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ABSTRACT 

Purpose: To use T1-, T2-weighted and diffusion tensor MR images to portray glioma grade by employing a voxel-wise 
supervised machine learning approach, and to assess the feasibility of this tool in preoperative tumor characterization. 

Materials and Methods: Conventional MRI, DTI datasets and histopathological evaluations of 40 patients with WHO grade 
II-IV gliomas were retrospectively analyzed. Databases were construed incorporating preoperative images, tumor delineation 
and grades. This data was used to train a multilayer perceptron based artificial neural network that performed voxel-by-voxel 
correlation of tumor grade and the feature vector. Results were mapped to grayscale images, whereas grade map was defined 
as a composite image that depicts grade assignments for intra-tumoral regions. The voxel-wise probability for high grade 
tumor classification was calculated for the entire tumor volumes, defined as the grade index. 

Results: The color hue on glioma grade maps allowed the discrimination of low and high grade cases. This method revealed 
connection between the heterogeneous appearance of tumors and the histopathological findings. Classification by the grade 
index had 92.31% specificity, 85.71% sensitivity. 

Conclusion: Glioma grade maps are advantageous in the visualization of the heterogeneous nature of intra-tumoral diffusion 
and relaxivity and can further enhance the characterization of tumors by providing a preoperative modality that expands 
information available for clinicians.  
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INTRODUCTION 

The most prevalent forms of brain tumors are glial 
neoplasms, whereas astrocytic tumors constitute the 
majority of gliomas, as stated by the World Health 
Organization (WHO) classification (Cohen and Weller, 
2007); however, mixed cellular composition is also 
common (Ohgaki et al., 2005). Separating gliomas into low-
grade and high-grade classes has become the means for 
assessing the neoplastic biological behavior, and this 
partitioning fundamentally determines therapy and 
patients’ survival.  

Magnetic resonance imaging (MRI) bears remarkable 
tissue contrast and depicts morphological details of brain 
malignancies. Despite the endeavors to use conventional 
MRI for the delineation of high-grade gliomas, low 
sensitivity and specificity was reported (Law et al., 2003). 
Diffusion-weighted imaging probes the motion of 
molecules by applying diffusion sensitizing magnetic 
gradients (Le Bihan et al., 1986) while diffusion tensor 
imaging (DTI) allows estimating the direction of the 
diffusion and the degree of anisotropy. Such measures are 
often correlated with biological features of brain tumors; 
this is hallmarked by numerous observations made on the 
relationship between DTI derived values and 
histopathological findings. The rationale of such efforts if 
to quantify the microscopic properties of diffusion and to 
compare these values with tissue properties like tumor 
cellularity, cell density, proliferation activity (Sugahara et 
al., 1999; Beppu et al., 2005, Sadeghi et al., 2008) or 
differentiate astrocytomas from oligodendrogliomas 
(Khayal et al., 2011). Diffusion tensor imaging derived 
parameters were extensively tested for clinical usability in 
determining the grade of CNS gliomas (i.e. low or high; or 
anaplastic vs. low-grade), this is mainly achieved by 
collecting quantitative parameters from preoperative 
images (Inoue et al. 2005; Higano et al., 2006; Goebell et al., 
2006; Tozer et al., 2007; Jakab et al., 2011; Ellingson et al., 
2011; Haegler et al., 2011). Successful classification was 
achieved when using a combination of diffusion 
parameters (multiparametric approach) or by more 
complex dissection of imaging data (Murakami et al., 2009; 
Emblem et al., 2008; Raab et al., 2010). 

It is possible to visualize biologically diverse regions 
within a tumor based on image analysis and various 
modeling approaches; a method was reported that depicts  
histological subtypes (i.e. “oligo-like” or “astro-like” 
regions, according to the authors' nomenclature) of low-
grade gliomas as color maps (Khayal et al., 2009). 
Similarly, “nosologic images” graphically represent 
different tumor types by performing complex 
interpretation of MR spectroscopy data (De Edelenyi et al., 
2000; Luts et al., 2009) and it was practical to use T2 and 
ADC values for tumor xenograft characterization by 
segmenting tumor images into various sub-populations 
(Carano et al., 2004).  

We hypothesize that machine-learning algorithms 

are capable of integrating information from preoperative 
images whilst multidimensional pattern-recognition 
techniques could enhance the characterization of gliomas. 
A practical approach is supervised machine learning 
where previously determined ground truth is provided by 
histopathology, and mathematical models are optimized 
for finding the correlation of individual, subject-based data 
and the tumor classification. One such method, the 
artificial neural networks (ANN), has long been 
investigated as a potential candidate for oncology decision 
support (Baxt, 1995;  Hagberg, 1998) finding more specific 
aims as brain tumor  classification (Wang et al., 2006; Joshi 
et al., 2010). By the same token, our investigation was 
designed to introduce a new visualization method that 
portrays glioma grade by incorporating information from 
postgadolinium T1- and T2-weighted, diffusion-weighted 
and parametric images that were computed from 
diffusion-tensor measurements. We focused on the 
development of an imaging biomarker that estimates 
tumor grade by employing a voxel-wise computational 
approach based on a supervised learning algorithm.   

MATERIALS AND METHODS 

The study cohort consisted of 40 consecutively 
recruited patients meeting the following inclusion criteria: 
first occurrence of intracerebral glioma (WHO grade II-IV), 
availability of preoperative diffusion tensor and 
conventional MR imaging. Patients were recruited 
between 2007 and 2010. No patients underwent treatment 
for their brain malignancies prior to radiologic 
examinations. Histopathological diagnoses were assigned 
according to the WHO classification criteria by a 
neuropathologist with 30 years’ experience (P.M.). Tissue 
samples were obtained by either stereotactic biopsy or 
surgical debulking. Subject characteristic data are detailed 
in Table 1.  

Table 1. Patient baseline characteristics. 
 

Tumor histopathology n sex (M/F) Age (range) 

Low-grade tumors 26 13/13 34.6 ± 15.9 (8-68) 

astrocytoma gr. II. or  
astrocytoma fibrillare gr. 
II 

13 7/6 30.6 ± 16.9 (8-59) 

oligoastrocytoma gr. II. 7 3/4 37.9 ± 18.4(11-68) 

oligodendroglioma gr. II. 6 3/3 42.2 ± 9.9 (34-59) 

High-grade tumors 14 5/9 47.3 ± 15.4 (13-68) 

oligoastrocytoma gr. III. 3 0/3 52.0 ± 2.6 (50-55) 

glioblastoma multiforme 11 5/6 45.7 ± 17.6 (13-68) 

Overall 40 18/22 38.6 ± 16.6 (8-68) 

 

Imaging protocol 

Imaging was performed on a GE Signa 1.5-T 
TwinGradient whole body scanner (GE Medical Systems, 
Milwaukee, WI) equipped with an 8-channel phased-array 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2017. ; https://doi.org/10.1101/133249doi: bioRxiv preprint 

https://doi.org/10.1101/133249
http://creativecommons.org/licenses/by-nc-nd/4.0/


Glioma grade map: a machine-learning based imaging biomarker for tumor characterization.  Archive preprint manuscript.  
(c) Jakab A et al. 2017 

3 

head coil. For anatomical imaging, we obtained 
postgadolinium 3DT1 scans. The DTI dataset was acquired 
by using a diffusion-weighted echo-planar imaging 
sequence with 25 gradient directions. Acquisition 
parameters are summarized in Table 2.  

 

Table 2. Image acquisition parameters 
 

 Anatomic 
imaging 

Diffusion tensor 
imaging 

Sequence 3DT1 SPGR SS EPI,  
25 directions 

TR / TE 30/7 ms 1000/98 ms 

Voxel size 0.625 x 0.625 
mm 

1 x 1 mm 

Slice 
thickness 

1.1 mm 3.3 mm 

Matrix 256 x 256 128 x 128 

Field of 
view 

350 mm 260 mm 

 

Image processing 

DTI data were used to calculate the following 6 scalar 
maps: T2-weighted images (DWI without diffusion 
sensitization – B0), directionally averaged raw DWI 
images, fractional anisotropy, longitudinal and radial 
diffusivity images, apparent diffusion coefficient maps. To 
obtain anatomical correspondence through the imaging 
modalities, postcontrast T1 scans were coregistered with 
the B0 images and eventually, all images were re-sampled 
to smaller matrices of 128 * 128 voxels. Intensity 
normalization of the 3DT1 images was performed with the 
built-in “enhance contrast” command in the ImageJ 
software tool (Abramoff et al., 2004). Tumor outlines were 
defined as the maximal abnormal region as seen on 
postcontrast T1 images and were validated by a 
neuroradiologist; manual delineation resulted in a binary 
tumor-mask file with dimensions identical to the 
resampled radiologic images. For high grade tumors, the 
maximal abnormal region was defined as T1 
hyperintensity while the extension of low grade tumors 
was derived from the parallel observation of T1 and T2 
images;   T1 hypointensity inside the encircling T2 
hyperintensity was delineated (to exclude the putative 
regions of oedema). Tumor segmentation, diffusion tensor 
calculation and coregistrations were executed using the 
Slicer 3D software package (Pieper et al., 2004), DTI scalar 
calculations were based on the equations described 
elsewhere (Basser and Pierpaoli, 1993). 

 
Figure 1. Glioma grade map generation. Work flow of the main 

image and data acquisition , image processing steps, numerical database 
creation. 

Data processing 

We utilized image information of the 40 patients to 
generate two different databases for the classifier training 
procedure. In each database, samples represented 
consecutive voxels’ values on the images and a categorical 
variable was also assigned voxel-wise resulting in a total 
number of 8 variables per voxel. Database “A” provided 
ground truth for separating the voxels sampled from a low 
grade tumor or a high grade tumor. In contrast, the aim of 
database “B” was to separate tumorous regions from non-
tumorous regions, as later described, this was only 
considered important for visualizing the results. Database 
“A” was built by sampling exclusively the intra-tumoral 
regions, the categorical variable was the tumor grade as 
determined by the histopathology workup (low grade=0; 
high grade=1) and this was assigned case-wise, without 
spatial control of the histology sampling. Database “B” 
included every intracerebral voxels, whereas the eighth, 
dichotomous variable described whether the voxel was 
intra-tumoral (value: 1) or of normal-appearing brain 
tissue (value: 0) as determined by the tumor-mask. The 
relationship between imaging data and the categorical 
variables (i.e. tumor grade, tumor or normal-appearing 
brain tissue) was analyzed voxel-wise by utilizing a feed-
forward, back propagation multilayer perceptron artificial 
neural network algorithm in the SPSS 17.0 for Windows 
software (SPSS Inc., Chicago, IL, USA). The training 
regime was based on the random splitting of the dataset 
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into three groups: training (70% of all voxels), interactive 
testing (20%) and independent evaluation sample for 
reporting the classifier accuracy, “holdout” samples (10%). 
This supervised learning method resulted in two 
distinctive models, the first aiming to predict the grade of 
the glioma while the other assesses if the voxel is sampled 
from a tumor or from the normal-appearing brain tissue. 

Grade maps 

Data acquisition and image processing steps are 
summarized in Figure 1.  

Data transfer between the statistical software 
package and the image processing application was carried 
out by a using a custom short program code (i.e. macro) in 
ImageJ. After the classifier training, the image dataset was 
re-evaluated for each patient and outputs were mapped to 
grayscale images. The voxel-wise outputs of the neural 
network were continuous variables that estimated the 
likelihood of voxel group memberships. Grade map 
generation consisted of the following steps. First, we run 

the a priori trained neural net based on database “A” to 
generate an image yielding low- and high-grade voxel 
membership probability maps (LGPM and HGPM). Then, 
the second neural network estimation – previously trained 
with database “B” – resulted in an image that quantified 
the probability of tumor-like regions (tumor probability 
map, TPM). To provide a graphical representation, LGPM 
and HGPM images were weighted with the tumor 
probability maps. Eventually, we defined the glioma grade 
map as a color-coded composite image where the color 
lookup table was specified as follows. Blue shade 
represents low-grade regions (LGPM), red shade is for 
high-grade regions (HGPM), and opacity is derived from 
the TPM, overlaid on the co-registered anatomical T1-
weighted image. The database structure for the classifier 
training is illustrated in Figure 2., while the intermediate 
gray-scale and the resulting color-coded images are 
exemplified in Figure 3.  
 

 
Figure 2. Dataset structure for training an artificial neural network classifier. Individual samples are image voxels of 40 subjects, each given a 

categorical variable: tumor label (e.g. 1 if the voxel was sampled from inside, or 0 if outside a tumor), histopathological diagnosis (1: low grade glioma, 2: 
high grade glioma). Values of 6 imaging features are exemplified. 

 

Validation of the results 

We found it practical to compute a variable that quantifies 
the overall estimated grade for each tumor volume; this 
was specified by the values measured over the tumors on 
the high-grade tumor probability maps, designated as the 
“grade index”. Due to the fact that the ANN algorithm 
used a decision value of 0.5 for discriminating the two 
grades, values from 0 to 0.5 represented low-grade while 
the 0.5 to 1 range indicated high-grade tumors – this 
partitioning was also tested by matching with the 
corresponding histopathology. Glioma grade maps were 
visually inspected; tumors showing pronounced regional 
heterogeneity on grade maps were further analyzed by 
comparing the imaging biomarker values with the 
microscopic and immunohistochemical findings such as 
the Mib-1 labeling index.  

RESULTS 

Databases were successfully generated by 
translating voxel-wise imaging and a priori grade 
information into a 2D matrix: database “A” consisted of 
162 609 whereas database “B” initially comprised 
approximately 12 million samples. To reduce the 
computational burden when working with database “B”, 
samples were randomly omitted, keeping only 5% of the 

extratumoral and intracerebral voxels in the database. 

The first neural network predicted the grade of 
voxels inside the tumor borders with 82.12 ± 1.84% 
accuracy (average of 10 runs, tested on the independent 
holdout sample, putatively marking the accuracy for new 
observations). Next, the intra-tumoral voxel membership 
was estimated correctly in 86.44 ± 0.41% of the samples. 
Grade index was calculated for each outlined tumor 
volume. For low grade cases it was 0.281 ± 0.164 (range 
0.012 – 0.601) while in high grade lesions it was 0.646 ± 
0.148 (range 0.331 – 0.837), the difference was significant 
(p<0.001, Mann-Whitney U test). Additionally, the grade 
index showed high correlation with the WHO grade (i.e. II, 
III or IV); Pearson score: 0.709, p<0.001. With the cut-off 
point set to 0.5, the grade index could identify high grade 
cases with 92.31% specificity, 85.71% sensitivity, AUC: 
0.967.  

Visual assessment of the TPM images, T1 anatomical 
scans and tumor outline ground truth data revealed good 
correspondence with the predicted borders, with the 
following exceptions. Normal-appearing brain regions 
contained false positive voxels with either blue or red 
appearance, mainly matching the borders of the gray 
matter and the cerebrospinal fluid; this error was reported 
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in 8 cases and could presumably be attributed to partial 
volume or co-registration artifacts (Figure 4/e, white 
arrow). Six illustrative images of various glioma subtypes 
and WHO grades were selected to demonstrate the 
diagnostic features of grade maps (Figure 4). 

 
Figure 3. Calculation of intermediate grayscale images and the 

color-coded glioma grade map. (a) low grade tumor probability map 
(LGPM), (b) high grade tumor probability map (HGPM), (c) tumor 
probability map (TPM), (d,e) LGPM and HGPM weighted with the  
TPM, (f) T1-weighted anatomical image. (g) glioma grade maps are 
generated by assigning color-code to the probability maps (d,e) and 

merging them with the postcontrast T1 images. 

 

The appearance of astrocytoma, oligoastrocytoma 
grade II and oligodendroglioma grade II tumors on the 
color-coded grade maps was blue (Figure 4/a). Sparse 
high-grade regions were identified in about six of the 17 
non-enhancing and otherwise homogeneous low-grade 
tumors (Figure 4/b) while the focal heterogeneity as 
marked by contrast-enhancement was revealed correctly 
in 77.8% (7/9) by regions of red hue in low grade gliomas. 
WHO grade III (high grade) oligoastrocytomas (Fig. 4c) 
and glioblastoma multiformes predominantly appeared 
purple to red, with marked heterogeneity as indicated by 
blue patches (Figure 4/d). In 4 of 40 cases, classification by 
the grade index proved incorrect, for which the following 
facts are assumed to be responsible. In a patient with a 
voluminous glioblastoma multiforme (Figure 4/f) this 
could be putatively ascribed to the relatively high presence 
of necrotic areas in the tumor, unmasked during the 
classifier training, hence areas inside necrotic masses were 
predominantly recognized as low-grade with markedly 
high-grade rims that closely resembled the contrast-
enhancing areas on T1 scans.  

 
Figure 4. Color-coded glioma grade maps depicting various 

glioma cases. (a) astrocytoma gr. II. tumors are shown as 
predominantly blue lesions. (b) oligoastrocytoma gr. II. In a number of 
cases where the histopathological evaluation judged the lesion as low-

grade, the grade maps revealed focal heterogeneity. (c) this astrocytoma 
gr. III. displays pronounced regional heterogeneity on the glioma grade 
map; whereas the contrast enhancing regions are well co-localized with 
the red regions resembling high grade characteristics. (d) glioblastoma 
multiforme tumor. (e) a misclassified low-grade case with high cellular 
atypia. Coregistration and partial volume errors are observed outside 

the lesion (arrow). (f) glioblastoma multiforme with voluminous 
necrotic areas, incorrectly classified as low-grade. 

 

In the other misclassified high-grade case, we found 
no justification for the result; although the designated 
grade index was just below the cut-off point.  The grade 
indices for the misclassified glioblastoma multiforme 
tumors were 0.331 and 0.48, respectively. Two low-grade 
tumors were improperly classified. In one case the 
pathologist described high Mib-1 labeling index (20%), 
hyperchromatic nuclei, geometric neovascularisation and 
a cellular atypia almost reaching the criteria for grade III 
classification; further on, closer clinical inspection was 
suggested for the neuro-oncology team. A cross-section 
image from the grade map of this case is shown in Fig. 4e. 
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The heterogeneous appearance of many tumors 
prompted us to investigate histopathological results in 
detail. It was found that the grade index was significantly 
higher in the group of tumor samples displaying 
pathologic endothelial proliferation patterns (p=0.01, 
Mann-Whitney U test).  The grade index showed strong, 

positive correlation with the categories of Mib-1 labeling 
index; i.e. low (0-4%), medium (4-10%) or high (>10%). 
Detailed evaluation of the relationship between tumor 
characteristics and the grade index is summarized in Table 
3. 

Table 3. The grade index as a quantitative imaging biomarker of gliomas: correlations with histopathology

 

 

DISCUSSION 

The current gold standard for determining glioma 
subtype and grade is surgical biopsy, which is subject to 
sampling errors. Small volume surgical samples may not 
represent the entire tumor, and due to the marked focal 
heterogeneity of gliomas, it may lead to the false 
determination of subtype. MRI guidance addresses this 
problem by specifying areas which presumably present 
more malign biological behavior: it is accepted that 
contrast enhancing regions of gliomas are brought about 
by the disruption of the blood-brain barrier. Further 
valuable radiological features of high-grade gliomas on 
gadolinium-enhanced MR images are signal intensity 
heterogeneity, necrosis, hemorrhage, degree of oedema 
and mass effect. To precisely characterize an entity of 
pronounced heterogeneity like gliomas, further 
information is required: perfusion studies, MR 
spectroscopy and diffusion measurements were found 
feasible for this objective. Such modalities allow 

calculating functional maps and imaging biomarkers 
(Galban et al., 2009; Ellingson et al., 2010) and have been 
shown to play a complementary role in assessing therapy 
response or pattern of recurrence. (Mardor et al. 2004; 
Verma et al., 2008; Pope et al., 2009). 

In our study, two databases comprising voxel-wise 
image data of 40 glioma patients were construed, whereas 
artificial neural network computing was utilized to re-
classify the original image voxels and by the same token, it 
becomes possible to classify voxels of undiagnosed cases. 
Grayscale images were generated that depicted the 
probabilities of tumor classification (LGPM and HGPM); 
and eventually, they were combined to produce color-
coded composite images, the grade map (Figure 3). In this 
image type, purple to red hue suggests higher grade, while 
low grade tumors mainly appeared blue. This graphical 
representation may allow fast tumor characterization. The 
neural network approach was effective in determining 
tumor grade of individual voxels, whereas a new variable 
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calculated from the voxel-wise outputs of the classifier – 
the grade index of entire tumor volumes – allowed 
sufficient classification. In terms of the correct 
determination of glioma grade, our results exceed the 
diagnostic power of conventional MR imaging as 
described by Law et al. (postgadolinium MRI: 72.5% 
sensitivity, 65% specificity; grade index classification: 
85.7% sensitivity, 92.3% specificity); however, it was 
reported that the feasibility of using perfusion MRI data 
vastly improves (95% sensitivity; 57.5% specificity). 
Arvinda and co-authors found that ADC, perfusion 
measurements and their combination could be 
successfully employed to characterize glioma grade 
(Arvinda et al., 2009). Herein we report similar results, the 
grade index being more specific compared to the ADC 
values alone (92.3% and 87.1%, respectively). Jakab and co-
authors previously described a multivariate discriminant 
analysis approach that uses histogram descriptors for 
classifying gliomas, the grade index based classification 
shows similar sensitivity and higher specificity (Jakab et 
al., 2011). While conventional MR imaging provides usable 
features to discriminate grade IV (GBM) tumors from 
grade II malignancies, the separation of grade III. 
anaplastic astrocytomas from low grades is inefficient; 
White and co-authors described that fractional anisotropy 
(FA) values and descriptors of the distribution of such 
values over the tumor volume can increase the sensitivity 
of grade II – III discrimination (White et al., 2011). Our 
method provides a novel way to incorporate FA as a 
feature. 

Our investigation has several limitations. The 
reproducibility of the artificial neural network (ANN) 
algorithm is often disputed; it is generally considered as a 
“black box” rather than an analytical approach. Increasing 
the number of processing layers in the ANN will reduce 
the classification error but consequently causes a loss of 
generalizability (Hagberg et al., 1998). In our investigation, 
the number of samples (i.e. voxels) was high and the 
resulting network structure was kept simple, hence we 
conclude that the network is not overtrained. It is believed 
that reproducibility issues would partially be resolved by 
employing other algorithms such as support vector 
machines which has already been shown promising in 
glioma grading (Li et al., 2006). Also, it would be desirable 
to perform the longitudinal scanning and grade map 
calculation of a single patient, to evaluate the inter-subject 
reproducibility of the proposed method. We used a split of 
training, testing and holdout samples to avoid evaluation 

on the same samples used for training. Nevertheless, 
prospective clinical testing is necessary to evaluate 
whether a radiologist can perform better with the 
presented tool than without it. We hypothesized that 
during the training procedure it is feasible to assign the 
same categorical diagnosis for each voxel in one particular 
tumor; however, this presumption required that 
pathological diagnoses were made from the analyses of 
representative tissue samples. Matching a specific set of 
voxels to the position of the surgical sampling would 
enable better correlation of voxel-wise imaging data and 
tumor grade. If the assumption is true that the grade index 
is a quantitative biomarker for depicting alterations in 
glioma microstructure representative for biological 
progression, it may also be hypothesized that the values of 
this biomarker for grade III tumors are between the values 
of grade II and IV gliomas. Albeit this was not confirmed 
by our study, the two grade III case had higher grade 
indices compared to low grade samples: 0.673 ± 0.161 and 
0.281 ± 0.164. This unusual distribution of grade indices in 
grade III tumors could be attributed to the low number of 
cases. Another limitation in our study design is the 
inclusion of tumors with mixed tissue composition like 
oligodendrogliomas; it is not evident that the same 
characteristic changes occur in terms of diffusion or 
relaxation parameters during the transition from any 
glioma subtype to higher grades therefore making it 
harder to generalize this phenomena. 

De Edelenyi and colleagues found that 
multidimensional MRI data could be used to create images 
demonstrating the classification or “nosology” of brain 
neoplasms; moreover, they suggested incorporating 
diffusion data in similar future studies. To the best of our 
knowledge, this is the first study that performs glioma 
characterization using machine-learning algorithms that 
combine imaging data of T1- and T2-weighted, diffusion 
anisotropy and apparent diffusion coefficient information.  

Grade maps are graphical representations of tumor 
subtype and heterogeneity whilst the grade index was 
defined as an overall estimate of tumor grade as 
determined by the assignments of classifiers. In a number 
of cases, our findings allowed identification of tumors with 
prominent regional heterogeneity and marked biological 
progression. The glioma grade map and grade index might 
serve as imaging biomarkers for the characterization of 
brain gliomas and complement preoperative information 
available for clinicians.  
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