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The power to assess potential outcomes and interven-
tion strategies is critical for epidemic preparedness.
But emerging and mutated pathogens always challenge
our current knowledge, pleading for fresh approaches
to explore their epidemic potentials up front.

This paper coupled a within-host viral dynamics
model and a between-host network model of Ebola
virus (EBOV) infection showing that its transmission
characteristics can be faithfully recapitulated.

Based on this multiscale model, EBOV’s incubation
period is predicted in the range from 2.6 to 12.4
days, while infected subjects can remain infectious
until day 17. The predicted basic reproductive number
(R0) differs by age-groups: the overall is 1.4 and
the highest is 4.7 for the 10-14 years old. Random
vaccination strategies can reduce R0 and case-fatality
rate, eliminate the possibility of large outbreaks, but
the effect depends on timing and coverage.

A random vaccination program can reduce R0
below one if 85% coverage is achieved, and if it
was conducted during the period from five months
before to one week after the start of an epidemic.
A vaccination coverage of 33% can reduce the
epidemic size by ten to hundred times compared
to a non-intervention scenario. Altogether, infection
characteristics and epidemic mitigation approaches
could be assessed using experimental data. An early,
age-group specific, and high coverage vaccination
program is the most beneficial.

c© 2017 The Author(s).
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21. Introduction1

Epidemics of infectious diseases are listed among the potential catastrophes and can be potentially2

misused as mass destruction weapons [1]. Overwhelming research efforts have been developed3

to early predict the danger of the epidemics but their crisis nature left scientists no better option4

than learning from the past [1,2]. However, confronting outbreaks of emerging infections requires5

swift responses and thus the ability to evaluate quickly and early potential outcomes [1]. As such,6

computer simulations of epidemic models undoubtedly hold the potential as the first-aid toolbox7

for decision making amid the crisis [1,3].8

A majority of epidemic modelling studies has exclusively relied on the availability of outbreak9

data [4–6]. This approach requires that sufficient incidence data are available; for example, data10

at the end of an epidemic or at least until its peak [7]. As such, it has limited applicability to11

newly emerging epidemics. Moreover, mechanistic models based on outbreak data are often12

oversimplified [8]. For example, the effective transmission probability [6] has been usually13

simplified as a single parameter that reflects collective effects of the contact rate with the14

infectious, the infectivity of the infectious, and the susceptibility of the susceptible. As a result,15

these key processes in the disease transmission are lost, especially the transient nature of the16

infection course [9]. In reality, the within-host infection process determines key parameters in
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Figure 1. Schematic presentation of the two infections processes in an outbreak. At the within-host level, viral

replication and immune responses race with each other that eventually determines an individual infectivity, for example,

his symptoms and possibly behaviours. At the between hosts level, infected individuals make contact(s) with susceptible

individual(s) that eventually lead to a transmission, depending on both the infectivity of the infectious and the susceptibility

of the susceptible.

17

the disease transmission [9–13]. In an infected subject, interactions between the viruses and18

immune responses shape the viral load dynamics that ultimately defines the incubation period,19

the transmission potential, and the recovery rate [11,14]. It is also evident that susceptibility to20

infection is not the same for all the susceptible but, among others, it is highly correlated with21

a subject’s age due to the aging of the immune systems [15,16]. Differences in the within-host22

infection profile as well as the susceptibility to infection complicate greatly epidemic models but23

at the same time underline their influential roles in determining epidemics features.24

The interplays between within-host infection and between hosts transmission (Fig. 1) led to25

arising attempts connecting the two levels [9,11,17–21], but the approach is still at its infancy [10].26

Most of these models are conceptual and theoretical [10], and rely on assumptive or previously27

obtained parameter estimates [14,22]. Thus, based on our thorough assessments of modelling28

within-host EBOV infection previously [12,13,23], we attempt to simulate EBOV transmission29

fitness at the population level using explicitly experimental and epidemiological data.30
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3In particular, we embedded a within-host infection model of EBOV infection directly into a31

network transmission model at population level to simulate epidemic trajectories. Both the used32

models were derived based on empirical data of EBOV infection and human contact networks.33

Parameters obtained from simulations were then compared to those estimated based on actual34

outbreak data and empirical observations. The results showed that using with-host infection35

model not only uncovered faithful estimate of the transmission parameters, but also allowed36

the evaluations of realistic vaccination effects. In that capacity, epidemic consequences can be37

evaluated ahead of time once within-host viral dynamics are available.38

Material and Methods39

In an EBOV-infected subject, different immune systems components dynamically evolve in40

response to the viral replication dynamic. As a result, a series of events is triggered determining41

infection outcomes such as infectious status, symptoms, recovery, or death [24–26]. Therefore,42

the EBOV replication dynamics within a host were used in this paper to infer transmission43

parameters.44

Within-host model45

Using viral dynamics and immune responses data within a host, mathematical relations can be46

defined to test hypothesized infection mechanisms [12,27]. In this context, non-human primates47

(NHPs) are the standard animal model for developing EBOV’s therapeutics and vaccines in48

humans [28,29] which recently has been used to develop an effective vaccine against EBOV49

[30]. Epidemiological and pharmacological studies reported that a viral load higher than50

106 copies/mL [29,31] is associated with a higher mortality rate, whereas observations on51

experimental data in NHPs showed that a viral load level higher than 106 TCID50 was fatal52

[24,25]. Here the viral load dynamics were simulated based on the model as follows [13]:53

dV

dt
= rV V

(
1− V

KV

)(
V

In + V

)(
1− Ab

KAb

)
(1.1)54

where rV ,KV and In denote the replication rate, the host’s carrying capacity, and a constraint55

threshold expressing the lag-phase growth of the virus. The parameter KAb represents the56

strength of the immune system at which the antibody titre inhibits the viral net growth rate [13].57

The model parameters were obtained previously [13] using two experimental datasets on NHPs58

[24,25]. The antibody dynamic (Ab) was fitted previously [13] to data of NHPs vaccinated with59

vesicular stomatitis virus (VSV-EBOV) vaccine [25]. The VSV-EBOV has recently showed efficacy60

in human [30]. Detailed of model fitting and data can be found in [13].61

Simulated subject-specific infection course62

To simulate subject-specific infection course, the antibody response strength KAb was varied63

from a normal level approximately 102.5 [25,32] to the highest observed level of 104.5 [25].64

This value was assumed to vary based on individual’s age, i.e., a U-shaped function of age65

with larger values for the infant and the elderly [15]. As infective dose can alter the course of66

infection [33], the initial condition V (0) of model Eq. (1.1) was varied depending on from whom a67

subject acquires the infection, i.e., equals the lethal dose (Vc = 100.15 [13]) times the transmission68

potential of whom transmits the disease. Here we assumed a direct relation [10] between the69

transmission potential and the viral load at the time of infection, i.e., the transmission potential70

pTrans(t) = V (t)/KV . Note that pTrans(t) = 1 does not guarantee a successful transmission, but71

it was considered collectively with its contacts susceptibility and with the existence of such a72

contact.73
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4Table 1. Definitions of transmission parameters based on viral load and epidemics outcomes based on network model.

Measure Definition

A Incubation period the interval between exposure to a pathogen and initial
occurrence of symptoms [4] was defined from the
infection time to the first time the viral load crosses over
the detectable threshold (Fig. S2).

B Time from symptom onset to
recovery [4]

defined as the interval between the first day of detectable
viral load and the first day the viral load goes
undetectable (Fig. S2).

C Time from symptom onset to
death [4]

defined as the interval between the first day with
detectable viral load and the day the area under the viral
load curve (AUC) crosses the reference threshold AUC7

(Fig. S2).
D Basic reproductive number

(R0)
calculated based on the network of infected subjects at
the end of an epidemic. In terms of network models,
this equals the mean degree distribution of the infected
network, considering a directed network without loops
(e.g., Fig. S3). The R0 by age-group was also calculated
in the same fashion based on the assigned age-attribute.
Note that in epidemics with intervention, the R0 is called
the effective reproductive number (Re).

E Final infected fraction the proportion of infected nodes at the end of the
epidemic simulations.

F Case-fatality rate the proportion of nodes died as a result of EBOV infection
calculated as the end of epidemics.

Infection outcomes definitions74

Empirical observations from both EBOV infected human and NHPs showed that the time from75

symptom onset to death is approximately one week [24,25,34]. Based on this and the viral load,76

we used the total area under the viral load curve (AUC) seven days post-infection in the subjects77

that died as a threshold above which the infection is lethal, i.e., AUC7 =
∫7
0 V (t)dt. Otherwise,78

infected subjects were assumed recovered once the viral load was no longer detectable (Fig. S2).79

Depending on the infective dose and the adaptive immune response strength, an infection will80

manifest different viral dynamics. Based on that, we defined the transmission parameters as in81

Table 1A-C.82

The network model83

The European’s contact patterns survey data [35] were used to generate a network model84

reflecting the number of contacts, the mixing patterns among age-groups, and a specific85

population age-structure. The age-distribution of the city Freetown in Sierra Leon was used as86

the reference [36]. A detailed description of the implementation can be found in Supplemental 1.87

Because EBOV spreads through direct contacts with infectious subjects [33], and that the highest88

risk of infection is contacting with blood, faeces, and vomit [37], we used only the data of physical89

contacts and excluded those contacts with a duration less than five minutes. To account for the90

transmission route through funeral practices in EBOV outbreaks [2], we considered deceased91

EBOV-infected subjects infectious until they were buried. During the last epidemics in Sierra92

Leone, the time from death to burial was one to two days on average but can be a week [38].93

This number was randomly assigned using a truncated normal distribution at zero and seven94

with unit mean and variance.95
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5Transmission outcomes definitions96

To obtain EBOV’s epidemics metrics, the within-host infection model was embedded into97

network model. Simulations of EBOV epidemic are detailed in Supplemental 2. In short, a98

network of ten thousand nodes was generated. Scenarios in which the population was randomly99

vaccinated during one-week vaccination programs were tested and compared to a control100

simulation without interventions. For each scenario, one thousand simulations were performed,101

each of which started with a single random index case. Each time when a contact occurs, the102

viral load at the time point was extracted to determine the transmission potential. Next, the103

susceptibility of the contact persons were computed as a function of their age [15]. A Bernoulli104

trial was then used to determine if the contact results in an infection given the overall transmission105

probability. If the transmission succeeds, the newly infected subject has its own infection106

profile computed. Based on simulation outputs, the epidemic outcomes were determined as in107

Table 1D-F.108

Results109

Basic transmission characteristics110

Simulations of the outcomes of the within-host infection model showed a highly skewed111

distribution of the basic transmission parameters (Fig. 2). The incubation period derived from
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Figure 2. Extrapolations of the delay distributions post EBOV infection using within-host infection model.

Simulations of the with-host infection model with varied infective dose and immune strengths. The median of the three

distributions are 9, 9.7, and 3.8 for A, B, and C, respectively.

112

viral load dynamics ranged from 2.6 to 12.4 days (median: 3.8) compared to the previous estimates113

based on actual outbreak data ranging from 3.35 to 12.7 days [4]. The delay time from infection114

to recovery ranged from 6.9 to 17.6 days (median: 9.7). Previous estimates of this interval ranged115

from 2 to 26 days (median: 10) [4]. The time from infection to death ranged from 8.1 to 15.1 days116

(median: 9) compared to previous estimates ranged from 3 to 21 (median: 9–10) [4].117

Basic reproductive number (R0)118

Simulation results showed that the overall estimate of the R0 was 1.43 (Fig. 3). However, the119

estimates differed by age-groups with the highest of 4.7 for the group of 10-14 years of age.120

Generally, the age-groups with a higher contact rate had also a higher R0. Simulations of121

epidemics with varied intervention strategies showed that the Re can be reduced below one122

if the vaccination program with 85% coverage were deployed as far as five months before the123
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Figure 3. Estimates of the basic reproductive number without any intervention, overall and by age-groups.

Simulations of a network of size ten thousand during a period of one year. One thousand simulations were run, each

time with a random index case. At the end of each simulation, networks of infected nodes were extracted to compute the

average number of secondary infections.

introduction of the index case (time zero) or as late as one week after that (Fig. S4). This coverage124

threshold was tested as it is the highest vaccine coverage currently achieved worldwide for some125

diseases, e.g. Hepatitis B, measles, and polio [39]. Late initiations of similar interventions from126

one to five months after the time zero gradually shift the Re to the outbreak domain.127

A lower vaccination coverage of 33% appeared not protective and posed a potential of128

outbreak regardless the time of vaccination program (Fig. S4). This coverage was tested as it is a129

theoretical protective threshold, i.e., 1-1/R0 [40]. Note that the tested time window of five months130

before the appearance of the index case was chosen based on the windows of opportunity for131

EBOV vaccination [13]. As of now, no data are available on the secondary antibody responses to132

EBOV; it was assumed that secondary responses are similar to the primary responses.133

Case-fatality rate134

Simulations showed that the case-fatality rate in the absence of intervention is 90.93% (Fig. S5)135

which falls in the range of literature estimates of 0.4 to 0.91 [4]. Furthermore, simulation results136

showed that all the intervention strategies mentioned previously can reduce the case-fatality rate.137

These results highlight a benefit of vaccination programs even they are late, i.e., they can reduce138

the disease severity in newly infected subjects after the vaccination program. As such, relying139

solely on R0 as the indicator for evaluating intervention programs could have overlooked this140

life-saving aspect.141

Epidemic final size142

Theoretical analyses of epidemic models showed when the R0 is larger than one, the final143

size of an epidemic will converge to a two points distribution: either the epidemic dies out144

with a small number of infected cases or the epidemic takes off and converges to a normal145

distribution [40]. Simulation results confirmed this epidemic behavior (Fig. 4). The results showed146

that without intervention, EBOV had approximately 50% to infect more than half the population.147

The introduction of vaccination programs at both the coverage thresholds previously mentioned148

and at any vaccination time points under assessments were able to scale down the epidemic149
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Figure 4. Distribution of the final infected fraction in different timing and coverage of vaccination strategies.

A synthetic population of ten thousand individuals was generated. One thousand simulations were run to simulate the

epidemic in the time course of one year. Each time, one individual was chosen randomly as the index case. Circles,

diamonds, and connected lines are median. Filled areas are the corresponding non-parametric densities estimates [41].

Two median values are presented for multi-modal density estimates, determining by inflection points.

size (Fig. 4). The two points epidemics size distribution gradually converged to a uni-modal150

distribution centring at a low infected fraction when the vaccination programs were deployed151

earlier. The high vaccine coverage strategy can effectively eliminate the possibilities of having a152

major outbreak infecting a large proportion of the population. This can be achieved when the153

vaccination programs were deployed any time from a week to five months before time zero.154

A random vaccination program covering 33% of the population one week before the epidemics155

can reduce the final size by more than 100 times compared to a no intervention scenario.156

However, the low coverage strategy still showed a small probability that epidemics can become157

major whereas the high coverage strategies did not. Vaccination programs deployed during the158

epidemics can also substantially reduce the epidemics size. The intervention conducted one159

month after time zero can also reduce the final size by more than ten times. These interventions160

not only able to reduce the final size, but they can also increase the epidemics extinction161

probability.162

Discussion163

Epidemic modelling aims to obtain generalized solutions to questions such as whether or not a164

substantial population fraction is getting infected? how large would the outbreak spread? and165

how can the outbreak be mitigated with certain intervention approaches [6,40]. Answering those166

questions requires the use of assumptive parameters as well as actual outbreak data [6,14,22,167

40]. Our results showed that using information on within-host infection dynamics allows the168

identification of those key characteristics in the disease transmission.169

Estimates of the incubation period suggest a contact tracing period of three weeks for Ebola170

epidemics, matching the current WHO’s recommendation of 21 days [42]. Estimates of the delay171

distributions agreed that EBOV infected subjects can be infectious from day 3 up to three weeks172

post infection [4]. Understanding of these delay distributions is critical in both clinical and173
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8epidemiological perspectives [43]. These distributions, however, are most often only partially174

observed in practice: it is difficult to know the exact time of exposure to the pathogen or175

to have complete outbreak data [5,44]. As such, parameter estimation of these distributions176

have been relied on testing and comparing different distributional assumptions [44]. In this177

paper, mechanistically generated transmission characteristics using viral dynamics remarkably178

resemble literature estimates of Ebola. This approach is thus promising and practical given the179

accumulating experimental data on varieties of pathogens, notably, the one that as yet unknown180

in epidemic contexts.181

To determine infection outcomes, the threshold AUC7 was chosen based on suggestions from182

empirical data in humans [34] and non-human primates [24,25]. Simulations of the epidemics183

using this threshold revealed faithful estimates of the EBOV case-fatality rate (Fig. S5), supporting184

the use of the total viral load (AUC) as a criterion for determining infection outcomes. Although185

a more precise threshold criterion is desirable, it might not be feasible to obtain in practice186

considering inherent ethical reasons. Thus a similar criterion could be considered when adapting187

this approach to other infectious diseases, but ideally with dedicated experimental data.188

Different classes of network models have been proposed, but they cannot reproduce properties189

observed in real world networks [45]. Thus, a network model obeying empirical data provides a190

more solid ground for epidemic simulations. Apart from mimicking the contact data properties,191

our network model can express age-related infection traits via the assigned age attributes. It was192

used here to express individual differences in the susceptibility to viral infection - an important193

element in a realistic disease transmission. Although contact data might not be available for a194

certain target area, the assortative patterns of human contacts and the highly skewed distribution195

of the number of contacts might hold true across regions and cultures [35,46]. Thus, the model196

demonstrates a simple way to bring empirical data into epidemic modelling studies.197

Previous R0 estimates based on EBOV outbreak data were diverse, depending on model198

choices and assumptions [4]. Our estimate of R0 was 1.4 which is within the range of the previous199

estimates, ranging from 1.2 to 2.6, with some exceptional estimates up to 4.7 and 8.3 [4]. Notably,200

the estimates differed by age-groups with the highest of 4.7 for the group of 10-14-years of age.201

Although these estimates depend on Sierra Leon’s age-structure, the differences of R0 estimate202

stress the role of the age-structure and contact patterns in the estimation of R0, prompting that203

age-specific intervention strategies should be considered. The estimates by sub-groups single out204

the effort required to control the epidemic [7]. With current assumptions, targeting interventions205

to the group 5-20-years of age could be an effective strategy. Note that the differences of R0 by206

age-group could explain the wide variation of the previous estimates where different samples207

were employed [4].208

The following assumptions were used in the paper given the lack of specific experimental data,209

but further efforts to produce data are needed to refine and to adapt to other settings: (i) Secondary210

antibody responses are the same as primary responses: This underestimates the effect of the211

vaccination strategies conducting before the epidemics. Experimental studies on secondary212

immune responses to EBOV infection are needed, especially those with a longer follow-up period.213

(ii) The transmission potential is directly related to viral load: This is although simple and214

reasonable, but different types of relationship, such as non-linear, might exist [10]. Dedicated215

animal experiments to define the exact relationship between the viral load the ability to transmit216

the virus are needed. (iii) The contact pattern is the same between European countries and217

Sierra Leone: Although the contact patterns seemed similar across countries [35], a more sociable218

population would increase the estimate of R0. (iv) Infection statuses have no influences on the219

network structure, except those were buried. This could overestimate R0 [47]. Taking people’s220

behaviour changes into epidemic modelling remains a grand challenge [47]. (v) Susceptibility to221

EBOV infection is similar to a general viral infection disease: Studies on susceptibility functions222

are lacking and require more attentions of the infection research community.223

Throughout this paper, we showed the possibilities to investigate practical and intriguing224

questions using a within-host viral dynamic model. The advantage of this approach is the225
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9availability of experimental data and the possibility of conducting experiments to characterize226

epidemic transmission. Therefore, in vitro and in vivo studies of infectious agents could be227

seamlessly integrated into studies of between hosts transmission, promoting evidence-based228

public health practices.229
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