis related-factors in NCI-H1299 cells. 
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NCI-H1299 cells were treated with BCI for 24 h. (A) Western blot of caspase 9, caspase 3, and poly (ADP-

ribose) polymerase (PARP). GAPDH was used as an internal control. (B) Effects of caspase inhibitors on 

western blot, in BCI treated NCI-H1299 cells. The cells were pretreated with the pan-caspase inhibitor Z-VAD-

FMK (20 μM) for 3 h. Next, the cells were treated with BCI for 24 h. 

 

Figure 6. Schematic representation of potential BCI-induced apoptotic pathway in NCI-H1299 cells.  

The arrows symbolize activation of the signal pathways; the closed lines symbolize repression of the signals. 
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