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Introduction 

Parent-of-origin effects (POEs) describe the phenomenon in which the effects of alleles 

depend upon their parental origin. POEs imply that heterozygote individuals have phenotypes 

which are distributed differently depending upon which of their alleles were maternally and 

paternally transmitted (Guilmatre and Sharp 2012; Lawson et al. 2013). The extreme case of 

POEs is polar overdominance, where the two heterozygotes' phenotypes differ in distribution but 

the two homozygotes share the same distribution (Hoggart et al. 2014). Imprinting, a 

phenomenon in which one parent's allele is not expressed, is probably the most widely studied 

example of POE (Peters 2014). 

POEs have traditionally been examined in the context of development, where, in mouse 

models, they have been associated with body size and social behavior (Peters 2014). One 

evolutionary explanation of POEs concerns genomic conflict between maternal and paternal 

genes in offspring, with paternal genes encouraging growth and solicitation of maternal care, 

even at the expense of the mother's health, while maternal alleles are orientated toward success 

of all offspring, which do not necessarily share paternity (Patten et al. 2014). Other evolutionary 

explanations for POEs include: different territorial patterns in males and females and 

coadaptation of maternal and offspring genomes to maximize the efficiency of nurturing 

behaviors like suckling and grooming (Peters 2014). 

Whilst there is considerable support for the importance of POEs in animals (Neugebauer 

et al. 2010; Lawson et al. 2013), evidence for the existence of POEs in the etiology of complex 

human traits and diseases is mixed, in part due to the relative paucity of genomic data from 

families (Kong et al. 2009; Guilmatre and Sharp 2012). Before the genomics era, the children-of-
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twins design (Nance and Corey 1976), pedigree analyses (Hall 1990), and parent-offspring 

regressions (Clemons 2000; Smith et al. 2007) provided some limited evidence for the existence 

of POEs in human populations. These approaches were not often able to distinguish parental 

effects (indirect effects of the parental genotype on offspring phenotype) from POEs (interaction 

between the sex of the transmitting parent and the direct allelic effect in offspring) (Hager et al. 

2008). More recently, in the genomics era, genome-wide association studies incorporating 

parent-of-origin information have been used to identify POEs at individual loci for age at 

menarche (Perry et al. 2014) Type I diabetes (Wallace et al. 2010), Type II diabetes, basal cell 

carcinoma, and breast cancer (Kong et al. 2009). 

We propose a method, G-REMLadp, to estimate the phenotypic variance due to POEs 

across the genome by applying restricted maximum likelihood (REML) to offspring genome-

wide genetic relatedness matrices and phenotype data. Our method involves the construction of a 

genetic relationship matrix indexing the parental origin of offspring alleles using genome-wide 

SNP data from parent-child duos or trios. The proposed method is an early adaptation to human 

genetics of procedures developed for animal breeding (Schaeffer et al. 1989; Spencer 2002; 

Nishio and Satoh 2015). The genotypic coding for POEs, which we adopt here, is based on the 

model outlined by Spencer (2002, 2009) and implemented by Nishio and Satoh (2015) in the 

context of genomic prediction. The genotype coding we used for dominance effects is due to Zhu 

et al., (2015), who designed it to be orthogonal to the allele count at a locus; it is also orthogonal 

to the POE coding, which distinguishes our approach from that used by Spencer, Nishio and 

Satoh, and others. Using these codings, the phased genotype at a locus is coded using three 

orthogonal components: an additive-coded genotype, a dominance-coded genotype, and a POE-

coded genotype. 
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To estimate the power of G-REMLadp to estimate non-null POEs, we provide an 

approximation using Haseman-Elston regression (Elston et al. 2000; Chen 2014). We also used 

simulated data to estimate the power and Type I Error rates of G-REMLadp, as well as the 

sensitivity of its variance component estimates to violations of assumptions. We then applied G-

REMLadp to 38 phenotypes related to body size and obesity, metabolic traits, and IQ in a sample 

of up to 4689 individuals from a UK-based longitudinal study of childhood health and 

development. 

Methods 

G-REMLadp uses REML to fit a linear mixed model incorporating random additive 

effects, dominance effects, and POEs to human genomic data, with the goal of partitioning 

phenotypic variance into components reflecting these sources of variation tagged by genome-

wide SNP chips. In this model, at each locus, the phased genotype of each individual �� �
��,������� , ������� , ���� is expressed as 3 orthogonal components, which are then 

standardized. The codings for each of the 3 components are listed in Table 1. The standardized 

additive-coded genotype is the standardized minor allele (A) count at the locus. The derivation of 

the standardized dominance-coded genotype is given in Zhu et al. (2015); and a flexible 

equivalent coding is given in Álvarez-Castro (2015). The POE-coded genotype is -1 for the 

paternal-minor heterozygote (������), where ��� indicates that the major allele was inherited 

from the mother and ���  that the minor allele was inherited from the father), as 1 for the 

maternal-minor heterozygote (������), and 0 for both homozygotes, and is then standardized. 
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The mixed model is given in Equation 1, where 	 is a vector of phenotypes; 
�is a 

column vector of means; the vector �� includes any fixed effects of covariates �; the 
s are 

� � � matrices containing the standardised coded genotypes, represented as one individual per 

row (sample size �) and one SNP per column (� markers affect the phenotype; in empirical 

data, this will be replaced by ��, the number of observed markers, while in power analyses of 

empirical data, this will be replaced by ��, the number of effective markers); the � are �-

vectors of additive effects, dominance effects and POEs, which are assumed to be independently 

normally distributed with mean 0 and variances that are inversely proportional to the number of 

markers affecting the phenotype Var���� � ��	��
�� (� is the � � � identity matrix), Var���� �
��	�

��, Var���� � ��	��
��, respectively, and � is a normal error variable with mean 0 and 

variance ��
�� that is independent of the other variables on the right hand side of the equation. 

Figure 1 gives the phenotypic means at each phased genotype in the upper panel, while its lower 

panel illustrates how the phased genotype is represented as the three orthogonal standardized 

coded genotypes. 

1: 

	 � 
� � �� � 
��� � 
��� � 
��� � � 

The primary concern of this paper is with the partitioning of phenotypic variance 

components according to Equations 2 and 3, which present the problem in vector and individual-

based forms, respectively. 

2: 

Var�	� � � ��	 � 
� � ����	 � 
� � ���� 
� ��	��

�
�

� � ��	�


�
�
� � ��	��

�
�

� � ��
�� 
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where the matrices 

� are � � � matrices giving the cross-products, across all loci, of 

individuals' coded genotypes. The elements of Var�	� are given by 

3: 

!Var�	�"�� � ��	 #∑�
�

��
%�,���
 � �

%
,���
 � ��
%�,���
 & � ��

� ��
 � �

 � ��
 � ��


!Var�	�"�� � ��	 #��
∑�
�

%�,���%�,��� � �

∑�
�

%
,���%
,��� � ��
∑�
�

%�,���%�,���&
� ��
'�� � �

(�� � ��
)��

Var�	� � ��
' � �

( � ��
) � ��
��

 

The second equality in Equation 3 is because the mean squares of each individual's 

standardized genotype codings are expected to be 1 in the absence of inbreeding. 

The bold-faced Greek characters on the final line of Equation 3 are used to denote the 

genetic relationship matrices (GRMs) for the three coded genotypes; the additive GRM is  , the 

dominance GRM (, and the POE-coded GRM is ). These are are averages over all effective 

markers of the sums of squares and cross-products of individuals' standardized coded genotypes. 

Statistical Methods 

Assumptions 

Using REML to estimate the variance components model given in Equation 2 requires 

that several assumptions (both statistical and genetic) be met in order for inference about the 

model to be legitimate. In addition to the normality assumptions given above, G-REMLadp 

fitting of the model in Equation 3 assumes Hardy-Weinberg Equilibrium (HWE) and accuracy of 

phasing. Departures from HWE (such as non-random mating and differential allele frequencies 
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in male and female parents (Falconer and Mackay 1996)) break the orthogonality of the POE-

coded genotype with the additive-coded genotype and the dominance-coded genotype. Non-

random mating could decrease the frequency of heterozygotes, while sex-specific allele 

frequencies cause the frequencies of the ������  and ������  heterozygotes to differ. Accurate 

phasing is required so that the different heterozygotes are correctly called; if they are not, *� is 

measured with error, diluting estimates of the *�, �+ association, hence downward-biasing 

estimates of ��
. 

Power analysis via Haseman-Elston regression approximation 

The power of G-REML analysis can be approximated in a Haseman-Elston (HE) 

regression framework where each distinct pair of individuals in the sample is used as the unit of 

analysis (Elston et al. 2000; Chen 2014; Visscher et al. 2014). In this framework, the outcome 

variable is the centered cross-product of phenotypes for each pair of unrelated individuals in the 

analysis (denoted ,��  for individuals - and .) and the predictor variables are the GRM entries 

under additive-coding (���), dominance-coding (/��), and POE-coding (0��) of the pair. The 

coefficients of the predictors in the associated ordinary least squares regression are estimates of 

the phenotypic variance due to each type of effect. This is similar to unweighted least squares 

estimation in covariance structure modelling (Browne 1982). Wald tests of significance for the 

variance components can be made using the assumption that the residuals in the regression are 

approximately normally distributed (Chen 2014). 

The coded genotypes are orthogonal at each locus, meaning that the ', (, and ) matrices 

are expected to be uncorrelated with increasing sample size and number of loci (assuming 

random mating). For example, 
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4: 
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%
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,���5  by orthogonality of codings at each locus

F ��
 1 1 %�,���
�

���

�

�

%
,���G����	�
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The sum over individuals . (in parentheses starting in the fourth line of the equation) will 

have mean 0 and variance ��	 over repeated sampling, which we denote using the G� notation to 

imply that its value is bounded in probability by Chebychev's inequality as � increases (Bishop 

et al. 1975, ch 14); the equality is approximate because the sum over individuals is not strictly 

uncorrelated with %�,���%
,���. To get this wide bound, we also assume that the product of the 

additive and dominance codings between individuals - and H averages to be 1 over loci; because 

the product of the additive and dominance codings for two loci both with minor allele frequency 

I is �√2�L I⁄ � 
⁄ , this assumption might be violated if many rare variants were used in the 

analysis. In the empirical analysis, the off-diagonal elements of the GRMs were uncorrelated 

(N�,�� �,N�,�
 �, N�,�
 �); Supplementary Figure S2 illustrates this; while Supplementary Table S3 

shows that the diagonal elements of the empirical GRMs were close to 1. 
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Equation 4 means that simple HE regressions of Y on each coded genotype's GRM will 

yield the same estimates (and associated Wald test statistics) as a multiple regression, and we can 

analyze the power of simple regressions but fit multiple components in practice. The Wald test 

statistic of a variance component, POE for example, is given by O
 F P � �̂
�


 /Var ��̂
�

 �
�̂�

" /Var ��̂�


 . By assuming that a given variance component (i.e. the HE slope) is nonzero, the 

power of this Wald test depends on the noncentrality parameter of the associated statistic. The 

derivation of the noncentrality parameter is parallel for each type of coded genotype, so we focus 

on HE regression of POEs, following the example given for additive effects by Visscher et al. 

(2014). 

Starting with standardized outcomes and predictor (where vech is the operator which 

transforms a symmetric matrix to a column vector of its lower-diagonal elements (Henderson 

and Searle 1979)). Simplifying assumptions are required: 1) , is approximately normal (very 

unlikely for a cross-product phenotype) so that the Wald test statistic has an P distribution with 1 

degree of freedom in the numerator and 1 2⁄ ��� � 1� � 2 degrees of freedom in the 

denominator; and 2) the amount of variance in , explained by T is so small and the sample size 

so large that the Wald P test statistic is well approximated by a O	
 random variable. 

We derive results for a set of � independent loci. The numerator of the Wald test statistic 

is the square of the estimated regression coefficient �̂
�


 � Cov�,�� , �0���
/Var�0���
. For 

individuals - and ., the expected covariance between , and 0 is 

5: 
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Cov�,�� , �0��� � � 4��
���0�� � �

/��0�� � ��
0��
 � 0�� #��� �
��	 ∑�
��	

%�,���%
,��� � ��� ����	 ∑�
��	

%�,���%�,��� �
� ��
�����0��� � �

��/��0��� � ��
��0��
�
� ��
� #��	 ∑�

��	

∑�
#�	

%�,���%�,���%�,��,#%�,��#& � �

� #��	 ∑�
��	

∑�
#�	

%
,���%
,���%�,��#%�,��#& � ��
��0��
�
� ��
� #��	 ∑

��#

%�,���%�,���%�,��#%�,��#& � �

� #��	 ∑
��#

%
,���%
,���%�,��#%�,��#& � ��
��0��
�
� ��
��0��
� � ��
Var�0���

, recalling that the coded genotypes are orthogonal within a locus. This derivation shows 

that the HE regression coefficient in the population is ��
, hence the numerator of the Wald test 

statistic is ��". 

The denominator of the Wald P test statistic is the error variance per degree of freedom, 

divided by the variance of the predictor variable, i.e. Var�W�/ �Var�0�� � XY� . Here we use the 

approximation that Var�W� F Var�,� � 1. HE regression uses the distinct pairs of observations 

as the units of analysis, so the denominator degrees of freedom are 1 2⁄ ��� � 1� when 

estimating the variance component and an intercept term. The variance of the POE GRM 

calculated at any single locus can be shown by direct calculation to be 1, which is also true for 

the additive effect and dominance effect GRMs (given assumptions). Var�0��� is interpretable as 

the variance of the average of these component GRMs over �� loci, hence is ��
�	 in this simple 

model. A more accurate approach (for additive effects) is given in Appendix 1 of Goddard 

(Goddard 2009), in which the variance in relatedness is averaged over the number of effective 

loci given variation in pedigree as well as linkage disequilibrium. Visscher et al. give an 

empirical estimate of the number of effective loci for GRMs calculated using genome-wide 

common SNPs in the HapMap3 panel, hence they suggest using Var����� � 2 � 10�$ (Visscher 

et al. 2014). In our model, the denominator of the Wald test statistic is 1/���
�	�0.5��� � 1� �
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2�� F 2��/�
. This means the mean Wald test statistic is approximately �
��"/2��, which is 

referred to a O	
 distribution because the denominator degrees of freedom in the P-test are very 

large. This derivation is nearly identical to that used in (Visscher et al. 2014), so it is possible to 

use their online tool (http://cnsgenomics.com/shiny/gctaPower/) to determine the power to detect 

a variance component of a particular size. 

For �� loci and sample size �, the noncentrality parameters of the O	
 test statistic are: 

6: 

]� � 0.5��
�	��� � 1���"]
 � 0.5��
�	��� � 1��
"]� � 0.5��
�	��� � 1���"

 

In our simulations, we used the true �, as loci were simulated without LD; in practice, 

we recommend the approximation ��
�	 F 2 � 10�$ (Visscher et al. 2014), although its 

application to dominance effects and POEs is based only on analogy with additive effects and the 

number of effective loci will differ depending on which SNP panel is used. 

Implementation 

G-REMLadp requires a set of phased genotypes, each with parent-of-origin assignments. 

Mitochondrial DNA and X chromosome SNPs are excluded from analysis. In the empirical 

analysis, we used a Perl script to assign parent-of-origin to genotypes which had already been 

phased, as described below. Given a set of phased, parental-origin-assigned SNPs, we first 

recoded each genotype to the three-term orthogonal coding given in Table 1, stored this data in 

the software package MACH's (Li et al. 2010) "dosage" format, and then called GCTA in order to 

generate GRMs for the three variance components. GCTA's --make-grm and --make-grmd (Zhu 

et al. 2015) make the appropriate GRMs for the additive and dominance effects directly from the 
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MACH-formatted phased genotype. However, for POEs, we recoded each locus (in R) by 

subtracting the paternal minor allele indicator from the maternal indicator and writing this to an 

appropriately formatted .mldose.gz file, then generated an .mlinfo.gz file from the relevant 

sources for the SNP data set. We input the .mldose.gz and .mlinfo.gz files to GCTA's MACH 

dosage function (--dosage-mach-gz) to generate the POE GRM. We then input the additive, 

dominance, and POE GRMs to GCTA, with the phenotype and covariate files, in order to fit the 

mixed model and estimate variance components. We chose to estimate the variance components 

without constraining them to be positive so that the null distribution of test statistics would not 

be a mixture (Visscher 2006). We also used the AI-REML algorithm instead of the Newton-

Raphson or EM algorithms in order to fit the model quickly. 

Simulations 

We simulated data according to the G-REMLadp model in order to: 1) evaluate the 

predicted statistical power using the Haseman-Elston regression approximation; 2) test the bias 

and variance of the method in response to violation of its assumptions; and 3) assess 

computational requirements. In simulation studies, data were simulated according to Equation 1, 

and variance components were estimated using both HE regression and GCTA software. The 

goals were to estimate the bias and variance of the variance component estimators, the agreement 

between HE and GCTA estimates, and the empirical power and Type I error rates of the HE test. 

The design factors were: ssample size � � 1000, �2000, �4000, �5000, �7500, � �
500, �1000, �3000, �5000 SNPs; ��
/Var�+� � 0, �0.017, �0.033, �0.1; 

�

/Var�+� � 0, �0.017, �0.033, �0.1; ��
/Var�+� � 0, �0.017, �0.033, �0.1; a violation of HWE—

simulating maternal and paternal genotypes with different minor allele frequencies (either no 
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difference, or mothers' allele frequency greater than fathers' by 0.05) so that the POE-coded 

genotype is no longer orthogonal to the other two codings (which remain mutually orthogonal); 

and a second violation of HWE-simulating parental genotypes to be correlated at N � 0 or 

N � 0.25, on average across all simulated loci, so that the diagonal entries of the GRMs are on 

average less than 1 and results might be less stable numerically. The sample size and number of 

loci used were constrained to be small due to computational requirements; computing GRMs at 

genome scale (� a 5000,��� a 10%) and fitting models to them required 100% use of at least 

16 processors for approximately an hour, which is feasible for single empirical analyses but not 

in factorial simulations with thousands of replications. The SNPs were simulated to be 

independent with minor allele frequencies uniformly distributed between 0.01 and 0.5. Because 

there were relatively few of them, the simulated SNPs had much larger individual effects than 

would be expected in empirical data. We chose to simulate violations of HWE to test the 

robustness of G-REMLadp to violations of its assumptions, and as a way of widening the breadth 

of the simulations. Realistically, most samples in which G-REMLadp could be applied will have 

filtered SNPs for violations of HWE as part of routine QC (Laurie et al. 2010). A total of 7500 

replications were simulated, but in the simulation results presented here, these factors were not 

completely crossed. 

Three measures were used to evaluate the method: 1) empirical relative bias, the average 

difference between the simulated variance component and the value estimated in a replication, 

given as a percentage of the true value of the simulated variance component (except for null 

variance components, where we give the absolute bias); 2) empirical sampling variance, the 

variance of estimated variance components over replications; and 3) power/Type I error rate, the 
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proportion of replications in which the Wald test of a null variance component exceeded the 95% 

critical value under a simulated non-null/null effect. 

We expected power to increase with increasing samples size and variance component size 

and decreasing number of loci, and expected empirical variance to decrease according to the 

same pattern. We expected that violation of assumptions would lead to detectable bias. 

Empirical Analysis 

We applied G-REMLadp to a sample of up to 4689 individuals gathered as part of the 

Avon Longitudinal Study of Parents and Children (ALSPAC), a prospective study of health and 

development beginning at pregnancy. We considered 38 different phenotypes which had been 

previously associated with POEs or which were related to body size, development, or social 

functioning. 

See the Supplementary Material for further description of the sample, including the quality 

control procedures that we applied to it. The sample, the longitudinal study and its context, as 

well as its genotyping, are described in detail in two papers (Boyd et al. 2012; Fraser et al. 2013). 

The 38 phenotypes, along with estimates of additive effects, dominance effects, and POEs, are 

listed in Supplementary Table S1. All phenotypes were inverse-normal transformed prior to 

estimating variance components (Peng et al. 2007); fixed effects of sex and the first four 

ancestry-informative principal components were modelled. Parental effects and POEs have been 

previously studied in trios in this sample (Smith et al. 2007), but not genome-wide for the 38 

phenotypes. 
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Results 

Simulation Results 

Power and sample size 

Sample size curves at a Type I error rate of 5%, based on the HE approximation, are 

given in Figure 2, for POEs responsible for 1%, 3%, 10%, and 15% of the total phenotypic 

variance explained, tagged by 100000 loci. Figure 2 shows that a sample size of over 10000 

genotyped duos or trios, with probands having phased genotypes, is likely necessary to detect the 

largest conceivable parent-of-origin effect variances and that a sample of 50000 individuals will 

be needed to detect POEs accounting for F 1 � 3% of phenotypic variance, which was the size 

observed by Lopes et al. (2015). Figure 3 gives the empirical power, which was high because 

such large effects were simulated and because �� was low, with a median value of 2000 

effective loci. 

The test involving HE regression is based on further simplifying and adding assumptions 

to the G-REMLadp procedure, hence discrepancies between the two approaches were expected, 

with the concern that large discrepancies would render the approximate power calculations 

unhelpful. Table S2, in the Supplementary Material, shows that the simulated HE-based test 

statistics lay relatively close to their expected values. Figures S1-S3 illustrate this graphically. 

Type I error rates 

There was no evidence that the tests of the POEs had inflated Type I error rates when 

assumptions were met; under these conditions, the simulated type I error rate was 0.0510. The 
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HE-based test of the POE effect had slightly elevated Type I error rates (0.0625) under violation 

of HWE due to dependence of parental genotypes. 

Bias and variance due to violating assumptions 

We observed that violating HWE increased the discrepancy between predicted and 

observed test statistics. However, these results do not indicate whether this was due to increased 

bias or variance of the estimates, or both. Additionally, because the predicted test statistics were 

based on many simplifying assumptions, it is possible that the increased discrepancy would not 

have led to incorrect inference, and it is worth exploring whether violating HWE causes the 

estimated variance components to be misleading in predictable ways. 

Results for simulations with truly null variance components are not shown. The absolute 

bias was under 3 � 10�  for each type of effect whether or not assumptions were violated. 

Variances were similar to those for non-null estimates. 

Table 2 shows the GCTA results under HWE. Relative bias was under 5% for additive, 

dominance, and parent-of-origin effects. Results were similar for HE model fitting. 

Table 3 shows the GCTA results when the HWE assumptions were violated. Relative 

bias was under 10% for the additive and dominance effects but, when parental genotypes were 

correlated was downward biased by about 20% for the parent-of-origin effects. Results were 

similar for HE model fitting. Biases in estimating dominance effects were smaller but were 

uniformly positive. 

The GCTA and HE estimates tended to differ in the presence of correlation between 

parental genotypes; in this situation, HE regression estimates of POEs had higher variance (and 

hence higher mean-squared error) than did GCTA estimates, which is expected to be the case 
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even in additive-only models (Chen 2014). As a result, the correspondence between the two 

methods decreased from a HE-GCTA correlation of 0.9911(0.9908,0.9915) with independent 

parental genotypes to 0.9624(0.9597, 0.9649) with correlated parents. This was not observed for 

estimates of the two other types of effects. 

Empirical Analysis 

Estimates of ��
, �

, and ��
 are given in Figure 4 for the 38 phenotypes. Error bars 

showing c1.96 standard errors are given for each estimate. Based on this, the sample size of 

� F 5000 was sufficient to detect established additive effects for anthropometric variables such 

as height and fat mass. The mean estimate for additive effects was 0.297(0.10). There is evidence 

for dominance effects on verbal IQ and fat mass in the sample. The mean estimate for dominance 

effects was 0.031(0.14). The largest (and most reliably estimated) POEs were estimated for age 

at menarche, FVC, and age at first tooth. The mean estimate for POEs was 0.023(0.10). 

Across the 38 phenotypes surveyed, which are listed in Table S1, in the aggregate, 

additive effects were frequently estimated reliably and away from 0. POEs had standard errors 

approximately equal to those of additive effects, while estimates of dominance variance showed 

slightly larger standard errors. This is illustrated using "dodged" (Wilkinson 2006) histograms of 

variance component estimates in Figure 5, which is broadly similar to that given (for additive 

and dominance effects) in Figure 2 of Zhu et al. 2015 (Zhu et al. 2015). 

Two patterns in variance partitions emerged (although the sample size is too small to 

perform significance tests of differences in heritability estimates across traits). Age at menarche, 

age at first tooth, CRP, handedness, IL-6, and 2d4d ratio in the right hand showed a pattern of 

relatively equal additive, dominance, and parent-of-origin effect variance estimates which were 
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relatively far from 0 (though not usually greater than 2 standard errors from 0). A second pattern 

was seen in the IQ measures and fat mass, where additive and dominance effect estimates were 

approximately equal and nonzero. In the remaining 30 phenotypes, if an effect was detectable, it 

was an additive effect. 

Discussion 

The most important findings from our simulations are that: 1) G-REMLadp does not seem 

to be inherently biased in estimating variance due to additive effects, dominance effects, and 

POEs, and 2) that substantial correlation between parental genotypes is necessary to bias G-

REMLadp estimates. We did not investigate the effect that linkage disequilibrium might have on 

our results; if local levels of linkage disequilibrium are associated with POE size, an LDAK 

implementation of G-REMLadp may help address this (Speed et al. 2012). The empirical and 

simulation results agree that a sample size under 10000 is insufficient to generate precise G-

REMLadp estimates. Hence, POEs of the size observed by Lopes et al. (Lopes et al. 2015) 

(F 2% of variance explained) are likely to require sample sizes close to 50000 in order to resolve 

properly (their samples were about 4500 purebred pigs, hence �� far below that for humans on 

the HapMap 3 panel, accordingly their pattern of results is closer to our simulated findings than 

to our empirical ones). Nevertheless, it may be interesting following up the ALSPAC results for 

age at menarche (a phenotype known to be influenced by imprinted loci (Perry et al. 2014)), age 

at first tooth, and 2d4d ratio results in a larger study with trios. Replicating the dominance results 

for fat mass would also be of interest, as Zhu et al. (2015) found no significant dominance for 

skinfold thickness; similarly, replicating a dominance heritability component of verbal IQ would 
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substantiate venerable claims for non-additive effects on cognitive performance (Devlin et al. 

1997; Plomin and Deary 2015). 

However, the highest-profile claim (Devlin et al. 1997) for non-additive effects on IQ 

involves maternal effects. The evidence for this claim comes from findings of increased 

similarity in IQ in the children of female twins relative to the children of male twins (Nance and 

Corey 1976). Maternal (or paternal) effects are defined as indirect effects of the parent’s 

genotype on offspring phenotype, usually via parental influence on offspring's environment 

(Wolf and Wade 2009). These are distinct from the POEs discussed here, because POEs are 

direct effects of the offspring’s genotype on its phenotype. In the presence of maternal (paternal) 

effects, the mother's (father's) genotype explains some of the residual phenotypic variation 

remaining after regressing the offspring's phenotype on its genotype. However, methods 

designed to detect POEs by modelling different distributions of the two heterozygotes' 

phenotypes (including G-REMLadp) cannot distinguish POEs from certain patterns of 

maternal/paternal effects (Hager et al. 2008). It is also possible that there are maternal effects 

that cause imprinting (epigenetic changes due to intrauterine environment or family environment 

created by parental behavior). In order to distinguish POEs from maternal effects, one can fit a 

model with both maternal and POEs or restrict the analysis to offspring of heterozygous mothers. 

Given the sample size considerations in our results, the former approach is likely to be more 

successful; G-REMLadp could be implemented in OpenMx and used as an addition to an M-

GCTA model (Eaves et al. 2014; Kirkpatrick and Neale 2015; Neale et al. 2015). However, 

POEs and maternal/paternal effects represent departure from Mendelian inheritance; a reliable 

nonzero ��
 value detected by G-REMLadp is worthy of followup even if it represents a mixed 

bag of POEs and indirect effects. 
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Other than the insufficient sample size in the ALSPAC analyses, an additional limitation 

of this project was that the simulations and empirical data were not closely matched; less 

idealized, more informative simulations could have been performed. For example, simulated 

phenotypes could’ve been based on the empirical distributions of the ALSPAC phenotypes, and 

these, coupled with real GRMs (with imperfect HWE because of sampling error, if not actual 

violations), could’ve resulted in more thorough evaluation of G-REMLadp. Pairwise relatedness 

values could also have been simulated from the empirical distributions of (��� ,/�� , and 0��) or 

smooth approximations to them (Lee and Chow 2014). This approach is more feasible 

computationally under the HE regression framework than under maximum likelihood. G-

REMLadp is not limited to genome-wide analyses; future work could also make use of 

relatedness at known imprinted loci, though this would require sufficiently large samples to 

account for the lower degree of tagging of phenotypic variation. A 2015 paper by Baran et al., in 

Genome Research, supplies an atlas of such locations in the genome which affect expression 

(Baran et al. 2015). A related future direction (as suggested by Lopes et al.) would be to 

emphasize the connection between imprinting and attempts to detect POEs, for example by 

applying the method in the EWAS, rather than GWAS, context, i.e. identifying genome-wide 

eQTL effects on age at menarche and first tooth, and 2d4d ratio (Zhu et al. 2016). 

In summary, G-REMLadp offers the ability to easily partition phenotypic variance 

according to three types of inherited effects. With large studies of parent-child trios/duos, it is 

possible to fit G-REMLadp models and detect effects without bias. Finally, failure to model 

POEs has been identified as one possible source of missing heritability (Kong et al. 2009; Eichler 

et al. 2010). For any phenotypes with missing heritability that is uncovered by modelling POEs, 
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the epigenetic and evolutionary implications of POEs lead to hypotheses of distinctive etiologies 

and genomic architectures. 
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Figure 1 

Phenotypic mean by phased genotype (top) Phased genotype represented by 3 
standardised codings (bottom): (TOP)The dark line connects phenotypic means at different 
phased genotypes under a model including dominance and parent-of-origin effects in addition 
to additive effects. The dashed line connects phenotypic means under a model with additive 
and dominance effects only; the dominance deviation makes it so that the slope between the 
major-homozygote and the heterozygotes is steeper than that between the heterozygotes and 
the minor-homozygote (See Supplementary Figure S1). The difference due to parent-of-
origin effects is illustrated by the dotted line marked �. �: the major allele; �: minor 
(reference) allele; ���: allele from mother; ���: allele from father; ��: additive allele-
substitution effect; �: dominance deviation; � � �� � �1 � 2���, half the difference between 
homozygotes' phenotypic means; �: the difference between the phenotypic mean of all 
heterozygotes and the phenotypic mean of paternal-minor heterozygotes. (BOTTOM) For a 
single locus with minor allele frequency �, the standardised additive coding (0,1,2 
standardised to �
2�/�,��� � ��/
2��,�
2�/�) of the phased genotype is given by the 
medium-weight line. The standardised dominance coding is the dashed line (0,2�, 4� � 2 
standardised to��/�, �1, ���/�). The parent-of-origin effect coding is the thick line (0,-1,1,0 
standardised to 0, ��1/
2��, �1/
2��, �0). 
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Figure 2 

Expected power to detect parent-of-origin effects tagged by � � 10000 loci, by sample 
size: Curves generated using Haseman-Elston regression approximation to the Wald test of 
nonzero effect. %PoE: proportion of phentoypic variance attributable to parent-of-origin 
effects; Sample size: number of unrelated individuals with phased genotypes in the sample 
that would be used to estimate POEs; Power: proportion of test statistics generated under a 
non-null distribution with noncentrality parameter as given in Equation 4 that would exceed a 
95% critical value in the Wald test of a null variance component. 
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Figure 3 

Empirical power curves in simulated data: Curves generated using proportions of 
significant Wald tests in simulated data with all assumptions specified in the text satisfied. 
%PoE: proportion of phentoypic variance attributable to parent-of-origin effects in the model 
used to generate simulated data; Sample size: number of simulated individuals with parent-
of-origin determined at all loci; Power: proportion of replicates with Wald tests having �-
values � 0.05. Note that the number of effective loci in this figure is an order of magnitude 
lower than in Figure 1. 
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Figure 4 

Forest plot of variance component estimates of 19 phenotypes in ALSPAC: The �-axis, 
labelled "Estimate," is the proportion of phenotypic variance attributable to each effect type 
(PoE: parent-of-origin, squares; Dom: dominance, triangles; Add: additive, circles). To avoid 
bias, variance estimates were not constrained, hence negative variance component estimates 
are possible, for example if too many components are fit. Estimates are marked by the shapes, 
lying in 95% confidence intervals. A vertical line is plotted at 0. 
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Figure 5 

Histograms of the estimates of additive, dominance, and parent-of-origin variance 

components for 38 ALSPAC traits. Add: Estimated proportions of phenotypic variance 

attributable to additive effects; Dom: Estimated proportions of phenotypic variance 

attributable to dominance effects; PoE: Estimated proportions of phenotypic variance 

attributable to parent-of-origin effects. To avoid biased variance estimates, they were not 

constrained to be positive; hence, for POEs, which the study was underpowered to detect, 

there are many negative estimates. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2017. ; https://doi.org/10.1101/133827doi: bioRxiv preprint 

https://doi.org/10.1101/133827
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2017. ; https://doi.org/10.1101/133827doi: bioRxiv preprint 

https://doi.org/10.1101/133827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table I: Recoding a phased genotype using three orthogonal terms. 
Phased 

Genotype Freq 

Add 

Code Std Add 

Dom 

Code 

Std 

Dom 

POE 

Code Std POE 

������ �� 0 ��2�/� 

0 

��/� 0 0 

������ �� 1 

	� � �

/�2�� 

2� 1 -1 

�1
/�2�� 

������ �� 1 

	� � �

/�2�� 

2� 1 1 1/�2�� 

������ �� 2 �2�/� 

4� � 2 ��/� 0 0 

The minor allele is �, with frequency �, major allele � with frequency � � 1� �. ���: maternally inherited � 
allele; ���: paternally inherited � allele. "Freq": expected frequency of the genotype under Hardy-Weinberg 
equilibrium. "Add Code": additive coding of the phased genotype. "Std Add": standardized additive coding 
based on mean 2� and variance 2��. "Dom Code": dominance coding of the phased genotype. "Std Dom": 
standardized dominance coding based on mean 2�� and variance 4����. "POE Code": parent-of-origin effect 
coding of the phased genotype. "Std POE": standardized parent-of-origin effect coding based on mean 0 and 
variance 2��. 
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Table II: Relative bias and variance for G-REMLadp variance components when HWE 
was met, for non-null simulated effects 

N ��
�
 

��
�
 

��
�
 #Reps �̂�

�
 Bias �̂�

�
 Var 

�̂�

�
 

Bias �̂�

�
 Var 

�̂�

�
 

Bias �̂�

�
 Var 

1000 0.017 0.017 0.017 280 6.000 1.1e-

03 

9.200 8.9e-

04 

7.5 1.1e-

03 

1000 0.033 0.033 0.033 290 -0.330 1.9e-

03 

-5.200 1.8e-

03 

-5.9 1.8e-

03 

1000 0.100 0.100 0.100 290 3.000 7.1e-

03 

0.900 5.7e-

03 

2.6 6.3e-

03 

2000 0.017 0.017 0.017 300 -

13.000 

2.9e-

04 

-0.390 2.6e-

04 

2.5 2.6e-

04 

2000 0.033 0.033 0.033 300 -0.810 5.7e-

04 

-5.700 4.9e-

04 

3.7 6.3e-

04 

2000 0.100 0.100 0.100 300 3.700 1.6e-

03 

1.600 1.7e-

03 

-1.1 1.6e-

03 

4000 0.017 0.017 0.017 300 3.000 6.5e-

05 

0.074 6.8e-

05 

-4.8 7.5e-

05 

4000 0.033 0.033 0.033 300 0.088 1.7e-

04 

-1.900 1.5e-

04 

-2.4 1.4e-

04 

4000 0.100 0.100 0.100 300 -2.600 4.8e-

04 

-1.800 4.4e-

04 

1.5 4.5e-

04 

Proportion of phenotypic variance explained: by additive effects given in the ��
� column, by dominance effects 

given in the ��
� column, and by parent-of-origin effects given in the ��

� column. N: number of simulated phased 
genotypes, #Reps: number of simulated replications, "Bias" is percent relative bias of estimates across 
simulated replications, "Var" is variance of estimates across simulated replications. 
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Table III: Relative bias and variance for G-REMLadp variance components when HWE was violated, for non-null simulated effects. 

Parent Corr MAF Diff N ��
� ��

� ��
� #Reps �̂�

�
 Bias �̂�

�
 Var �̂�

�
 Bias �̂�

�
 Var �̂�

�
 Bias �̂�

�
 Var 

0.00 0.05 1000 0.017 0.017 0.017 300 10.00 1.0e-03 -2.90 9.7e-04 17.00 1.0e-03 

0.00 0.05 1000 0.033 0.033 0.033 300 3.20 2.4e-03 3.20 2.4e-03 2.00 2.0e-03 

0.00 0.05 1000 0.100 0.100 0.100 300 -1.00 6.6e-03 0.29 6.4e-03 0.31 5.7e-03 

0.00 0.05 2000 0.017 0.017 0.017 300 -8.40 2.5e-04 2.10 3.1e-04 -0.11 2.8e-04 

0.00 0.05 2000 0.033 0.033 0.033 300 2.80 5.4e-04 4.70 5.2e-04 0.90 4.8e-04 

0.00 0.05 2000 0.100 0.100 0.100 300 2.20 1.6e-03 -0.52 1.6e-03 0.69 1.6e-03 

0.00 0.05 4000 0.017 0.017 0.017 300 1.10 7.2e-05 -4.00 6.9e-05 -5.60 8.1e-05 

0.00 0.05 4000 0.033 0.033 0.033 300 -1.90 1.5e-04 2.50 1.8e-04 -2.50 1.5e-04 

0.00 0.05 4000 0.100 0.100 0.100 290 -2.10 4.9e-04 1.70 5.6e-04 -0.20 4.3e-04 

0.25 0.00 1000 0.017 0.017 0.017 300 3.60 8.2e-04 9.10 1.6e-04 -8.40 1.1e-03 

0.25 0.00 1000 0.033 0.033 0.033 290 5.70 1.6e-03 5.80 2.5e-04 -20.00 2.0e-03 

0.25 0.00 1000 0.100 0.100 0.100 290 1.70 5.6e-03 2.10 9.8e-04 -25.00 8.3e-03 

0.25 0.00 2000 0.017 0.017 0.017 300 -0.80 2.0e-04 -2.10 5.6e-05 -33.00 2.8e-04 

0.25 0.00 2000 0.033 0.033 0.033 300 6.00 3.9e-04 -0.27 1.0e-04 -21.00 6.5e-04 

0.25 0.00 2000 0.100 0.100 0.100 300 3.60 1.5e-03 4.50 3.8e-04 -25.00 2.2e-03 

0.25 0.00 4000 0.033 0.033 0.033 300 0.68 1.2e-04 1.20 4.6e-05 -21.00 1.3e-04 

0.25 0.00 4000 0.100 0.100 0.100 300 1.30 3.6e-04 1.70 1.4e-04 -23.00 4.7e-04 

0.25 0.05 1000 0.017 0.017 0.017 130 -24.00 8.4e-04 21.00 3.6e-04 -21.00 1.3e-03 

0.25 0.05 1000 0.033 0.033 0.033 160 -3.50 1.7e-03 0.64 5.6e-04 -45.00 2.5e-03 

0.25 0.05 1000 0.100 0.100 0.100 220 -0.91 5.2e-03 7.10 2.6e-03 -31.00 8.2e-03 

0.25 0.05 2000 0.017 0.017 0.017 280 -5.70 1.9e-04 0.26 1.1e-04 -28.00 3.2e-04 

0.25 0.05 2000 0.033 0.033 0.033 300 0.25 3.8e-04 6.00 2.8e-04 -26.00 5.4e-04 

0.25 0.05 2000 0.100 0.100 0.100 300 5.20 1.4e-03 1.20 7.4e-04 -21.00 1.8e-03 

0.25 0.05 4000 0.033 0.033 0.033 300 -0.87 1.3e-04 4.40 7.8e-05 -23.00 1.6e-04 

0.25 0.05 4000 0.100 0.100 0.100 300 2.20 3.1e-04 3.50 2.5e-04 -23.00 4.8e-04 

Parent Corr: average correlation of parental genotypes, MAF Diff: average difference in parental MAFs. Proportion of phenotypic variance explained by additive effects is given in the ��
� 

column, by dominance effects in the ��
� column, and by parent-of-origin effects in the ��

� column. N: number of simulated phased genotypes, #Reps: number of simulated replications, "Bias" is 
percent relative bias of estimates across simulated replications, "Var" is variance of estimates across simulated replications. 
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