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We read with great interest the paper by Williams, et. al.[1], who argued
for neutral evolution in tumors by analyzing The Cancer Genome Atlas
(TCGA) data. They supported this conclusion by showing high R2 values
for fits to a neutral evolution model predicting M ∝ 1/ f , where M is the
number of somatic mutations with allele frequency ≥ f . However, we
believe a conclusion of neutrality must be treated cautiously, as high R2

values are consistent with many evolutionary models.
For example, we analyzed phenomenological models similar to that of

[1] but with parameter k, such that M ∝ 1/ f k. Here k = 1 corresponds to the
neutral model, k > 1 corresponds to diversifying selection (excess of rare
mutations), and k < 1 corresponds to purifying selection (excess of high
frequency mutations). We reanalyzed the TCGA data to determine whether
values other than k = 1 fit the data better. To reduce pipeline uncertainties
we used only tumors for which calls were made by Mutect [2], and similar
to [1] we only used mutations with read count ≥ 10, and alternative read
count ≥ 3, and only analyzed tumors with ≥ 5 genes within the fitting
range (0.12 < f < 0.24). We then reproduced Figure 3 from [1] by fitting
mutation count to 1/ f (Figure 1). Our values of R2 were high though not
identical to [1], which is due to differences in tumor sets and the lack of
information about exact procedures used in [1]. To determine whether the
fit was due to neutral evolution, we repeated the same analysis by fitting to
the functions 1/ f 2 (diversifying selection) and 1/

√
f (purifying selection)

(Figure 1). In all cases, we were able to closely fit the TCGA data (mean
R2 values were 0.84, 0.87, 0.74 for k = 1, 0.5, 2), but the purifying selection
model 1/

√
f in fact fit the data slightly better. Although our analysis does

not clearly show a lack of neutrality, it does indicate that R2 is not a good
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measure for distinguishing neutral evolution.
A more fundamental consideration is that noise inherent in the M( f )

curves limits conclusions about neutrality. Assuming the true allele fre-
quency of a mutation is fTrue, the observed allele frequency fObs will be a
sample from a binomial distribution with mean µ f = fTrue and standard

deviation σf =
√

fTrue(1− fTrue)
n , given read depth n (on average n = 102 in

the TCGA samples). In the fitting range 0.12 < fTrue < 0.24, σf can take
on values as large as 0.04, i.e. ∼ 30% of the fitting range. We analyzed the
effect of this noise directly by simulating observed M( f ) curves according
to underlying neutral (k = 1), purifying (k = 1/2), and diversifying (k = 2)
selection models. M( f ) curves were generated by sampling values of fTrue

from the underlying model and then for each value reporting an fObs gen-
erated from the binomial distribution with mean fTrue and read depth n,
where n was drawn from a lognormal fit to the pooled TCGA read depth
distribution. Figure 2 shows randomly generated M curves obtained by
resimulating this process, suggesting that measurement uncertainty can
signficantly impact the shape of the observed curve and obscure the un-
derlying evolutionary process. Moreover, we repeatedly simulated M( f )
curves for each generating process (k = 1/2, 1, 2) and tested whether the
true generating process could be identified. Mean and standard deviation
of R2 values are shown in Table 1. R2 values to the true model (diagonal
elements) are only marginally better than to the incorrect models, and in all
cases these differences are less than the standard deviation across replicates,
suggesting that R2 is not a sensitive measure for resolving the evolutionary
process.

Williams, et. al. have provided a valuable conceptualization of popula-
tion dynamics in tumors and shown that neutrality is possible. However,
models with selection can provide similarly good fits to the TCGA data,
and TCGA data still yield substantial uncertainties about the true frequency
distributions. More refined evolutionary models and further increases in
sequencing depth will be important for resolving the balance of selection
and neutrality in cancer.
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Figure 1: Distribution of R2 for fits of TCGA allele frequency distribution
data to three different models. The numbers on the right side of each plot
show the fraction of total tumors in each cancer type with R2 > 0.98 (right
side of red dashed line).
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Figure 2: Simulated allele frequency distributions for different generating
processes. Thin curves are individual examples of simulated M curves from
the (left) neutral, (center) purifying selection, and (right) diversifying selec-
tion processes, while the thick curves are the ideal when no measurement
noise exists.

       Fit to :

   
Generating
Process :

0.95 (0.04) 0.95 (0.04) 0.93 (0.06)

0.94 (0.05) 0.95 (0.04) 0.90 (0.09)

0.94 (0.05) 0.93 (0.05) 0.94 (0.05)

M ∝1/ f

M ∝1/ f

M ∝1/ f 2

1/ f 1/ f 1/ f 2

Table 1: Fits of simulated data from neutral (1/ f ), purifying selection
(1/

√
f ), and diversifying selection (1/ f 2) to the expected M curves for

all three processes. Mean R2 values are shown, with standard deviations
shown in parentheses.
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