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Author Summary 

Molecular mechanisms of axon repulsion mediated by UNC-6/Netrin are not well understood. 

Inhibition of growth cone lamellipodial and filopodial protrusion is critical to repulsive axon 

guidance. Previous work identified a novel pathway involving Rac GTPases and the cytoskeletal 

interacting molecule UNC-33/CRMP required for UNC-6/Netrin-mediated inhibition of growth 

cone protrusion. In other systems, CRMP mediates growth cone collapse in response to 

semaphorin. Here we demonstrate a novel role of flavoprotein monooxygenases (FMOs) in 

repulsive axon guidance and inhibition of growth cone protrusion downstream of UNC-6/Netrin 

signaling and Rac GTPases. In Drosophila and vertebrates, the multidomain MICAL FMO 

mediates semaphorin-dependent growth cone collapse by direct oxidation and depolymerization 

of F-actin. The C. elegans genome does not encode a multidomain MICAL-like molecule, and 

we speculate that the C. elegans FMOs might have an equivalent role downstream of UNC-

6/Netrin signaling. Indeed, we show that EHBP-1, similar to the non-FMO portion of MICAL, 

also controls repulsive axon guidance and growth cone inhibition, suggesting that in C. elegans, 

the functions of the multidomain MICAL molecule might be distributed across different 

molecules. In sum, we show conservation of function of molecules involved in semaphorin 

growth cone collapse with inhibition of growth cone protrusion downstream of UNC-6/Netrin 

signaling. 
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Abstract 

The guidance cue UNC-6/Netrin regulates both attractive and repulsive axon guidance.  

Our previous work showed that in C. elegans, the attractive UNC-6/Netrin receptor UNC-

40/DCC stimulates growth cone protrusion, and that the repulsive receptor, an UNC-5/UNC-40 

heterodimer, inhibits growth cone protrusion. We have also shown that inhibition of growth cone 

protrusion downstream of the UNC-5/UNC-40 repulsive receptor involves Rac GTPases, the Rac 

GTP exchange factor UNC-73/Trio, and the cytoskeletal regulator UNC-33/CRMP, which 

mediates Semaphorin-induced growth cone collapse in other systems. The multidomain 

flavoprotein monooxygenase (FMO) MICAL also mediates growth cone collapse in response to 

Semaphorin by directly oxidizing F-actin, resulting in depolymerization. The C. elegans genome 

does not encode a multidomain MICAL-like molecule, but does encode five flavin 

monooxygenases (FMO-1, -2, -3, -4, and 5) and another molecule, EHBP-1, similar to the non-

FMO portion of MICAL. 

Here we show that FMO-1, FMO-4, FMO-5, and EHBP-1 may play a role in UNC-

6/Netrin directed repulsive guidance mediated through UNC-40 and UNC-5 receptors.  

Mutations in fmo-1, fmo-4, fmo-5, and ehbp-1 showed VD/DD axon guidance and branching 

defects, and variably enhanced unc-40 and unc-5 VD/DD guidance defects. Developing growth 

cones in vivo of fmo-1, fmo-4, fmo-5, and ehbp-1 mutants displayed excessive filopodial 

protrusion, and transgenic expression of FMO-5 inhibited growth cone protrusion. Mutations 

suppressed growth cone inhibition caused by activated UNC-40 and UNC-5 signaling, and 

activated Rac GTPase CED-10 and MIG-2, suggesting that these molecules are required 

downstream of UNC-6/Netrin receptors and Rac GTPases. From these studies, we conclude that 

FMO-1, FMO-4, FMO-5, and EHBP-1 represent new players downstream of UNC-6/Netrin 

receptors and Rac GTPases that inhibit growth cone filopodial protrusion in repulsive axon 

guidance. 
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Introduction 

The formation of neural circuits during development depends on the guidance of growing 

axons to their proper synaptic targets. This process relies on the growth cone, a dynamic actin 

based structure present at the tip of a growing axon. Growth cones contain a dynamic 

lamellipodial body ringed by filopodial protrusions, both important in guiding the axon to its 

target destination [1-4]. Guidance receptors present on the leading edge of the growth cone sense 

and respond to various extracellular guidance cues, which attract or repel axons enabling them to 

reach their proper target destination [5, 6].  

The secreted laminin-like guidance molecule UNC-6/Netrin mediates both axon 

attraction and axon repulsion and defines a dorsal-ventral guidance mechanism conserved from 

invertebrates to vertebrates [7-9]. Attractive or repulsive responses to UNC-6/Netrin depend on 

the receptors expressed on the growth cone. Homodimers of the UNC-6/Netrin receptor UNC-

40/DCC mediate attraction, and UNC-5-UNC-40 heterodimers or UNC-5 homodimers mediate 

repulsion [10-12]. 

In C. elegans, UNC-6/Netrin is secreted by the ventral cells and along with its receptors 

UNC-40 and UNC-5 is required for the dorsal ventral guidance of circumferential neurons and 

axons [8, 13, 14]. Previous studies of repelled VD growth cones in Netrin signaling mutants 

revealed a correlation between attractive axon guidance and stimulation of growth cone 

protrusion, and repulsive axon guidance and inhibition of growth cone protrusion [15].  For 

example, in unc-5 mutants, growth cones were larger and more protrusive, and often displayed 

little or no directed movement. This is consistent with observation that increased growth cone 

size was associated with decreased neurite growth length [16]. Conversely, constitutive 

activation of UNC-40/UNC-5 signaling in repelled VD growth cones led to smaller growth cones 

with severely reduced filopodial protrusion [15, 17]. Thus, directed growth cone repulsion away 

from UNC-6/Netrin requires a balance of pro- and anti-protrusive activities of the receptors 

UNC-40 and UNC-40-UNC-5, respectively, in the same growth cone [15].  

Genetic analysis has identified a cytoskeletal signaling pathway involved in stimulation 

of growth cone protrusion in response to the attractive UNC-40 signaling that includes CDC-42, 

the Rac-specific guanine nucleotide exchange factor TIAM-1, the Rac-like GTPases CED-10 and 

MIG-2, as well as the cytoskeletal regulators Arp2/3 and activators WAVE-1 and WASP-1, 

UNC-34/Enabled, and UNC-115/abLIM [18-23], consistent with findings in other systems [7]. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 28, 2017. ; https://doi.org/10.1101/131755doi: bioRxiv preprint 

https://doi.org/10.1101/131755


Mechanisms downstream of UNC-5 in axon repulsion are less well described, but the 

PH/MyTH4/FERM molecule MAX-1 and the SRC-1 tyrosine kinase have been implicated [24, 

25]. We delineated a new pathway downstream of UNC-5 required for its inhibitory effects on 

growth cone protrusion, involving the Rac GEF UNC-73/Trio, the Rac GTPases CED-10 and 

MIG-2, and the cytoskeletal-interacting molecule UNC-33/CRMP [17]. 

Collapsin response mediating proteins (CRMPs) were first identified as mediators of 

growth cone collapse in response to the Semaphorin family of guidance cues [26], and we have 

shown that UNC-33/CRMP inhibits growth cone protrusion in response to Netrin signaling [17]. 

This motivated us to consider other mediators of Semaphorin-induced growth cone collapse in 

Netrin signaling. In Drosophila, the large multidomain cytosolic protein MICAL (Molecule 

Interacting with CasL) is required for the repulsive motor axon guidance mediated by interaction 

of Semaphorin 1a and Plexin A [27, 28]. MICAL proteins are a class of flavoprotein 

monooxygenase enzymes that bind flavin adenine dinucleotide (FAD) and use the cofactor 

nicotinamide dinucleotide phosphate (NADPH) to facilitate oxidation-reduction (Redox) 

reactions [27]. MICAL regulates actin disassembly and growth cone collapse in response to 

semaphorin via direct redox interaction with F-actin [29, 30]. MICAL molecules from 

Drosophila to vertebrates have a conserved domain organization: and N-terminal flavin-adenine 

dinucleotide (FAD)-binding monooxygenase domain, followed by a calponin homology (CH) 

domain, a LIM domain, a proline-rich domain, and a coiled-coil ERM α-like motif [27, 31]. 

The C. elegans genome does not encode for a MICAL-like molecule with the conserved 

domain organization described above.  However, it does contain five flavin monooxygenase 

(fmo) genes similar to the Flavin monooxygenase domain of MICAL: fmo-1, fmo-2, fmo-3, fmo-4 

and fmo-5 [32]. Like MICAL, the C. elegans FMO molecules contain an N-terminal FAD 

binding domain and a C-terminal NADP or NADPH binding domain [27, 32]. The C. elegans 

gene most similar to the non-FMO portion of MICAL is the Eps-15 homology domain binding 

protein EHBP-1 [33], which contains a CH domain as does MICAL. 

In this work, we test the roles of the C. elegans FMOs and EHBP-1 in Netrin-mediated 

axon guidance and growth cone protrusion. We find that fmo-1, fmo-4, fmo-5 and ehbp-1 mutants 

display pathfinding defects of the dorsally-directed VD/DD motor neuron axons that are repelled 

by UNC-6/Netrin, and that they interact genetically with unc-40 and unc-5. We also find that VD 

growth cones in these mutants display increased filopodial protrusion, similar to mutants in 
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repulsive UNC-6/Netrin signaling (e.g. unc-5 mutants), and that transgenic expression of FMO-5 

inhibits growth cone protrusion, similar to constitutively-activated UNC-40 and UNC-5. We also 

show that FMO-1, FMO-4, FMO-5 and EHBP-1 are required for the growth cone inhibitory 

effects of activated UNC-5, UNC-40, and the Rac GTPases CED-10 and MIG-2. Together, these 

genetic analyses suggest that FMO-1, FMO-4, FMO-5, and EHBP-1 normally restrict growth 

cone protrusion, and that they might do so in UNC-6/Netrin-mediated growth cone repulsion.  
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Results 

fmo-1,4,5 and ehbp-1 affect VD/DD axon pathfinding.   

The C. elegans genome lacks an apparent homolog of MICAL. However, it contains five 

flavin monooxygenase genes (fmo-1,2,3,4,5) (Figure 1A) [32]. The C. elegans molecule most 

similar to the non-FMO portion of MICAL is EHBP-1, the homolog of the mammalian EH 

domain binding protein 1 (Ehbp1) protein [33]. We analyzed existing mutations in fmo genes and 

ehbp-1 (Figure 1B) for VD/DD axon guidance defects.  fmo-1(ok405) was a 1,301-bp deletion 

that removed part of exon 3 and all of exons 4, 5 and 6. fmo-2(ok2147) was a 1070-bp deletion 

that removed part of exon 4 and 5.fmo-4(ok294) was a 1490-bp deletion that removed all of 

exons 2, 3, 4 and 5. fmo-5(tm2438) is a 296-bp deletion which removes part of intron 3 and exon 

4. These deletions all affected one or both predicted enzymatic domains of the FMO molecules. 

fmo-3(gk184651) was a G to A substitution in the 3’ splice site of intron 6. ehbp-1(ok2140) is a 

1,369-bp deletion that removed all of exon 5 and 6. 

 The 19 D-class motor neurons cell bodies reside in the ventral nerve cord. They extend 

axons anteriorly and then dorsally to form a commissure, which normally extend straight 

dorsally to the dorsal nerve cord (Figure 2 and Figure 3B) On the right side of wild-type animals, 

an average of 16 commissures were observed, due to the fasciculation of some processes as a 

single commissure (Figure 2C and Materials and Methods). fmo-1,4 and 5 and ehbp-1 mutants 

showed significant defects in VD/DD axon pathfinding, including ectopic axon branching and 

wandering (~3-5%; see Materials and Methods and Figure 3A, C and D). fmo-2 and fmo-3 

mutations showed no significant defects compared to wild-type (Figure 3A). Most double 

mutants showed no strong synergistic defects compared to the predicted additive effects of the 

single mutants (Figure 3E). However, the fmo-2; fmo-3 and the fmo-2; fmo-4 double mutants 

showed significantly more defects compared to the predicted additive effects of the single 

mutants. The fmo-4; ehbp-1 double mutant displayed significantly reduced defects than either 

mutation alone. Lack of extensive phenotypic synergy suggests that the FMOs do not act 

redundantly, but rather that they might have discrete and complex roles in axon guidance, as 

evidenced by fmo-4; ehbp-1 mutual suppression. 

 

Axon pathfinding defects of unc-40 and unc-5 are increased by fmo-1, fmo-4 and fmo-5 

mutations.  
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In unc-40(n324) strong loss-of-function mutants, most axons (92%) extended past the 

lateral midline despite wandering (see Materials and Methods and Figures 4A and B). fmo-1, 

fmo-4, fmo-5 and ehbp-1 displayed < 1% failing to extend past the lateral midline (Figure 4A). 

fmo-1, fmo-4, and fmo-5 mutations significantly enhanced the VD/DD lateral midline crossing 

defects of unc-40(n324) (Figure 4A and C). ehbp-1 did not enhance unc-40 (Figure 4A). 

 unc-5(e53) strong loss-of-function mutants display a nearly complete failure of VD axons 

to reach the dorsal nerve cord [13, 15]. unc-5(e152) is a hypomorphic allele [34] and displayed 

22% failure of axons to cross the lateral midline (Figure 5A). The unc-5(op468) allele [35] also 

displayed a weaker lateral midline crossing phenotype (10%), indicating that it is also a 

hypomorphic allele (Figure 5B).  fmo-1, fmo-4 and fmo-5 significantly enhanced the VD/DD 

axon guidance defects of both unc-5(e152) and unc-5(op468), but ehbp-1 did not (Figure 5). 

These results indicate that FMO-1,4, and 5 might act with UNC-40 and UNC-5 in VD/DD axon 

pathfinding. 

 

fmo-1, fmo-4 and fmo-5 act cell-autonomously in the VD/DD neurons.  

Expression of the fmo-1, fmo-4 and fmo-5 coding regions were driven in VD/DD motor 

neurons using the unc-25 promoter. Punc-25::fmo transgenes significantly rescued lateral 

midline crossing defects in fmo; unc-5(op468) and fmo; unc-5(e152) (Figure 6). These data 

suggest that the axon defects observed in fmo mutants are due to mutation of the fmo genes 

themselves, and that fmo-1, 4, and 5 can act cell-autonomously in the VD/DD neurons in axon 

guidance.  

 Previous studies showed that fmo-1 and fmo-5 promoter regions were active in intestinal 

cells and the excretory gland cell, whereas the fmo-4 promoter was active in hypodermal cells, 

duct and pore cells [32, 36]. ehbp-1 is expressed in all somatic cells including neurons [33]. 

Furthermore, cell-specific transcriptome profiling indicated that fmo-1, fmo-4 and fmo-5 were 

expressed in embryonic and adult neurons, including motor neurons [37-39]. We fused the 

upstream promoter regions of fmo-1, fmo-4, and fmo-5 to gfp. We could observe no fmo-1::gfp 

expression in transgenic animals, in contrast to previous studies using a LacZ reporter [32]. 

However, transcriptome profiling indicates neuronal expression of fmo-1 [39]. Our fmo-1::gfp 

transgene might be missing regulatory regions required for expression. fmo-4::gfp was expressed 

strongly in hypodermal cells, excluding the seam cells and vulval cells, consistent with previous 
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studies [32] (Figure 6D). We also observed fmo-4::gfp expression in cells in the ventral nerve 

cord (Figure 6 D and D’). Pfmo-5::fmo-5::gfp was expressed strongly in the intestine as 

previously reported [32] (Figure 6E). We also observed expression along the ventral nerve cord 

(Figure 6E and E’). 

In sum, previous expression studies combined with those described here suggest that fmo-

1,4,5 and ehbp-1 are expressed in neurons, and that fmo-1,4, and 5 can act cell-autonomously in 

the VD/DD motor neurons in axon guidance. 

 

fmo-1, fmo-4 and fmo-5 mutants display increased growth cone filopodial protrusion.  

The growth cones of dorsally-directed VD commissural axons are apparent in early L2 

larvae (Figure 2B). We imaged VD growth cones at 16 hours post-hatching, when the VD 

growth cones have begun their dorsal migrations, as described previously [15]. fmo-1, fmo-4 and 

fmo-5 mutant growth cones displayed longer filopodial protrusions compared to wild type (e.g. 

0.96 µm in wild type compared with 1.55 µm in fmo-5(tm2438); p < 0.001) (Figure 7). This 

effect was not significant in ehbp-1(ok2140) (Figure 7). Growth cone area was not significantly 

different in any mutant. These results suggest that fmo-1, fmo-4 and fmo-5 normally limit growth 

cone filopodial protrusion length. This is consistent with ectopic axon branches observed in post-

development VD/DD neurons in these mutants (Figure 3), as other mutants with increased 

growth cone filopodial protrusions (e.g. unc-5, unc-73, unc-33) also display ectopic branches, 

likely due to failure of filopodial retraction and subsequent consolidation into a neurite [15, 17]. 

 

fmo-1, fmo-4, fmo-5 and ehbp-1 mutations suppress activated myr::unc-40 and myr::unc-5 

and activated Rac GTPases.  

Previous studies showed that UNC-6/netrin signaling via the heterodimeric UNC-

40/UNC-5 receptor leads inhibition of growth cone protrusion important in UNC-6/Netrin’s role 

in repulsive axon guidance [15, 17]. Constitutive activation of this pathway using expression of 

myristoylated versions of the cytoplasmic domains of UNC-40 and UNC-5 (myr::unc-40 and 

myr::unc-5) results in small growth cones with few if any filopodial protrusions (i.e. protrusion 

is constitutively inhibited by MYR::UNC-40 and MYR::UNC-5) [15, 17, 18]. Loss of fmo-1, 

fmo-4, fmo-5 and ehbp-1 significantly suppressed inhibition of filopodial protrusion and growth 

cone size caused by myr::unc-40 (Figure 8) and myr::unc-5 (Figure 9). 
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Expression of activated CED-10(G12V) and MIG-2(G16V) in the VD neurons results in 

reduced growth cone protrusion similar to MYR::UNC-40 and MYR::UNC-5 [17]. We found 

that fmo-1, fmo-4 and fmo-5 suppressed filopodial protrusion deficits caused by ced-10(G12V) 

and mig-2(G16V) (Figure 10). ehbp-1 suppressed mig-2(G16V), but ehbp-1(ok2140M+);ced-

10(G12V) double mutants were inviable and could not be scored.  Furthermore, fmo-4 and fmo-5, 

but not fmo-1, significantly suppressed growth cone size reduction caused by CED-10(G12V) 

and MIG-2(G16V). ehbp-1 also suppressed growth cone size reduction of MIG-2(G16V). Taken 

together, these data indicate that functional FMO-1, FMO-4, FMO-5, and EHBP-1 are required 

for the full effect of MYR::UNC-40, MYR::UNC-5, CED-10(G12V), and MIG-2(G16V) on 

growth cone protrusion inhibition, including filopodial protrusion and growth cone size. 

 

FMO-5 can inhibit growth cone protrusion.  

fmo-5 loss-of-function mutant growth cones displayed excessively protrusive filopodia 

(Figure 7) and suppressed activated UNC-40/UNC-5 and Rac signaling (Figures 8-10).  

Transgenic expression of wild-type FMO-5 driven by its endogenous promoter rescued the long 

filopodial protrusions seen in fmo-5(tm2438) mutant VD growth cones (Figure 11A-D). In a 

wild-type background, fmo-5 transgenic expression resulted in growth cones with smaller area 

and shortened filopodia (Figure 11E, F and H), indicating that wild-type FMO-5 activity can 

inhibit growth cone protrusion. This was not observed in the fmo-5(tm2438) background, 

possibly due to the decreased levels of FMO-5 compared to the wild-type background. 

 A pathway involving the Rac GTPases MIG-2 and CED-10, the Rac GEF UNC-73/Trio, 

and the putative cytoskeletal interacting molecule UNC-33/CRMP act downstream of 

MYR::UNC-40 to inhibit protrusion [17]. In this pathway, UNC-33/CRMP acts downstream of 

the Rac GTPases [17], similar to the FMOs and EHBP-1 described in Figure 10. unc-73(rh40) 

specifically attenuates the Rac GEF domain of UNC-73 and results in excessively-protrusive 

growth cones, including increased growth cone area and filopodial length [17] (Figure 11F). 

Transgenic fmo-5 expression in unc-73(rh40) resulted in inhibited growth cone area and 

filopodial length compared to unc-73(rh40) alone, suggesting that FMO-5 can inhibit protrusion 

in the absence of UNC-73 Rac GEF activity. Transgenic fmo-5 expression inhibited growth cone 

size in unc-33(e204), but had a reduced capacity to inhibit filopodial protrusion (i.e. filopodial 

protrusion in unc-33(e204) with transgenic fmo-5 expression was reduced compared to unc-33 
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alone but was increased relative to fmo-5 transgenic expression alone) (Figure 11E-I). In sum, 

these data indicate that that FMO-5 (and possibly FMO-1 and FMO-4) act downstream of the 

Rac GTPases MIG-2 and CED-10 in filopodial inhibition. FMO-5 might also act downstream of 

UNC-33, but the hybrid interaction of fmo-5 transgenic expression with unc-33(e204) mutants 

suggests that FMO-5 and UNC-33 might represent distinct pathways downstream of the Rac 

GTPases to inhibit filopodial protrusion. 
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Discussion 

Results here implicate the C. elegans flavoprotein monooxygenase molecules FMO-1, 

FMO-4 and FMO-5 in inhibition of growth cone protrusion via UNC-6/Netrin receptor signaling 

in repulsive axon guidance. The MICAL molecule found in vertebrates and Drosophila is a 

flavoprotein monooxygenase required for semaphorin-plexin mediated repulsive motor axon 

guidance [27, 40]. MICAL is a multi-domain molecule that also includes a calponin homology 

(CH) domain, a LIM domain and multiple CC domains. No molecule encoded in the C. elegans 

genome has a similar multi-domain organization. However, the Eps-15 homology (EH) domain 

binding protein EHBP-1 is similar to the non-FMO portion of MICAL and contains a CH 

domain [33]. We show here that EHBP-1 also is also involved in inhibition of growth cone 

protrusion and axon guidance. Thus, while C. elegans does not have a multidomain MICAL-like 

molecule, it is possible that the functional equivalents are the FMOs and EHBP-1. 

FMO-1, FMO-4, FMO-5 and EHBP-1 regulate axon guidance and growth cone filopodial 

protrusion.  fmo-1, fmo-4, fmo-5, and ehbp-1 mutants display defects in dorsal guidance of the 

VD/DD motor axons that are repelled from UNC-6/Netrin (Figure 3). Double mutant analysis 

did not uncover significant redundancy, suggesting that these molecules might have discrete 

roles in axon guidance. Consistent with this idea, fmo-4 and ehbp-1 mutually suppress VD/DD 

axon guidance defects. fmo-2 and fmo-3 mutations displayed no significant defects alone, 

suggesting that they are not involved in axon guidance.  fmo-2 did significantly enhance fmo-4.  

Possibly, fmo-2 and fmo-3 have roles in axon guidance that were not revealed by the mutations 

used. 

Drosophila and vertebrate MICAL regulate actin cytoskeletal dynamics in both neuronal 

and non-neuronal processes through direct redox activity of the monooxygenase domain [27, 30, 

41-45]. In Drosophila, loss of MICAL showed abnormally shaped bristles with disorganized and 

larger F-actin bundles, whereas, overexpression of MICAL caused a rearrangement of F-actin 

into a complex meshwork of short actin filaments [29]. Here we show that loss of fmo-1, fmo-4, 

and fmo-5 resulted in longer filopodial protrusions in the VD motor neurons (Figure 7), 

suggesting that their normal role is to limit growth cone filopodial protrusion. Indeed, transgenic 

expression of wild-type FMO-5 resulted in VD growth cones with a marked decrease in growth 

cone filopodial protrusion (Figure 11). Growth cone size was not affected in any loss-of-function 

mutation, but growth cone size was reduced by transgenic expression of wild-type FMO-5 
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(Figure 11), suggesting a role of the FMO-5 in both filopodial protrusion and growth cone 

lamellipodial protrusion. 

Previous studies have shown that Drosophila MICAL may require both its FMO and CH 

domain to induce cell morphological changes; however, mammalian MICAL in non-neuronal 

cell lines requires only its FAD domain suggesting a difference in the mechanism of action in 

these MICALs [29, 46]. These data suggest that in some cases, the FMO domain is sufficient for 

the function of MICAL. Thus, single domain FMOs as in C. elegans could function despite 

lacking the multi-domain structure of MICAL. Loss of EHBP-1, which contains a CH domain 

and is similar to the non-FMO portion of MICAL (Figure 1), also resulted in VD/DD axon 

guidance defects, but did not significantly affect growth cone filopodial protrusion. EHBP-1 

might act with the FMOs in axon guidance. Phenotypic differences could be due to EHBP-1-

dependent and independent events, or to the wild-type maternal contribution in ehbp-1 

homozygous mutants derived from a heterozygous mother. It is also possible that EHBP-1 

affects axon guidance independently of the FMOs. EHBP-1 is involved in Rab-dependent 

endosomal vesicle trafficking by bridging interaction of endosomal Rabs with the actin 

cytoskeleton [33, 47]. MICAL has also been implicated in Rab-dependent endosomal biogenesis 

and trafficking [48-50], suggesting that FMO/EHBP-1 and MICALs might share common 

functions, although it remains to be determined if FMOs in C. elegans regulate endosomal 

trafficking. 

MICAL has been shown to directly oxidize cysteine residues in F-actin, leading to actin 

depolymerization and growth cone collapse [29, 30, 51, 52]. We speculate that FMO-1, FMO-4, 

and FMO-5 might act by a similar mechanism to inhibit growth cone filopodial protrusion. The 

role of EHBP-1 is less clear, but previous studies have shown that Drosophila MICAL might 

require both its FMO and CH domain to induce cell morphological changes [29]. Thus, in axon 

guidance, FMO-1, FMO-4, and FMO-5 might require the CH domain provided by EHBP-1 in 

some instances. Mammalian MICAL requires only the FMO domain [46], suggesting that in 

some cases the CH domain is not required and the FMO domain can act alone. Future studies 

will be directed at answering these questions. 

FMOs can act autonomously in the VD/DD neurons. Expression of full length fmo-1, fmo-4 

and fmo-5 coding regions under the control of the unc-25 promoter specific for GABA-ergic 

neuron expression (including the VD/DD neurons) rescued VD/DD axon guidance defects 
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(Figure 6). Furthermore, the promoters of fmo-4 and fmo-5 were active in ventral nerve cord cells 

(Figure 6). Cell-specific transcriptome profiling indicated that fmo-1, fmo-4 and fmo-5 were 

expressed in embryonic and adult neurons, including motor neurons [37-39]. Together, these 

results suggest that the FMOs can act cell-autonomously in the VD/DD neurons in axon 

guidance. 

FMO-1, FMO-4 and FMO-5 mediate UNC-6/Netrin receptor signaling in growth cone 

inhibition of protrusion. Our findings suggest that the FMOs act with the UNC-40 and UNC-5 

receptors to mediate UNC-6/netrin repulsive axon guidance and inhibition of growth cone 

protrusion. fmo-1, fmo-4, and fmo-5 mutations enhanced axon pathfinding defects in unc-40 and 

hypomorphic unc-5 mutants (Figures 4 and 5). ehbp-1 did not enhance unc-40 or unc-5, 

suggesting discrete roles of these molecules or wild-type maternal ehbp-1 contribution. 

However, fmo-1, fmo-4, fmo-5, and ehbp-1 mutations each suppressed the effects of activated 

MYR::UNC-40 and MYR::UNC-5 on inhibition of growth cone protrusion (Figure 9). In this 

case, both filopodial protrusion and growth cone area was restored, consistent with a role of 

these molecules in inhibiting both growth cone filopodial and lamellipodial protrusion. That the 

FMOs and EHBP-1 were required for the effects of the constitutively active MYR::UNC-40 and 

MYR::UNC-5 suggest that they act downstream of these molecules in growth cone inhibition of 

protrusion. 

FMOs and EHBP-1 act downstream of Rac GTPase signaling in inhibition of growth cone 

protrusion. Similar to activated MYR::UNC-40 and MYR::UNC-5, constitutively-activated Rac 

GTPases CED-10(G12V) and MIG-2(G16V) inhibit VD growth cone protrusion. We show that 

fmo-1, fmo-4, fmo-5 and ehbp-1 mutations suppressed activated CED-10(G12V) and MIG-

2(G16V) (e.g. double mutant growth cones displayed longer filopodial protrusions similar to 

fmo-1, fmo-4, fmo-5 and ehbp-1 single mutants) (Figure 10). Furthermore, loss of the Rac GTP 

exchange factor UNC-73/Trio had no effect on the inhibited growth cone phenotype of FMO-5 

transgenic expression (i.e. the growth cones resembled those of fmo-5 over expression alone) 

(Figure 11). UNC-73/Trio acts with the Rac GTPases CED-10 and MIG-2 in growth cone 

protrusion inhibition, and unc-73 mutants display excessive growth cone protrusion [17]. That 

FMO-5 transgenic expression could inhibit protrusion in the absence of the Rac activator UNC-

73/Trio suggests that FMO-5 acts downstream of UNC-73/Trio, consistent with the FMOs and 

EHBP-1 acting downstream of the Rac GTPases. 
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FMO-5 might act upstream of UNC-33/CRMP. Previous studies have shown that the C. 

elegans CRMP-like molecule UNC-33 is required in a pathway downstream of Rac GTPases for 

inhibition of growth cone protrusion in response to UNC-6/Netrin [17]. unc-33 loss-of-function 

mutants with FMO-5 transgenic expression displayed a mutually-suppressed phenotype. The 

excessively-long filopodial protrusions of unc-33 mutants were reduced to wild-type levels, but 

were significantly longer than in animals with FMO-5 transgenic expression, and the growth 

cone area was reduced to resemble FMO-5 transgenic expression alone (Figure 11). This 

phenotype could be interpreted as FMO-5 acting upstream of UNC-33/CRMP (i.e. UNC-

33/CRMP is required for the full effect on FMO-5 overexpression). Alternatively, this hybrid 

phenotype could be interpreted as FMO-5 and UNC-33/CRMP acting independently to inhibit 

protrusion. 

One proposed mechanism of cytoskeletal regulation by MICAL is the production of the 

reactive oxygen species (ROS) H2O2 by the FAD domain in the presence of NADPH [53]. Upon 

activation by Sema3A, MICALs generate H2O2, which can, via thioredoxin, promote 

phosphorylation of CRMP2 by glycogen synthase kinase-3, leading to microtubule growth cone 

collapse [54]. This is consistent with our genetic results suggesting that FMO-5 may function 

upstream of UNC-33/CRMP in modulating the cytoskeleton of the VD growth cones to inhibit 

growth cone filopodial protrusion. CRMPs have been shown coordinate both microtubules and 

actin in axon elongation and growth cone dynamics [55, 56]. Thus, the FMOs have the potential 

to inhibit growth cone protrusion through direct oxidation of F-actin resulting in 

depolymerization, and through redox regulation of the activity of UNC-33/CRMP. 

Conclusion. In summary, we present evidence of a novel role of the C. elegans flavin-containing 

monooxygenase molecules (FMOs) in inhibition of growth cone protrusion downstream of 

UNC-6/Netrin signaling. The FMOs acted downstream of the UNC-6/Netrin receptors UNC-5 

and UNC-40, and downstream of the Rac GTPases CED-10 and MIG-2. Future studies will 

determine if the FMOs regulate UNC-33/CRMP, if they cause actin depolymerization, or both, to 

inhibit growth cone protrusion. 
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Materials and methods 

Genetic methods 

Experiments were performed at 20°C using standard C. elegans techniques [57]. Mutations used 

were LGI: unc-40(n324), unc-73(rh40); LGII: juIs76[Punc-25::gfp]; LGIII: fmo-3(gk184651); 

LGIV: fmo-1(ok405), fmo-2(ok2147), lqIs128[Punc-25::myr::unc-40], unc-5(op468 and e152), 

unc-33(e204); LGV: fmo-4(ok294), fmo-5(tm2438), ehbp-1(ok2140M+); LGX: lqIs182[Punc-

25::mig-2(G16V)]. Chromosomal locations not determined: lqIs129[Punc-25::myr::unc-40], 

lqIs296[Punc-25::myr::unc-5], lqIs204[Punc-25::ced-10(G12V)], lhIs6[Punc-25::mCherry], 

lqIs311[fmo-5 genomic] by integration of lqEx1047. Extrachromosomal arrays were generated 

using standard gonadal injection [58] and include: lqEx901 and lqEx931[Pehbp-1::gfp, Pgcy-

32::yfp]; lqEx1014, lqEx1015, lqEx1016, lqEx1045, lqEx1046 and lqEx1047[Pfmo-5::fmo-5, 

Pgcy-32::yfp]; lqEx949, lqEx950, lqEx951, lqEx1053, lqEx1054 and lqEx1055[Punc-25::fmo-1, 

Pgcy-32::yfp]; lqEx1057, lqEx1058 and lqEx1060[Punc-25::fmo-4, Pgcy-32::yfp]; lqEx952, 

lqEx953, lqEx954, lqEx1061, lqEx1062, lqEx1063, lqEx1078, lqEx1079 and lqEx1080[Punc-

25::fmo-5, Pgcy-32::yfp]; lqEx1113 and lqEx1114[Pfmo-5::fmo-5::GFP, Pstr-1::gfp]; 

whEx28[Pfmo-4::gfp, pRF4/rol-6]. Multiple (≥3) extrachromosomal transgenic lines of Pfmo-

5::fmo-5 for overexpression data of fmo-5 were analyzed with similar effect, and one was chosen 

for integration and further analysis. Genotypes containing M+ indicate that homozygous animals 

from a heterozygous mother were scored. The ehbp-1(ok2140M+) strain was balanced with the 

nT1 balancer. 

 

Transgene construction 

Details about transgene construction are available by request. Punc-25::fmo-1, Punc-25::fmo-4 

and Punc-25::fmo-5 were made using the entire genomic regions of fmo-1, fmo-4 and fmo-5 

respectively. Expression analysis for fmo-5 was done by amplifying the entire genomic region of 

fmo-5 along with its endogenous promoter (1.2kb upstream) and fusing it to gfp followed by the 

3’ UTR of fmo-5. 

 

Analysis of axon guidance defects 

VD neurons were visualized with a Punc-25::gfp transgene, juIs76 [59], which is expressed in 

GABAergic neurons including the six DDs and 13 VDs, 18 of which extend commissures on the 
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right side of the animal. The commissure on the left side (VD1) was not scored. In wild-type, an 

average of 16 of these 18 VD/DD commissures are apparent on the right side, due to 

fasciculation of some of the commissural processes (Figure 2C). In some mutant backgrounds, 

fewer than 16 commissures were observed (e.g. unc-5). In these cases, only observable axons 

emanating from the ventral nerve cord were scored for axon guidance defects. VD/DD axon 

defects scored include axon guidance (termination before reaching the dorsal nerve cord or 

wandering at an angle greater than 45° before reaching the dorsal nerve cord), lateral midline 

crossing (axons that fail to extend dorsally past the lateral midline) and ectopic branching 

(ectopic neurite branches present on the commissural processes). Fisher's exact test was used to 

determine statistical significance between proportions of defective axons. In double mutant 

comparisons, the predicted additive effect of the mutants was calculated by the formula P1+P2-

(P1*P2), where P1and P2 are the phenotypic proportions of the single mutants. The predicted 

additive effect of single mutants was used in statistical comparison to the observed double 

mutant effect. 

 

Growth cone imaging 

VD growth cones were imaged as previously described [15, 22]. Briefly, animals at 16 h post-

hatching at 20°C were placed on a 2% agarose pad and paralyzed with 5mM sodium azide in M9 

buffer, which was allowed to evaporate for 4 min before placing a coverslip over the sample. 

Some genotypes were slower to develop than others, so the 16 h time point was adjusted for each 

genotype. Growth cones were imaged with a Qimaging Rolera mGi camera on a Leica DM5500 

microscope. Projections less than 0.5 µm in width emanating from the growth cone were scored 

as filopodia. Filopodia length and growth cone area were measured using ImageJ software. 

Filopodia length was determined by drawing a line from the base where the filopodium 

originates on the edge of the peripheral membrane to the tip of the filopodium. Growth cone area 

was determined by tracing the periphery of the growth cone, not including filopodial projections. 

Significance of difference was determined a two-sided t-test with unequal variance. 
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Figure Legends 

Fig. 1. fmo genes and ehbp-1 

(A) Diagram of Drosophila MICAL, the C. elegans flavin monooxygenases (FMOs), and C. 

elegans EHBP-1. MO, flavin monooxygenase domain; CH-calponin homology domain, CC, 

coiled coil domain; LIM, LIM domain. (B) The structures of the fmo-1, fmo-2, fmo-3, fmo-4, 

fmo-5 and ehbp-1 genes are shown. Filled boxes represent exons. The extent of deletions in fmo-

1, fmo-2, fmo-4, fmo-5 and ehbp-1 are shown below the structure, indicated by a red line. The red 

arrow points to the region of the splice site mutation in fmo-3. Scale bar indicates 500bp.  

Fig. 2. VD/DD motor neurons and axons in C. elegans. 

(A) Diagram of an early L2 larval C. elegans hermaphrodite highlighting the position and 

structure of the DD motor neurons (red) and axons (black). Anterior is to the left, and dorsal is 

up. The blue lines represent the ventral and dorsal muscle quadrants. In the early L2 larval stage, 

the VD neurons (green) extend axons anteriorly in the ventral nerve cord after which the axons 

turn dorsally and migrate to the dorsal nerve cord to form commissures. Only two of the 13 VD 

neurons are shown. While migrating towards the dorsal nerve cord, VD growth cones display an 

extended, protrusive morphology with highly dynamic filopodial protrusions (VD8). VD7 shows 

the final structure of the VD neurite. (B) Fluorescent micrograph of an early L2 larval wild-type 

commissure indicated by an arrow, and a VD growth cone indicated by an arrowhead. CB, cell 

body; DNC, dorsal nerve cord; and VNC, ventral nerve cord. Scale bar represents 5µm. (C) 

Diagram of an L4 hermaphrodite after all the VD axon outgrowth is complete. The 18 

commissures on the right side of the animal are shown (black lines), and axon guidance defects 

of these commissures were scored. One commissure (VD1) extends on the right side and was not 

scored. Of the 18 commissures on the right side, two (DD1 and VD2) extend as a single fascicle. 

Others pairs occasionally extended as single fascicles as well, resulting in an average of 16 

observable commissures per wild-type animal. 

Fig. 3. Mutations in fmo-1, fmo-4, fmo-5 and ehbp-1 cause axon pathfinding defects. 

(A) Percentage of VD/DD axons with pathfinding defects (see Materials and Methods) in single 

mutants harboring the juIs76[Punc-25::gfp] transgene. Asterisks indicate the significant 

difference between wild-type and the mutant phenotype (*p < 0.01) determined by Fischer’s 
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exact test. Error bars represent 2x standard error of proportion. (B-D) Representative fluorescent 

micrograph of L4 VD/DD axons. Anterior is to the left, and dorsal is up. The scale bar represents 

5µm. DNC, dorsal nerve cord; and VNC, ventral nerve cord. (B) A wild-type commissure is 

indicated by an arrow. (C) An fmo-1(ok405) commissure branched and failed to reach to dorsal 

nerve cord (arrow). (D) fmo-5(tm2438) VD/DD axons branched and wandered (arrows). A gap in 

the dorsal nerve cord (asterisk) indicates that commissural processes failed to reach the dorsal 

nerve cord. (E) Percentage of VD/DD axons with pathfinding defects in double mutants as 

described in (A). Asterisks (*) indicate significant difference between double mutants and the 

predicted additive effect of single mutants (p < 0.01) (see Materials and Methods) determined by 

Fischer’s exact test. At least 1500 axons were scored per genotype. M+ indicates that the animal 

has wild-type maternal ehbp-1(+) activity.  

Fig. 4. Axon pathfinding defects in unc-40(n324) are enhanced by loss of fmo-1, fmo-4 and 

fmo-5. 

(A) Percentage of VD/DD axons that failed cross the lateral midline of L4 hermaphrodites. Error 

bars represent 2x standard error of the proportion; double asterisks (**) indicates a significant 

difference between unc-40(n324) alone and the double mutants (p < 0.001) determined by 

Fisher’s exact test. Only axon commissures visibly emanating from the ventral nerve cord were 

scored. (B,C) Representative images showing VD/DD axons (arrows) after their complete 

outgrowth in L4 animals. The lateral midline of the animal is indicated by the dashed white line. 

The dorsal nerve cord and ventral nerve cord are indicated by a dotted white line. Dorsal is up, 

anterior is to the left. Scale bar represents 5µm. (B) In unc-40(n324), many axons extend past the 

lateral midline, as evidenced by axons in the dorsal nerve cord (arrowheads). (C) In fmo-

1(ok405); unc-40(n324), an increased number of axons did not cross the midline resulting in 

extensive regions of dorsal nerve cord without axons (arrowheads). Arrowhead indicates large 

gaps in the dorsal nerve cord. 

Fig. 5. Axon pathfinding defects of hypomorphic unc-5 mutants are enhanced by loss of 

fmo-1 and fmo-4. 

(A) and (B) Quantification of VD/DD axons that failed to cross the lateral midline of L4 

hermaphrodites in hypomorphic unc-5(e152) and unc-5(op468) mutants alone and in double 
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mutant animals. Error bars represent 2x standard error of the proportion; double asterisks (**) 

indicates a significant difference between unc-5(e152) or unc-5(op468) alone and the double 

mutants (p < 0.001) determined by Fisher’s exact test. Only visible commissural processes 

emanating from the ventral nerve cord were scored. (C,D) Fluorescence micrographs of VD/DD 

axons (arrows) in L4 hermaphrodites. The lateral midline of the animal is indicated by the 

dashed white line. The dorsal nerve cord and ventral nerve cord are indicated by dotted white 

lines. Dorsal is up, anterior is to the left. Scale bar represents 5µm. (C) In the weak loss of 

function unc-5(op468) mutants, axons crossing the lateral midline are indicated (arrows). (D) In 

fmo-5(tm2438); unc-5(op468), some axons cross the lateral midline, but many terminate before 

crossing the lateral midline (arrows). 

Fig. 6. Expression of fmo-1, fmo-4 and fmo-5 in VD/DD neurons rescues axon pathfinding 

defects. 

(A) The percentages of VD/DD axons failing to cross the lateral mid-line are as described in 

Figure 5A. unc-5 double mutant genotypes are indicated, and the Punc-25::fmo-1, Punc-25::fmo-

4, and Punc-25::fmo-5 transgenes are bracketed. Data for transgenic strains are the combined 

results from three independently-derived transgenes with similar effects. Double asterisks (**) 

indicate a significant difference between the double mutant and the transgenic strain (p <0.001; 

Fisher’s exact test). Error bars represent 2x standard error of the proportion. (B, C) Micrographs 

of mutant and rescued animals. Dorsal is up, anterior to the left. Scale bar represents 5µm. The 

lateral midline of the animal is indicated by the dashed white line. The dorsal nerve cord and 

ventral nerve cord are indicated by dotted white lines. (B) fmo-1(ok405) unc-5(e152) axons often 

fail to cross the lateral midline (arrow). (C) fmo-1(ok405) unc-5(e152); Ex(Punc-25::fmo-1) 

axons crossed the lateral midline (arrows). (D-E and D’-E’) Images are micrographs of L2 

animals with transgenic expression of Pfmo-4::gfp and Pfmo-5::fmo-5::gfp. Dorsal is up and 

anterior is left. Scale bar: 5µm. (D) fmo-4::gfp is broadly expressed, including in hypodermis and 

in cells along the ventral nerve cord that resemble motor neurons. Expression is not evident in 

the lateral hypodermal seam cells (asterisks). (D’) Enlarged image of fmo-4::gfp expression in 

ventral nerve cord cells (arrows). (E). fmo-5::gfp is expressed strongly in the gut (asterisks), as 

well as in cells along the ventral nerve cord. (arrow) (E’) Enlarged image of fmo-

5::gfp expression in ventral nerve cord cells (arrows).  
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Fig. 7. Mutations in fmo-1, fmo-4 and fmo-5 increase VD growth cone filopodial length. 

(A,B) Quantification of VD growth cone filopodial length and growth cone area in wild-type and 

mutant animals. (A) Average filopodial length, in µm. (B) Growth cone area in µm2. Error bars 

represent 2x standard error of the mean; asterisks indicate the significant difference between 

wild-type and the mutant phenotype (*p < 0.01) determined by two-sided t-test with unequal 

variance. n.s., not significant.   (C-E) Fluorescence micrographs of VD growth cones; (C) A 

wild-type VD growth cone. (D) fmo-1(ok405) and (E) fmo-5(tm2438) growth cones showing 

increased filopodial protrusion in the form of longer filopodia. Arrows indicate representative 

filopodia. Scale bar: 5µm. 

Fig. 8. FMO-1, FMO-4, FMO-5, and EHBP-1 are required for MYR::UNC-40-mediated 

inhibition of VD growth cone protrusion. 

(A,B) Quantification of VD growth cone filopodial length and growth cone area in wild-type, 

myr::unc-40 (lqIs128 and lqIs129) and double mutants. (A) Average filopodial length, in µm. 

(B) Growth cone area in µm2. Error bars represent 2x standard error of the mean. Asterisks 

indicate significant difference between myr::unc-40, wild-type and the double mutants (*p < 

0.05, ** p < 0.001) determined by two-sided t-test with unequal variance. (C-E) Fluorescent 

micrographs of mutant VD growth cones; (C) Image of a myr::unc-40 growth cone in an early 

L2 animal. The arrowhead points to a growth cone with little or no filopodial protrusion. (D, E) 

Images of fmo-4(ok294); myr::unc-40 and fmo-5(tm2438); myr::unc-40 growth cones. Filopodial 

protrusions are indicated (arrows). Scale bar: 5µm. fmo-1(ok405); myr::unc-40  double mutants 

were built and compared with lqIs129[myr::unc-40] due to the linkage of the lqIs128 transgene. 

Fig. 9. FMO-1, FMO-4, FMO-5, and EHBP-1 are required for MYR::UNC-5-mediated 

inhibition of VD growth cone protrusion. 

(A,B) Quantification of VD growth cone filopodial length and growth cone area in wild-type, 

myr::unc-5, and double mutants. (A) Average filopodial length, in µm. (B) Growth cone area in 

µm2. Error bars represent 2x standard error of the mean. Asterisks indicate significant difference 

between myr::unc-5 and the double mutants (*p < 0.05, **p < 0.001) determined by two-sided t-

test with unequal variance. (C-E) Representative fluorescent micrographs of mutant VD growth 

cones; (C) Image of a myr::unc-5 growth cone in an early L2 animal. The arrowhead points to a 
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growth cone with limited protrusion. (D, E) Images of fmo-1(ok405); myr::unc-5 and fmo-

5(tm2438); myr::unc-5 growth cones. Arrows point to filopodial protrusions. Scale bar: 5µm. 

Fig. 10. FMO-1, FMO-4, FMO-1, and EHBP-1 are required for Rac GTPase-mediated 

inhibition of VD growth cone protrusion. 

(A,B) Quantification of VD growth cone filopodial length and growth cone area in wild-type, 

activated ced-12(G12V) and mig-2(G16V), and double mutants. (A) Average filopodial length, in 

µm. (B) Growth cone area in µm2. Error bars represent 2x standard error of the mean. Asterisks 

indicate significant difference between ced-10(G12V) mig-2(G16V) and their respective double 

mutants (*p < 0.05, **p < 0.001) determined by two-sided t-test with unequal variance. n.s., not 

significant. (C-F) Representative fluorescent micrographs of mutant VD growth cones. (C,D) 

Images of ced-10(G12V) and  fmo-4(ok294); ced-10(G12V) growth cones. The arrowhead in (C) 

points to a growth cone with limited protrusion, and the arrow in (D) indicates a filopodial 

protrusion. (E,F) Images of mig-2(G16V) and fmo-5(tm2438); mig-2(G16V) growth cones. The 

arrowhead in (E) points to a growth cone with limited protrusion, and the arrow in (F) indicates a 

filopodial protrusion. Scale bar: 5µm.  

Fig. 11. FMO-5 can inhibit growth cone filopodial protrusion. 

(A) Rescue of fmo-5(tm2438) VD growth cone filopodial protrusions by transgenes containing 

genomic fmo-5 (Ex[fmo-5 genomic]). Data for transgenic arrays are the combined results from 

three independently-derived arrays with similar effects. Average lengths of filopodial protrusions 

are shown (µm). Error bars represent 2x standard error of the mean. Single asterisks (*) indicate 

a significant difference between wild type and the mutant (p < 0.001); Double asterisks (**) 

indicates a significant difference between the mutant and rescuing transgene (p < 0.001) 

determined by two-sided t-test with unequal variance (B-D) Fluorescence micrographs of VD 

growth cones in wild-type, fmo-5(tm2438), and fmo-5(tm2438); Ex[fmo-5 genomic]. Arrows 

indicate representative filopodia. Scale bar: 5µm. (E,F) Quantification of VD growth cone 

filopodial length and growth cone area in indicated genotypes. Error bars represent 2x standard 

error of the mean. Asterisks indicate significant difference between wild-type and mutants (** p 

< 0.001) and *** indicate a significant difference between each single mutant compared to the 

double mutant. Pound signs (#) indicate a significant difference between [fmo-5 genomic] and 
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double mutant (#p < 0.001) determined by two-sided t-test with unequal variance. (G-I) 

Fluorescence micrographs of VD growth cones from wild-type, [fmo-5 genomic], and unc-33; 

[fmo-5 genomic]. The arrowhead points to a growth cone with limited protrusion. Arrows 

indicate representative filopodia. Scale bar: 5µm.  

Fig. 12. Genetic model of inhibition of growth cone protrusion. 

UNC-5 homodimers and/or UNC-40/UNC-5 heterodimers act through the Rac GTP exchange 

factor UNC-73/Trio and the Rac GTPases, which then utilize the flavin monooxygenases and 

UNC-33/CRMP to inhibit protrusion. The FMOs might inhibit protrusion directly, by possibly 

directly oxidizing F-actin, or by promoting phosphorylation of UNC-33/CRMP. 
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