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Abstract

We introduce Genetic Instrumental Variables (GIV) regression – a method to estimate causal effects
in non-experimental data with many possible applications in the social sciences and epidemiology. In
non-experimental data, genetic correlation between the outcome and the exposure of interest is a source
of bias. Instrumental variable (IV) regression is a potential solution, but valid instruments are scarce.
Existing literature proposes to use genes related to the exposure as instruments (i.e. Mendelian Ran-
domization – MR), but this approach is problematic due to possible pleiotropic effects of genes that can
violate the assumptions of IV regression. In contrast, GIV regression provides accurate estimates for
the causal effect of the exposure and gene-environment interactions involving the exposure under less
restrictive assumptions than for MR. As a valuable byproduct, GIV regression also provides accurate
estimates of the chip heritability of the outcome variable. GIV regression uses polygenic scores (PGS)
for the exposure and the outcome of interest, both of which can be constructed from genome-wide as-
sociation study (GWAS) results. By splitting the GWAS sample for the outcome into non-overlapping
subsamples, we obtain multiple indicators of the outcome PGS that can be used as instruments for each
other. In two empirical applications, we demonstrate that our approach produces reasonable estimates
of the chip heritability of educational attainment (EA) and, unlike the results using MR, GIV regression
estimates find that the positive relationship between body height and EA is primarily due to genetic
confounds that have pleiotropic effects on both traits.
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Introduction

A major challenge in the social sciences and in epidemiology is the identification of causal effects in non-
experimental data. In these disciplines, ethical and legal considerations along with practical constraints
often preclude the use of experiments to randomize the assignment of observations between treatment
and control groups or to carry out such experiments in samples that represent the relevant population
[1]. Instead, many important questions are studied in field data which make it difficult to discern between
causal effects and (spurious) correlations that are induced by unobserved factors [2]. Obviously, confusing
correlation with causation is not only a conceptual error, it can also lead to ineffective or even harmful
recommendations, treatments, and policies, as well as a significant waste of resources (e.g., as in [3]).

One important source of bias in field data is genetic effects: Twin studies [4] as well as methods based
on molecular genetic data [5, 6] can be used to estimate the proportion of variance in a trait that is due
to the linear genetic effects (so-called narrow-sense heritability). Using these and related methods, an
overwhelming body of literature demonstrates that almost all important human traits, behaviors, and
health outcomes are influenced both by genetic predisposition as well as environmental factors ([7, 8,
9]). Most of these traits are "genetically complex", which means that the observed heritability is due to
the accumulation of effects from a very large number of genes that each have a small, often statistically
insignificant, influence [10]. Furthermore, genes often influence several seemingly unrelated traits (i.e.
they have "pleiotropic effects") [11] and genetic correlations between many traits have been convincingly
demonstrated [12], giving rise to unobserved variable bias in field studies that do not control for the ge-
netic predisposition of individuals for the exposure and the outcome of interest.

One popular strategy to isolate causal effects in non-experimental data is to use instrumental vari-
ables (IVs) which "purge" the exposure of its correlation with the error term in the regression [13]. IVs
need to satisfy two important assumptions. First, they need to be correlated with the exposure of inter-
est conditional on the other control variables in the regression (i.e. IVs need to be "relevant"). Second,
they need to be independent of the error term of the regression conditional on the other control variables
and produce their correlation with the outcome solely through their effect on the exposure. In practice,
finding valid IVs that satisfy both requirements is difficult. In particular, the second requirement (the so-
called exclusion restriction) is challenging.

Epidemiologists have proposed to use genetic information to construct IVs and termed this approach
Mendelian Randomization (MR) [14, 15, 16, 17]. The idea is in principle appealing because genotypes are
randomized in the production of gametes by the process of meiosis. Thus, conditional on the genotype
of the parents, the genotype of the offspring are the result of a random draw. So if it would be known
which genes affect the exposure, it may be possible to use them as IVs to identify the causal influence
of the exposure on some outcome of interest. Yet, there are four challenges to this idea. First, we need
to know which genes affect the exposure and isolate true genetic effects from environmental confounds
that are correlated with ancestry. Second, if the exposure is a genetically complex trait, any gene by it-
self will only capture a very small part of the variance in the trait, which leads to the well-known problem
of weak instruments [18, 19]. Third, genotypes are only randomly assigned conditional on the genotype
of the parents. Unless it is possible to control for the genotype of the parents, the genotype of the off-
spring is not random and correlates with everything that the genotypes of the parents correlate with (e.g.
parental environment, personality, and habits) [20]. Fourth, the function of most genes is not completely
understood. Therefore, it is difficult to rule out direct pleiotropic effects of genes on the exposure and the
outcome, which would violate the exclusion restriction [16].

Recent advances in complex trait genetics make it possible to address the first two challenges of MR.
Array-based genotyping technologies have made the collection of genetic data fast and cheap. As a re-
sult, very large datasets are now available to study the genetic architecture of many human traits and a
plethora of robust, replicable genetic associations has recently been reported in large-scale genome-wide
association studies (GWAS) [21]. These results begin to shed a light on the genetic architecture that is
driving the heritability of traits such as body height [22], BMI [23], schizophrenia [24], Alzheimer’s disease
[25], depression [26], or educational attainment (EA) [27]. High quality GWASs use several strategies to
control for genetic structure in the population and indeed, empirical evidence suggests that the vast ma-
jority of the reported genetic associations for many traits is not confounded by ancestry [28, 29, 30, 31].
Furthermore, so-called polygenic scores (PGS) have become the favored tool for summarizing the ge-
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netic predispositions for genetically complex traits [32, 33, ?, 27]. PGS are linear indices that aggregate
the effects of all currently measured genetic variants (typically single nucleotide polymorphisms, a.k.a.
SNPs), and recent studies demonstrate the ability of PGS to predict genetically complex outcomes such
as height, BMI, schizophrenia, and EA [34, 22, 23, 24, ?]. For example, a polygenic score for EA currently
captures 4-6% of the variance in the trait and replicates extremely well across different hold-out samples
[27]. Although PGS still capture substantially less of the variation in traits than suggested by their heri-
tability [35] (an issue we return to below), PGS capture a much larger share of the variance of genetically
complex traits than individual genetic markers. The third challenge could in principle be addressed if the
genotypes of the parents and the offspring are observed (e.g. in a large sample of trios) or by using large
samples of dizygotic twins where the genetic differences between siblings are random draws from the par-
ent’s genotypes. However, the fourth challenge (i.e. pleiotropy) remains a serious obstacle despite recent
efforts to relax the exogeneity assumptions in MR ([36, 37]).

Here, we present a novel method that we call Genetic Instrumental Variables (GIV) regression that
can be implemented using widely available statistical software. In contrast to MR, GIV regression does
not require strong assumptions about the causal mechanism of genes because it effectively controls for
possible pleiotropic effects of genes. In particular, GIV regression is based on the insight that adding the
true PGS for the outcome to a regression model would effectively eliminate bias arising from a genetic
correlation between the outcome and an exposure of interest. Furthermore, we argue that the attenuated
predictive accuracy of PGS is conceptually similar to the well-known problem of measurement error in
regression analysis. Instrumental variable (IV) techniques can correct attenuation bias in regression coef-
ficient estimates that results from measurement error [38]. We argue that it is possible to obtain a valid
IV for a PGS by randomly splitting the GWAS sample that was used for its construction. Typically, a
GWAS is used to estimate the effects of individual SNPs in a discovery sample. Then, the estimated ef-
fects are utilized as weights for the genetic data in an independent prediction sample. By splitting the
GWAS sample into independent subsamples, one can obtain several PGS (i.e. multiple indicators) in
the prediction sample. Each will have even lower predictive accuracy than the original score due to the
smaller GWAS subsamples used in their construction, but these multiple indicators can be used as IVs for
each other, and the instruments will satisfy the assumptions of IV regression to the extent that the mea-
surement errors (the difference between the true and calculated PGS) are uncorrelated.

We show that it is possible under plausible assumptions to obtain consistent estimates of the narrow-
sense heritability of a trait by using IV regression that utilizes two PGS that were constructed this way.
Then we extend the idea to the problem of estimating causal effects in non-experimental data. We argue
that using multiple indicators of the PGS of the outcome together with a PGS for the exposure produce
IVs that come reasonably close to satisfying the assumptions of IV regression. Finally, we demonstrate
how our approach can be straightforwardly extended to obtain causal estimates of gene-environment in-
teractions (GxE) on outcomes.

We begin by laying out the assumptions of our approach and prove that GIV regression yields consis-
tent estimates for the effect of the PGS on the outcome variable, when the other covariates in the model
are exogenous and when the true PGS is uncorrelated with the error term net of the included covariates.
We then turn to the more complex case of when a regressor of interest (T ) is potentially correlated with
unobserved variables in the error term because of pleiotropy, and we show that the bias under these as-
sumptions with GIV regression is generally smaller than with OLS, MR, or what we will term an en-
hanced version of MR (EMR). We then use simulations to test how our approach behaves in finite sam-
ple under plausible assumptions about genetic correlations and then show how sensitive our method is to
violations of the assumptions in comparison to MR and EMR.

Next, we demonstrate the practical usefulness of our approach in empirical applications using the
publicly available Health and Retirement Study [39]. First, we demonstrate that a consistent estimate of
the so-called chip heritability [35] of EA can be obtained with our method. Then, we estimate the effects
of body height on EA. As a "negative control," we check whether our method finds a causal effect of EA
on body height (it should not). 1

1Note that a clean experimental design which randomizes people into groups based on body height or EA is not possible.
Thus, any attempt to study the causal relationship between the two variables must rely on observational data and naturally
occurring experiments like the genetic endowment of individuals, which we exploit here.
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Theory

Assumptions
The methods we describe builds on the standard identifying assumptions of IV regression [13]. In the con-
text of our approach, this implies four specific conditions:

1. Complete genetic information: The available genetic data include all variants that influence the
variable(s) of interest.

2. Genetic effects are linear: All genetic variants influence the variable(s) of interest via additive linear
effects. Thus, there are no genetic interactions (i.e. epistasis) or dominant alleles.

3. Genome-wide association studies successfully control for population structure: In other words, the
available regression coefficients for the genetic variants are not systematically biased by omitted
variables that describe the genetic ancestry of the population. Failure to control for population
structure can lead to spurious genetic associations [20].

4. It is possible to divide GWAS samples into non-overlapping sub-samples drawn from the same pop-
ulation as the sample used for analysis.

Estimating narrow-sense SNP heritability from polygenic scores
Under these assumptions, consistent estimates of the chip heritability of a trait2 can be obtained from
polygenic scores (for full details, see Supporting Information section 2). If y is the outcome variable, X is
a vector of exogenous control variables, and S∗y|X is a summary measure of genetic tendency for y in the
presence of controls for X, then one can write

y = α+Xβ + γS∗y|X + ε (1)

= α+Xβ + γ(Gζy|X) + ε

where G is an n×m matrix of genetic markers, and ζy|X is the m×1 vector of SNP effect sizes, where the
number of SNPs is typically in the millions. If the true effects of each SNP on the outcome were known,
the true genetic tendency S∗y|X would be expressed by the PGS for y, and the marginal R2 of S∗y|X in
equation 1 would be the chip heritability of the trait. In practice, GWAS results are obtained from fi-
nite sample sizes that only yield noisy estimates of the true effects of each SNP. Thus, a PGS constructed
from GWAS results typically captures far less of the variation in y than suggested by the chip heritability
of the trait ([40]; [33]; [35]). This is akin to the well-known attenuation bias resulting from measurement
error [41]. We refer to the estimate of the PGS from available GWAS data in the presence of controls for
Xas Sy|X , where

Sy|X = S∗y|X + v1 = Gζy|X +Guy|X (2)

and substitute Sy|X for S∗y|X in equation 1. The variance of a trait that is captured by its available PGS
increases with the available GWAS sample size to estimate ζy|X and converges to the SNP-based narrow-
sense heritability of the trait at the limit if all relevant genetic markers were included in the GWAS and if
the GWAS sample size were sufficiently large [35].

It has long been understood that multiple indicators can, under certain conditions, provide a strategy
to correct regression estimates for attenuation from measurement error ([42]; [43]). IV regression using es-
timation strategies such as two stage least squares (2SLS) and limited information maximum likelihood
(LIML) will provide a consistent estimate for the regression coefficient of a variable that is measured with
error if certain assumptions are satisfied ([38]; [44]): (1) The IV is correlated with the problem regressor,
and (2) conditional on the variables included in the regression, the IV does not directly cause the out-
come variable, and it is not correlated with any of the unobserved variables that cause the outcome vari-
able [38]. In general, these assumptions are difficult to satisfy. In the present case, however, GWAS sum-
mary statistics can be used in a way that comes close enough to meeting these conditions to measurably
improve results obtainable from standard regression.

2i.e. the proportion of variance in a trait that is due to linear affects of currently measurable SNPs
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The most straightforward solution to the problem of attenuation bias is to obtain multiple indicators
of the PGS by splitting the GWAS discovery sample for y into two mutually exclusive subsamples. This
produces noisier estimates of S∗y , with lower predictive accuracy, but the multiple indicators can be used
as IVs for each other (SI appendix). Standard 2SLS regression using Sy1 as an instrument for Sy2 will
then recovered a consistent estimate of γ in equation 1.

Assuming that the variables in 1 are standardized to have mean zero and a standard deviation of
one, and further assuming that the controls contained in X do to not correlate with genotype G, a con-
sistent estimate of the chip heritability of y can now be obtained from ĥ2 = γ̂2ρ(Sy1, Sy2), where ρ is
the correlation coefficient. The heritability estimate ĥ2 is not simply equal to γ̂2 because we regressed on
Sy|X = S∗y|X + v instead of S∗y|X . Thus, we standardize with the respect to the variance of Sy|X instead

of S∗y|X , which leads to a bias equal to 1/V ar(S∗y|X). Multiplying γ̂2 with the correlation between Sy1 and
Sy2 recovers a consistent estimate for ĥ2 (see Supporting Information section 2.1).

Reducing bias arising from genetic correlation between exposure and outcome
The logic from above can be extended to situations where the question of interest is not the chip heri-
tability of y per se, but rather the effect of some non-randomized exposure on y (e.g. a behavioral or
environmental variable, or a non-randomized treatment due to policy or medical interventions). We can
rewrite equation 1 by adding a treatment variable of interest T , such that

y = α+ δT +Xβ + (γS∗y|XT + ε) (3)

where, for example, y is EA and T is body height. In each case, it is presumed that the outcome variable
is to some extent caused by genetic factors, and the concern is that the genetic propensity for the out-
come variable (S∗y|XT ) is also correlated with the exposure represented by T in equation (3). If S∗y|XT is
not observed and controlled for in equation 3, δ̂ will be a biased estimate of the effect of T on y.3

In standard Mendelian randomization (MR), a measure of genetic tendency (ST ) for a behavior of
interest (T in equation 3) is used as an IV in an effort to purge δ̂ of bias that arises from correlation be-
tween T and unobservable variables in the disturbance term under the argument that the genetic ten-
dency variable, e.g., the measured PGS ST , is exogenous ([46];[44]). One such example would be the use
of a PGS for height as an instrument for height in a regression of EA on height. The problem with this
approach is that the PGS for height will fail to satisfy the exclusion restriction if (some) of the genes af-
fecting height also have a direct effect on EA (e.g. via healthy cell growth and metabolism) or if they are
correlated with unmeasured environmental factors that affect EA.4 Note that this problem arising from
pleiotropic effects of genes is not solved even if infinitely large GWAS samples would be available.

The multiple indicator strategy described above provides multiple approaches for addressing the bias
in MR. If the genetic propensity for y could be directly controlled in the regression, MR would provide
less biased estimates of the effect of T . We refer to the combined use of Sy1 (where the PGS for y may
have been estimated only with controls for X or also with controls for T – when we leave it unsubscripted
below, we refer to either of these alternatives)5 as a control and ST as an IV as “enhanced Mendelian
Randomization” (EMR). However, controlling for Sy1 as a proxy for S∗y is not adequate, both because it
leaves a component of S∗y|XT in the error term which causes the exclusion restriction assumption of MR
to fail, and because the bias in the estimated coefficient of Sy1 also produces bias in the estimated co-
efficient of T . The bias arising from the use of a proxy for S∗y|XT is a form of omitted variable bias (SI
appendix).

Violation of the exclusion restriction due to genetic correlation is potentially solved (or at least is less
severe) when a third indicator of the PGS for y, i.e., Sy3 is used to instrument simultaneously both Sy1

and T in equation 1. However, the practical problem with using two indicators S∗y as the sole instruments

3This is the standard case of omitted variable bias, see [45].
4Classic MR typically does not use PGS as instruments. Instead, the idea is to use single genetic variants that are known

to affect the exposure via well-understood biological mechanisms that make it unlikely to violate the exclusion restriction.
In practice, limited knowledge about the biological function of most genes make it difficult to argue that direct pleiotropic
effects of the gene on the exposure and the outcome of interest exist.

5The implications of using Sy or alternatively Sy|X are discussed in the SI.
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Figure 1: Genetic Instrumental Variables (GIV) regression

ℇ

PGS1(Y|X,T)

PGS2(Y|X,T)
PGS(T)

Y

T

Notes: PGS1(Y|X,T) = S1(Y|X,T), 

PGS2(Y|X,T) = S2(Y|X,T), PGS(T)=S(T).  

PGS2(Y|X,T) and PGS(T) are IVs for 

PGS1(Y|X,T) and T. 

is that their mutual correlation will be relatively high (depending on their reliability) and they are weak
instruments for T . As a practical strategy, the best solution is arguably to use ST along with Sy2 (or Sy2

and Sy3) as instruments for Sy1 and T . ST will still violate the exclusion restriction to the extent that
it is correlated with Guy1. However, the extent of the violation will be reduced by the presence of Sy1 in
the regression. Arguably a strategy that both reduces the correlation between ST and ε (through the in-
clusion of Sy1 in the model) and eliminates or greatly reduces omitted variable bias through the inclusion
of an instrument for Sy1 in the first stage equation will outperform MR in the estimation of a consistent
effect of T that is purged of genetic correlation. Figure 1 illustrates the GIV regression strategy we pro-
pose.

As noted above, if not all relevant genetic effects are contained in the PGS (e.g. interaction effects,
structural variants, or rare alleles may be missing given currently available GWAS data), the PGS instru-
ments above will not perfectly satisfy the exclusion restriction to the extent that S∗y is correlated with
the omitted genetic variables. However, the above approach would generally be expected to reduce bias
due to genetic correlation, given that a large fraction of heritability can be attributed to linear effects of
common SNPs that are well tagged by currently available genotyping arrays [35, 47, 34, 48]). See the SI
appendix for details.

Gene-environment interactions

We next generalize equation (3) to the case of gene-environment interactions, where the effect of T varies
with the PGS. In principle, these interactions could be extremely complicated and so for practical rea-
sons, swe focus her on obtaining plausible estimates of the linear interaction between S∗y|XT and T. We
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rewrite equation (3) as

y = α+ δ1T +Xβ + (γS∗y|XT + δ2TS
∗
y|XT + ε)

= α+ δ1T +Xβ + (γ
(
Sy1|XT − v1

)
+ δ2T

(
Sy1|XT − v1

)
+ ε)

= α+ δ1T +Xβ + γSy1|XT + δ2TSy1|XT

+ (ε− v1 − δ2Tv1)

(4)

Now there are three endogenous variables, T , Sy1|XT , and TSy1|XT . Also the disturbance term has now
been elaborated to include a term that is a function of T , and so an additional PGS for y is needed as an
additional instrumental variable. This additional PGS for y will allow the use of IV regression to estimate
δ2. In the simulations described in section SI 3.3 (see SI Figure 14), GIV regression performs better than
OLS, MR, or EMR in estimating the parameters of equation 4. Of course, the term TS∗y|XT may not fully
capture all gene-environment interactions involving T or other environmental variables. Correlations be-
tween the IVs and variables in the error term of equation 4 will violate the assumptions of IV regression.
We address issues of violated assumptions below.

Simulations
We explored the robustness of GIV regression in finite sample sizes using a range of simulation scenar-
ios (SI appendix). The simulations generate data from a set of known models, which we then analyzed
to produce coefficient estimates of the effect of the PGS for y on y and the effect of T on y. We produce
these estimates using OLS, MR, EMR, and GIV regression, and compare these results with the true an-
swer across a range of parameter values. The simulations specify that the true PGS scores for y and T
are correlated and that the observed PGS scores for y and T are constructed with error. We make the
conservative assumption that the entire genetic correlation between the traits is due to Type 1 pleiotropy,
i.e. all genes that are associated with both phenotypes have direct effects on both.6 In practice, this is
unlikely to be the case, but it is equally unlikely that one can put a credible upper bound on (or com-
pletely rule out) Type 1 pleiotropy. In one set of scenarios, we make the assumption that the entire en-
dogeneity problem arises from the genetic correlation between y and T , a problem which would be solved
if we could measure the PGS for these two phenotypes without error. In a second set of simulations, we
make the additional assumption that endogeneity arises from other (e.g., environmental) sources that
cause the disturbance term in the structural equation for y to be correlated with the disturbance term
in the structural model for T even if the true PGS for y and for T were in the respective structural equa-
tions. In a third set of simulations, we assume that the genetic factors that affect T are correlated with
the environmental factors in the disturbance term for y, as would be the case if parental genes, which
affect the PGS for T , also either cause or select for environmental factors that affect y net of T and the
PGS for y. We conducted simulations which alternatively specify that the effects of T and the PGS for y
are additive and that the effects interact (i.e., where the effect of T on y depend on the PGS for y). The
simulations alternately assume that the underlying distributions for the errors in the structural equations
for y and T are multivariate normal and deviate from normal via the introduction of skew and kurtosis.
They also alternately assume that the errors in the equation for the observed PGS for T and the multiple
observed PGS for y are independent or correlated. Finally, we simulate the scenario where even the true
PGS for y and T fail to capture all the genetic effects on y and T because they omit rare genetic variants,
and where the rare variants for y are correlated with the rare variants for T .

The details of these simulation results are described in the SI appendix. The results provide consid-
erable support for the claim that GIV regression greatly improves our ability to estimate the effects of
variables that may have a causal effect on an outcome variable but where genetic correlation and other
forms of endogeneity are present. When the only problem is measurement error in the PGS for y and T,

6as opposed to cascade effects where, for example, a component of the PGS for y affects y indirectly through its effect on
height that then causes higher EA
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GIV regression produces results that bracket the true answer. GIV regression also provides accurate re-
sults when the errors of the two structural models are correlated for reasons beyond measurement error in
the PGS. Skewness and Kurtosis in the distributions of the errors do not much affect the quality of GIV
regression estimates.

When the measurement errors of the PGS are correlated (i.e. when overlapping GWAS samples were
used to construct the PGS for y and the genetic IVs), the exclusion restriction is violated and GIV regres-
sion estimates are biased. However, we find that GIV regression still outperforms MR or EMR for small
to moderately correlated measurement errors (ρ < 0.5). It is also encouraging to find that missing genetic
variants from the PGS for y and T do not lead to noteworthy bias in the GIV regression estimate for the
effect of T on y. Finally, we find that in situations where endogeneity is induced by the effects of or cor-
relation between parental genes and the environment of the parent’s children, estimates from all meth-
ods are, as expected, biased. However, we still find that GIV regression outperforms all other methods in
terms of the size of the bias of the estimated effect of T on the outcome. In the next section, we discuss
these scenarios and our results in greater detail.

Violated assumptions

We now elaborate on the assumptions that GIV regression is based on, and discuss what our simulations
tell us about how GIV regression performs under potential violations in comparison with OLS, MR, and
EMR.

1. Complete genetic information: Current GWAS are based on two technologies to obtain genetic
data. First, so-called genotyping arrays are used to extract information from DNA samples for a selected
sub-set of genetic markers. Array technologies allow high throughput and are substantially cheaper than
sequencing the entire human genome, which mostly consists of genetic information that does not vary
among humans. Instead, array technologies focus on genetic markers that are known to vary within or
across specific human populations. Second, one makes use of the fact that genetic markers which are
physically close to each other on a chromosome tend to be correlated. This allows genotyping arrays to
focus on one or a few SNPs per region that represent the genetic variations (so-called haplotypes) which
can be found among humans. Next, information from fully sequenced reference samples is used to impute
the missing SNPs [49]. This approach yields highly accurate information for common genetic polymor-
phisms [50]. However, genotyping and imputation accuracy attenuate strongly for rare polymorphisms as
well as for so-called structural genetic variants (e.g. deletions, insertions, inversions, copy-number vari-
ants) that are not directly included in the genotyping array. Newer genotyping arrays tend to capture
more and better selected polymorphisms than older arrays. Furthermore, increasing sample sizes of com-
pletely sequenced reference populations allow imputation of missing genetic variants with ever increasing
accuracy [50]. Nevertheless, this implies that the assumption of complete genetic information is violated
in practice, although this is likely to be a temporary issue. Another implication of this assumption is that
it will be important in practice to ensure that all PGS used in GIV regression are constructed from the
same or at least from largely overlapping sets of SNPs.

While it is not possible to know the impact of genetic variants that are not yet included in GWAS
data, recent research [47] finds that the 1000 Genomes imputed data imply very little bias for our method
arising from correlation between missing genetic information and the SNPs used to estimate the PGS for
height, because the 1000 Genomes imputed data contains almost all the narrow-sense heritability of these
traits. Specifically, we used Yang et al’s results to infer the effects of rare variants on y (and also on T ) in
the SI appendix, and we then computed the bias via simulations using a range of correlations between
common and rare genetic variants. The simulation shows that our results are robust across a range of
plausible values for these correlations (Supplementary Figure 12).

2. Genetic effects are linear: Possible violations of this assumption could arise if non-linear genetic
effects such as systematic gene-gene interactions (a.k.a. epistasis) ended up in the error terms of both
scores or if y is affected by genetic dominance or by unmeasured genetic markers (e.g. very rare alleles
or structural variants not included in the GWAS or the prediction sample). In other words, suppose that
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the true structural equation is

y = α+ δT +Xβ + γS∗y|XT + f(G) + ε (5)

= α+ δT +Xβ + γ
(
S∗y1|XT + v1

)
+ f(G) + ε

= α+ δT +Xβ + γSy1|XT + (f(G)− v1 + ε)

where f(G) includes interaction terms between the various genetic markers in G, the effects of unmea-
sured genetic markers and other nonlinear effects. The presence of f(G) in equation (5) may cause the
exclusion rule to be violated; Sy2 may be correlated with the disturbance term because S∗y|XT may be
correlated with the non-zero interaction effects in f(G). This problem is not solved even if the measure-
ment error in the PGS was essentially eliminated through the use of extremely large GWAS samples and
using ordinary least squares to estimate equation (5); the problem stems from the failure to control for
(or find an instrument for) f(G). Imagine that S∗y|XT perfectly captures the linear effects of the measured
SNPs. If f(G) is uncorrelated with S∗y|XT , then the estimated effect of S∗y|XT will be consistent, but the
estimate of the proportion of variance in y that is statistically explained by genetic factors will be un-
derestimated and the standard error of the effect of S∗y|XT will be higher than if f(G) were observed. If
f(G) is positively correlated with S∗y|XT , then the true effect of S∗y|XT will be overestimated and the total
variance explained by genetic factors will be underestimated. If f(G) is negatively correlated with S∗y|XT ,
then the true effect of S∗y|XT will be underestimated and the total variance explained by genetic factors
will also be underestimated. Epistasis certainly exists to some extent. However, the observed twin corre-
lations for the majority of traits (69%) are consistent with a simple and parsimonious model where twin
resemblance is solely due to additive genetic variation and where epistasis is therefore not a major prob-
lem [8].

3. Genome-wide association studies successfully control for population structure: Violations of this
assumption lead to biased PGS or to PGS that predict y for non-genetic reasons (as when a model with-
out population controls makes it seem as if Italians like pasta or the Chinese use chopsticks for genetic
reasons) [20]. This can lead to the violation of the exclusion restriction if the population structure vari-
ables that are correlated with S∗y|XT are not controlled for in the PGS or the structural model, and if
these population variables affect the outcome of interest. Multiple indicators of S∗y|XT would not resolve
this omitted variable bias because each of these indicators would also be correlated with the omitted vari-
ables.

4. It is possible to divide GWAS samples into non-overlapping sub-samples drawn from the same
population as the sample used for analysis. In principle, this assumption seems unproblematic: the avail-
ability of large-scale, population-based, genotyped datasets such as the UK Biobank makes it straight-
forward to randomly split the sample into parts and to exclude genetically related or identical observa-
tions. One practical issue is that one may want to use results from published GWAS studies to construct
polygenic scores. In this case, it should be verified that the genetic architecture of the trait is identical in
the GWAS results and the analysis sample (e.g. using bivariate LD score regression [12]). Furthermore,
most GWAS studies are conducted as a meta-analysis of summary statistics from various samples. Meta-
analysis circumvents legal, practical, and logistic challenges that would have to be overcome to pool data
from several providers on one central location is as statistically powerful as analyzing the raw data di-
rectly [51]. However, the meta-analysis approach makes it difficult to check if the same or closely related
individuals have been included in several samples. It is currently unknown if and to which extent such
hidden overlap between GWAS samples is a real issue. We explore in SI section 3.2.2 the consequences
of a correlation between the measurement errors of the polygenic scores. As can be seen from Supple-
mentary Figures 10 and 11, when the measurement errors for Sy1 and Sy2 are not independent, all meth-
ods produce biased estimates. When the correlation between the measurement errors of the PGS for y is
small, GIV regression outperforms the other methods. When the correlation becomes moderate to strong,
none of the methods produce accurate estimates. When the measurement errors in Sy1 and Sy2 are cor-
related with the measurement error in T , there is a region of small to moderate correlation strength in
which EMR performs better than GIV regression or MR. When the correlation is strong, none of the
methods produce accurate estimates.
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5. The PGS for the outcome is uncorrelated with omitted inherited environmental factors that af-
fect the outcome. An example of potential bias stemming from omitted inherited environmental factors
would arise from the correlation between the PGS for height and the PGS for parent’s height, which is
correlated with parent’s height, under conditions when parents get an environmental effect from height
(e.g., higher pay for being taller) that affects the quality of the childhood health environment that could
be correlated both with child’s height and with child’s EA. Violation of the exclusion restriction would be
avoided by controlling for parental height, or for the parental resources that are consequences of parental
height. More generally, however, there might be other causal pathways between parental genetic factors
that affect the child’s environment in ways that affect her EA (e.g., via the BMI of parents). One alter-
native strategy for blocking these pathways would be to construct and control for a parental PGS for the
child’s EA. However, large family samples including biological parents and their offspring would be re-
quired for this. Such samples are still very rare and often not available in the public domain. Further-
more, in the absence of sufficiently large GWAS samples to estimate parental PGS with high accuracy,
controlling for the observed parental PGSs would not be perfect, for the same reasons described through-
out this paper in the context of a person’s own PGS (though it would then in principle be possible to
pursue a multiple indicator strategy for parental PGS as we do for the child’s PGS). Whether it would
be preferable to control for the parental PGS (and to use an additional indicator of the PGS to obtain
consistent estimates of the effect of the parental PGS on the outcome) or for parental phenotypical char-
acteristics that might affect a person’s life course environment, or for the environmental characteristics
themselves would depend upon whether the causal pathways are well-enough understood and whether suf-
ficient information is available about a person’s environment, her parent’s phenotypical characteristics, or
her parent’s PGS for the person’s outcome of interest in the analysis.

To assess the potential impact of bias from omitted inherited environmental factors that are corre-
lated with the IVs, we carried out a final simulation where we assumed that a genetic marker of the par-
ents (PT ) affects y net of S∗y|XT and T . We assumed a range of values for the effect of PT allowing its ef-
fect to range from zero to the same size as T in our structural model (equation 3). Supplementary Figure
13 shows that GIV regression generally outperforms OLS, MR, and EMR, but that all methods produce
substantial bias if the reduced form effect of PT , which affects y entirely indirectly through omitted envi-
ronmental factors, rivals the effect of T on y. In practice, the problem is unlikely to be this large; even if
the indirect effects of parental genes through their effect on the child’s environment are sizable, much of
the bias can be removed from the estimation via controls for these consequential environmental variables
or for the parental phenotypical characteristics that produce these environmental effects (e.g., parental
education or income or height), or for the parental genotype (via a PGS for the genetic effects of parents
on y) or through the use of data on twins that allows an effective control of parental genotype via the es-
timation of within-family regression models.

Empirical applications

We illustrate the practical use of GIV regression in a variety of important empirical applications using
data from the Health and Retirement Survey (HRS) for 8,638 unrelated individuals of North-West Euro-
pean descent who were born between 1935 and 1945 (SI appendix).

The narrow-sense SNP heritability of educational attainment

First, we demonstrate that GIV regression can recover the genomic-relatedness-matrix restricted maxi-
mum likelihood (GREML) estimate of the chip heritability of EA.

Specifically, we follow the common practice in GREML estimates of heritability and analyze the
residual of EA from a regression of EA on birth year, birth year squared, gender, and the first 10 prin-
cipal components from the genetic data [52]. Next, we standardize the residual and regress it on a stan-
dardized PGS for EA using OLS or GIV. The results are displayed in Table 1. The standard OLS es-
timate of the PGS explains 6.3% of the variance in EA (with a 95% confidence interval of +/- 1.8%),
which is similar to the results reported by the Social Science Genetic Association Consortium [27]. This
is substantially lower than the 17.3% (95% CI +/- 4%) estimate of chip heritability reported by [52] in
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Table 1: Effects of the PGS on Educational Attainment in the HRS subsample

(1) (2) (3)
OLS IV1 IV2

PGS EA Total 0.251 ***
(0.0182 )

PGS EA SSGAC 0.463 ***
(0.0456)

PGS EA UKB 0.615 ***
(0.0492)

N 2839 2839 2839

* p < 0.05, ** p < 0.01, *** p < 0.001
We regress the residual of EA on the different PGSs. Standard errors in parentheses. All variables have been standardized.
EA is measured in years of schooling needed to obtain the highest achieved educational degree according to ISCED
classifications. We use the residual of EA after a regression on birth year, birth year squared, gender and the first 10
principal components in the genetic data . PGS_EA_SSGAC : PGS for EA using meta analysis from [27], excluding data
from 23andMe, UKB, and HRS; PGS_EA_UKB : PGS for EA using UKB data; PGS_EA_Total : PGS for EA using
GWAS meta analysis of UKB + SSGAC[27], excluding data from 23andMe and HRS;

the same data using GREML7 Columns 2 and 3 show GIV regression results using one or the other of
the two subset PGS scores as the covariate and as the instrumental variable. Since we are regressing on
a PGS that contains measurement error (rather than on the true PGS), the squarred standardized coef-
ficient does not equal the chip heritability of EA. Instead, a downward correction of the estimate is re-
quired to obtain an unbiased estimate (see SI appendix for details). Applying this correction, the GIV re-
gression results in columns 2 and 3 imply a chip heritability of 8.8% (95% CI +/- 3.4%) and 15.5% (+/-
4.8%), respectively. Note that we obtain higher estimates of chip heritability if we are using the UKB
score for EA in the structural model. In contrast to the SSGAC score, the UKB score is derived from a
GWAS on just one relatively homogenous population sample, whereas the SSGAC score is the result of a
meta-analysis across many different cohorts. It is reasonable to assume that the meta-analyzed samples
often had genetic correlations of lower than 1, which would tend to attenuate the predictive accuracy of
the SSGAC score in the HRS[52] and, as a result, also attenuate the GIV estimate of chip heritability.
The estimate using the UKB score for EA in the structural model is consistent with the GREML esti-
mate from [52].

The relationship between body height and educational attainment

Previous studies using both OLS and sibling or twin fixed effects methods have found that taller people
generally have higher levels of EA [53, 54, 55]. They are also more likely to perform well in various other
life domains, including earnings, higher marriage rates for men (though with higher probabilities of di-
vorce), and higher fertility [56, 57, 58, 59, 60, ?]. The question is what drives these results. Can they be
attributed to genetic effects that jointly influence these outcomes? Are there social mechanisms that sys-
tematically favor taller or penalize shorter individuals? Or are there non-genetic factors (e.g., the uterine
and post-birth environments especially related to nutrition or disease) that affect both height and these
life course outcomes? The literature on the relationship between height and EA has found evidence that
the association arises largely through the relationship between height and cognitive ability, which may
suggest that the height-EA association is driven largely by genetic association between height and cog-
nitive ability. We use GIV regression with individual-level data from the HRS to clarify the influence of
height on EA, and we compare these results with those obtained from OLS and from MR. In addition,
we conduct a "negative control" experiment that estimates the causal effect of EA on body height (which
should be zero). A complete description of the materials and methods is available in the SI Appendix.

GWAS summary statistics for height were obtained from the Genetic Investigation of ANthropo-

7GREML yields unbiased estimates of SNP-based heritability that are not affected by attenuation, see [?].
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metric Traits (GIANT) consortium [22] and by running a GWAS on height using the interim release of
genetic data in the UK Biobank [61], which was not part of the GIANT sample. We refer to these as
Height_GIANT and Height_UKB, respectively. GWAS summary statistics for EA were obtained from
the Social Science Genetic Association Consortium (SSGAC). The most recent study of the SSGAC on
EA used a meta-analysis of 64 cohorts for genetic discovery and the interim release of the UKB for repli-
cation [27]. We refer to these samples as EA_SSGAC and EA_UKB, respectively. There is an overlap in
the cohorts between Height_GIANT and EA_SSGAC. To ensure independence of measurement errors in
the PGS, whenever one of the two was used as regressor, we excluded the other as instrument and used a
PGS from UK Biobank data instead.

The OLS results in Table 2 show that height (in meters) appears to have a strong effect on years of
EA, with two additional centimeters in height generating one additional month of EA. MR appears to
confirm the causal interpretation of the OLS result; indeed, the point estimate from MR is even slightly
larger than from OLS. As discussed above, MR suffers from probable violations of the exclusion restric-
tion. These violations could stem from the possibility that the some genes have direct effects on both
height and EA (i.e. Type 1 pleiotropy).8 They could also stem from the possibility that the PGS for
height by itself is correlated with the genetic tendency for parents to have higher EA and income, and
therefore a lower nutritional or disease risk for their children, who therefore are more likely to reach their
full cognitive potential and have higher EA. Controlling for the PGS is an imperfect strategy for eliminat-
ing this source of endogeneity, because the bias in the estimated effect of the PGS score also biases the
estimated effect of height (the omitted variable bias discussed earlier).

In contrast, estimates from GIV regression in Table 2 show both a considerably larger effect of the
education PGS score on EA, and a small and statistically insignificant effect of height on EA. These re-
sults imply that the positive correlation between height and EA is not a causal relationship. Rather, the
observed phenotypic correlation is primarily due to the genetic correlation between the two traits. Fur-
thermore, our "negative control" using GIV regression finds no causal effect of EA on height, as expected.
One might contrast our results also to those of [53], who found a correlation between the height and EA
of Finnish monozygotic (MZ) twins. Silventoinen et al’s study effectively controls for all genetic correla-
tion between height and EA. However, their result would still suffer from endogeneity bias to the extent
that the difference in MZ twin heights is related to intra-uterine or post-birth environmental differences
that cause one twin to be taller and have higher cognitive or non-cognitive abilities than the other twin.
GIV regression is arguably superior to twins fixed effects to the extent that these environmental variables
are uncorrelated with the PGS for height once the PGS for EA is effectively controlled, making the com-
bination of the PGS for height and the PGS for EA to be valid instruments.

Conclusion
Accurate estimation of causal relationships with observational data is one of the biggest and most im-
portant challenges in epidemiology and the social sciences - two fields of inquiry where many questions
of interest cannot be adequately addressed with properly designed experiments due to practical or eth-
ical constraints. Here, we have proposed a method that allows genetic data to be used for this purpose.
Thinking of genetic data as a sort of naturally occurring experiment is appealing because the genotypes
that arise from two mates are randomized by the process of meiosis. Thus, given that virtually all human
traits are heritable to some extent, an individual’s genotype could in principle be used to identify causal
effects across a wide range of important scientific questions. Thanks to cheap and accurate genotyping
technologies and growing insights into the genetic architecture of many traits via large-scale GWAS, this
general idea becomes practically more and more feasible. In principle, it is this idea which underlies so-
called Mendelian Randomization (MR)–a method suggested by epidemiologists that uses genetic data as
instrumental variables.

The crucial identifying assumption of MR is that the genes which are used as instruments do not
also affect the outcome through other causal pathways via so-called pleiotropic effects. In light of the
widespread and often substantial genetic correlations between many traits, this assumption seems prob-
lematic. We have proposed a new strategy that we call genetic instrumental variable (GIV) regression,

8Results from [?] and [27] suggest a genetic correlation between height and EA of about 0.15.
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Table 2: Regression of educational attainment on height in the Health and Retirement Study (HRS)
(1) (2) (3) (4) (5)
OLS MR EMR GIV1 GIV2

Height 0.120∗∗∗ 0.130∗ 0.0523 0.000594 0.0697
(0.0252) (0.0599) (0.0590) (0.0609) (0.0706)

PGS_EA_Total 0.189∗∗∗ 0.191∗∗∗
(0.0165) (0.0166)

PGS_EA_SSGAC 0.364∗∗∗
(0.0425)

PGS_EA_UKB 0.447∗∗∗
(0.0438)

Birth year 1.825 0.0763 2.834 8.066 -2.086
(22.11) (22.63) (22.16) (22.72) (23.63)

Birth year, squared -1.790 -0.0439 -2.800 -8.030 2.115
(22.11) (22.63) (22.16) (22.72) (23.63)

Gender 0.00707 0.0109 -0.0435 -0.0787 -0.0297
(0.0250) (0.0481) (0.0473) (0.0487) (0.0559)

Mother’s EA 0.247∗∗∗ 0.256∗∗∗ 0.250∗∗∗ 0.231∗∗∗ 0.250∗∗∗
(0.0201) (0.0207) (0.0203) (0.0210) (0.0217)

Father’s EA 0.198∗∗∗ 0.220∗∗∗ 0.199∗∗∗ 0.183∗∗∗ 0.176∗∗∗
(0.0201) (0.0205) (0.0201) (0.0210) (0.0218)

N 2839 2839 2839 2839 2839

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001
Standard errors in parentheses. All variables have been standardized. EA is measured in years of schooling needed to obtain
the highest achieved educational degree according to ISCED classifications. The first 10 principal components in the genetic
data were included as control variables. PGS_EA_SSGAC : PGS for EA using meta analysis from [27], excluding data
from 23andMe, UKB, and HRS; PGS_EA_UKB : PGS for EA using UKB data; PGS_EA_Total : PGS for EA using
GWAS meta analysis of UKB + SSGAC[27], excluding data from 23andMe and HRS. MR and EMR use
PGS_Height_UKB as instrument for height. GIV1 uses PGS_Height_UKB and PGS_EA_UKB as instruments for
height and PGS_EA_SSGAC. GIV2 uses PGS_Height_GIANT and PGS_EA_SSGAC as instruments for height and
PGS_EA_UKB.
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that eliminates or at least substantially reduces the bias of MR due to pleiotropy under a set of arguably
more realistic assumptions. We have explored conditions where the assumptions underlying GIV regres-
sion will fail and conclude that GIV regression outperforms OLS and MR in a broad range of realistic
scenarios.

The simulations described in the paper certainly do not cover all conceivable data generating pro-
cesses, but they are nonetheless of considerable utility, we would argue, in assessing the performance of
GIV regression. Analyses with real data demonstrate that GIV regression recovers estimates of the ef-
fect size of the outcome PGS that are consistent with alternative approaches to estimate the extent of
narrow-sense heritability. Our analyses also provide reason to be cautious when using OLS or MR to es-
timate causal effects between variables that are known to be genetically correlated. Existing knowledge
about the effects of epistasis, rare or dominant alleles, structural variants, or population structure provide
good grounds to be cautiously optimistic that GIV regression provides an important tool for assessing
causal effects when unmeasured genetic correlation is likely to be a serious issue. In particular, constant
improvements in genotyping technology, increasing GWAS samples, and even better statistical methods to
control for population structure in GWAS will make it less and less likely in the future that the assump-
tions underlying our approach will be seriously violated. Additional knowledge in this rapidly developing
field will provide further guidance for assessing the extent of remaining bias in GIV regression estimates.
The combination of new estimation tools and continued rapid advancements in genetics should provide a
significant improvement in our understanding of the effects of behavioral and environmental variables on
important socioeconomic and medical outcomes.
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1 Introduction

The Supplementary Information for this article consists of four sections. In section 2, we
provide technical details of Genetic Instrumental Variables (GIV) regression. In section
3, we describe a set of simulations to illustrate and explore how GIV regression performs
in finite samples when the model assumptions are satisfied or violated in various ways.
Section 4 describes the data and methods used for our empirical examples. In section 5, we
provide supplementary information about the empirical examples described in the article.

2 Genetic Instrumental Variables (GIV) regression

2.1 Estimating narrow-sense SNP heritability from polygenic scores.

We begin by showing that consistent estimates of the chip heritability of a trait (i.e. the
proportion of variance in a trait that is due to linear effects of currently measurable SNPs)
can be obtained from polygenic scores. If y is the outcome variable, X is a vector of
exogenous control variables, and S∗y|X is a summary measure of genetic tendency for y in
the presence of controls for X, then one can write

y = α+Xβ + γS∗y|X + ε (1)

where, for example, y is educational attainment. Typical variables in X would be age,
gender, and the first ten principal components in the genetic data as controls for population
structure. If the heritability of y is caused by a large number of genetic loci, each with a
very small effect [1], we call y a “genetically complex trait.” In this situation, the genetic
liability for y cannot be adequately represented by just one gene. Rather, it is preferable to
approximate the genetic liability S∗y|X with a polygenic score (PGS). The weights of each
SNP that are summed up in the PGS are obtained from a GWAS on y in an independent
sample [2, 3]. In a GWAS, y is regressed on each SNP separately, typically including a set
of control variables such age, sex, and the first few principal components of the genetic data
to control for population structure [4]. Thus, the obtained estimates for each SNP do not
account for correlation between SNPs (a.k.a. linkage disequilibrium – LD), which may bias
the PGS. In practice, several solutions are available to deal with this challenge, including
pruning SNPs for LD prior to constructing the score [5] or using a method that explicitly
takes the LD structure between SNPs into account (e.g. LDpred, see [6]). The scores
themselves (Sy|X) are linear combination of the elements in G weighted by the estimated

coefficients, ζ̂y|X obtained from

y = Xβ +Gζ̂y|X + ε (2)

where G is an n×m matrix of genetic markers, and ζ̂y|X is the m×1 vector of LD-adjusted
estimated effect sizes, where the number of SNPs (the size of m in equation 2) is typically

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2017. ; https://doi.org/10.1101/134197doi: bioRxiv preprint 

https://doi.org/10.1101/134197
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the millions. If the true effects of each SNP on the outcome were known, the true
genetic tendency S∗y|X would be expressed by the PGS for y, and the marginal R2 of S∗y|X
in equation 1 would be the chip heritability of the trait. In practice, GWAS results are
obtained from finite sample sizes that only yield noisy estimates of the true effects of
each SNP. Thus, a PGS constructed from GWAS results typically captures far less of the
variation in y than suggested by the chip heritability of the trait ([7]; [2]; [8]). We refer
to the estimate of the PGS from available GWAS data as Sy|X , and substitute Sy|X for
S∗y|X in equation 1. The variance of a trait that is captured by its available PGS increases
with the available GWAS sample size to estimate ζ and converges to the true narrow-sense
heritability of the trait at the limit if all relevant genetic markers were included in the
GWAS and if the GWAS sample size were sufficiently large [8].

As reported in [9] and [2], the explained variance in a regression of a phenotype on its
PGS can be expressed as

R2
y,Sy

=
(n/m)h4

(n/m)h2 + 1
(3)

where y is standardized, σ2g is the genetic variance of y (i.e., the proportion of the
variance in y explained by G), n is the sample size, and m is the number of genetic
markers. For example, a PGS for EA based on a GWAS sample of 100,000 individuals
would be expected to explain about 4% of the variance of EA in a hold-out sample
(assuming there are 70,000 effective loci, all of them included in the GWAS, and a chip
heritability of 20% [9]), even though the estimated total heritability of EA in family
studies is roughly 40% [10].

It has long been understood that multiple indicators can, under certain conditions,
provide a strategy to correct regression estimates for attenuation from measurement error
([11]; [12]). Instrumental variables (IV) regression using estimation strategies such as
two stage least squares (2SLS) and limited information maximum likelihood (LIML) will
provide a consistent estimate for the regression coefficient of a variable that is measured
with error if certain assumptions are satisfied ([13]; [14]): (1) The IV is correlated with
the problem regressor, and (2) conditional on the variables included in the regression, the
IV does not directly cause the outcome variable, and it is not correlated with any of the
unobserved variables that cause the outcome variable [13]. In general, these assumptions
are difficult to satisfy. In the present case, however, GWAS summary statistics can be used
in a way that comes close enough to meeting these conditions to measurably improve results
obtainable from standard OLS regression and from standard Mendelian Randomization
(MR) [15].

Multiple indicators of the PGS provide a theoretical solution to the problem of atten-
uation bias, and, we argue, a practical solution as well. The most straightforward solution
to the problem is to split the GWAS discovery sample for y into two mutually exclusive
subsamples. This produces noisier estimates of S∗y|X , with lower predictive accuracy. How-

ever, it also produces an IV for Sy|X that has desirable properties. Formally, we let ˆζy1|X
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be the estimated coefficient vector for ζy in equation 2 from the first training sample, and

ζ̂y1|X be the coefficient vector estimated from the second training sample. It follows then
that

ζ̂y1j|X = ζyj|X + uy1j|X

ζ̂y2j|X = ζyj|X + uy2j|X

for the j-th genetic marker, where uy1|X and uy2|X are asymptotically normally distributed
errors with E(uy1j|X) = E(uy2j|X) = 0 and V (uy1j|X) = V (uy2j|X) = σ2εn

−1/var(xj),
and where xj is the observed number of reference alleles for location j. Because the two
discovery samples are non-overlapping, uy1|X and uy2|X would be independent of each other
if the PGS model is correctly specified (we return to this point below). By applying the
two vectors of estimated coefficients, we obtain two PGS,

Sy1|X = S∗y|X + v1 = Gζy|X +Guy1|X = S∗y|X +Guy1|X (4)

Sy2|X = S∗y|X + v2 = Gζy|X +Guy2|X = S∗y|X +Guy2|X

where G is the matrix of genetic markers for the analytical sample. We then rewrite
equation 1 in terms of the observed first PGS as

y = α+Xβ + γS∗y|X + ε (5)

= α+Xβ + γ
(
Sy1|X −Guy1|X

)
+ ε

= α+Xβ + γSy1|X +
(
ε−Guy1|X

)
As can be seen from equation 5, the PGS Sy1|X is correlated with the error term via its

correlation with Guy1|X from equation 4. However, under the assumptions that equation
(2) accurately describes the relationship between G and y and that the genetic architecture
of the trait is identical across GWAS and prediction samples, then Sy2|X meets the two
requirements to be a valid instrument for Sy1|X , namely that it is correlated with Sy1|X
(through their mutual dependence on S∗y|X) and uncorrelated with the disturbance term,

because neither S∗y|X (= Gζy|X ) nor Guy2|X are correlated with Guy1|X . Therefore, the
covariance of Guy1|X and Guy2|X is

Cov(Guy1|X , Guy2|X) = E([Guy1|X ][Guy2|X ])

= E


m∑
i=1

g2i uy1i|Xuy2i|X +

m∑
i=1

m∑
j 6=i

gigjuy1i|Xuy2j|X


=

m∑
i=1

E(g2i )E(uy1i|Xuy2i|X) +
m∑
i=1

m∑
j 6=i

E(gigj)E(uy1i|Xuy2j|X)

= 0 (6)
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with equation (6) true because of the fact that uy1i|X and uy2j|X – being random mea-
surement error – are independent of the genetic markers and uncorrelated with each other,
under the assumption that equation (2) is the correct specification of the relationship be-
tween G and y.1 It follows, therefore, that the IV Sy2|X is uncorrelated with the error term
in equation 5, i.e.,

plim
1

n

∑
i

(Sy2|X)i(εi − (Guy1|X)i) = plim
1

n

∑
i

(S∗y|X +Guy2|X)i(εi − (Guy1|X)i)

= plim
1

n

∑
i

[
(S∗y|X)iεi + (S∗y|X)i(Guy1|X)i + (Guy2|X)iεi + (Guy1|X)i(Guy2|X)i

]
=0

At the same time, Sy2|X is correlated with Sy1|X through their common dependence on
S∗y|X . Under the assumptions that X is uncorrelated with ε net of S∗y|X , and that S∗y|X is
uncorrelated with ε net of X, then Sy2|X is a valid IV for the estimation of γ in equation
5.

The above derivation assumes that the true coefficients of the genetic markers in G do
not vary in the population. More generally, we might assume that the population consists
of a finite number of (possibly latent) groups, k = 1, ...,K with the kth group having the
polygenic score S∗yk|X . Absent information about the specific number of groups and the
group memberships of individuals in any specific population, the polygenic score that would
be estimated from a sufficiently large sample from that population would be a weighted
average of the scores for each group, with the weights dependent on the proportion each
group is of the total population [13]. Any population P therefore can be characterized in
terms of its group composition, p1, p2, ..., pK . The above results apply straightforwardly
when the PGS are estimated and analyzed using samples from a single group. When they
are instead estimated on a population that is a mixture of groups, the situation is more
complicated. The true PGS for any individual who is in group k can be expressed as

S∗yk|X = S̄∗yP |X + ∆yk|X

where P = {p1, p2, ..., pK} is the group composition that defines population P and ∆yk|X
is the deviation between the group k specific PGS for trait y and the population average

1This conclusion assumes that the two PGS are estimated from the same population. In principle, the
PGS for a trait could vary across sub-populations. Using a PGS from one subpopulation as an instrument
for a PGS from another subpopulation could cause a violation of the exclusion restriction. This potential
problem is solved if the two scores are estimated from randomly chosen subsamples of a single GWAS sample
after randomly excluding related individuals so that the final sample consists only of unrelated individuals.
This can be done using the UK Biobank.
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(for population P ). Under this elaboration, equation 5 can be written as

yig = α+Xiβ + γS∗yik|X + εi

= α+Xiβ + γ
(
S̄∗yiP |X + ∆yik|X

)
+ εi

= α+Xiβ + γS̄y1iP |X +
(
εi + γ∆yik|X − γv1i

)
where S∗yik|X is the true PGS for trait y for individual i in group k, and where S̄y1iP |X is
the first polygenic score estimated using coefficients from the GWAS sample drawn from
population P . Variation in true PGS by group creates the possibility that the exclusion
restriction will be violated. If S̄y2P |X is the IV, then S̄y2P |X is correlated with ∆yk|X to
the extent that the true PGS differ by group and to the extent that the weighted average
deviation of the true PGS estimated from each individual’s group and the true PGS
estimated from the other groups correlates with the PGS for the population P . If the two
PGS scores were estimated on one “pure” group and the analysis sample was for a second
“pure” group, then the deviation between the two PGS would of course correlate with the
PGS for one of the groups and the exclusion restriction would be violated unless the SNP
coefficients of the PGS for the one group were the same as the beta coefficients of the
PGS for the other group. If the analysis sample and the GWAS samples are drawn from
the same population (i.e., the same mixture of groups), we would expect the correlation
between the deviations for analysis sample members (drawn from each of the groups in
the same proportion as the GWAS sample) and the true PGS for the GWAS sample to be
very small. If the population consists only of a single group or, equivalently, if all groups
have the same SNP coefficients in their PGS for trait y, then the issue of group-specific
heterogeneity in PGS disappears.2

When PGS for y are used that were constructed with a different set of control variables
than are used in the regression, the above results need to be modified. Let us assume that
variables χ were controlled in the GWAS and variables X are controlled in the regression
model. Then

y = Xβ + γS∗y|χ + {S∗y|X − S
∗
y|χ + ε}

= Xβ + γS∗y|χ + {GdyXχ + ε}

where dyXχ is the vector of differences in the effects of genetic markers on y when X is
controlled and when χ is controlled. If a finite sample PGS of y is constructed using χ as
controls, i.e., Sy1|χ, and this finite sample PGS is used in place of Sy1|X as a proxy for S∗y|X
in model 1, one obtains

y = α+Xβ + γSy1|χ +
(
GdyXχ −Guy1|χ + ε

)
2This issue is similar to the attenuation of predictive accuracy of a PGS that results from an imperfect

genetic correlation between the GWAS summary statistics in the hold-out sample and the GWAS summary
statistics in the discovery sample [16].
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where
Sy1|χ = S∗y|χ +GdyXχ +Guy1|χ

The problem now is that using Sy2|χ as an IV would violate the exclusion restriction
to the extent that dyXχ differs from zero, because GdyXχ is both in Sy2|χ and in the error,
and because S∗y|χ would generally be correlated with GdyXχ . The extent of bias would
depend on the extent to which the effects of the genetic markers on y differ when X and
when χ are controlled.

Once a consistent estimate for γ̂ has been obtained, it is possible to derive an estimate
of the narrow-sense SNP (or chip) heritability of y. In a univariate linear regression model
with standardized variables, the squarred regression coefficient is equal to R2. This follows
directly from the definition of R2 as the variance of y explained by X as a fraction of total
variance of y. Thus, γ2 in 1 can be thought of as the narrow-sense chip heritability of y
if both y and S∗y|X are standardized variables with mean zero and a standard deviation of

one (assuming the controls included in X are not correlated with genotype G). In practice,

however, the estimate γ̂2 originates from a regression on a PGS that contain measurement
error (Sy1|X or Sy2|X) rather than on the true PGS S∗y|X . In particular, the obtained

regression coefficient γ̂2 will be standardized using the variance of Sy1|X or Sy2|X instead

of the variance of S∗y|X . It turns out that this implies that the heritability estimate γ̂2

is biased by a factor equal to var(Sy|X)/var(S∗y|X), which simplifies to 1/var(S∗y|X) if the
observed score was standardized. However, it is possible to derive a simple error correction
because one can estimate the variance of S∗y|X by estimating the covariance of Sy1|X and
Sy2|X :

cov(Sy1|X , Sy2|X) = cov(S∗y|X + ey1, S
∗
y|X + ey2) = ρ(Sy1|X , Sy2|X) = var(S∗y|X).

With an estimate of var(S∗y|X) at hand, we can back out an unbiased heritability estimate:

h2 = γ̂2var(S∗y|X)/var(y).

When y is standardized, var(y) = 1, the error correction simplifies to

h2 = γ̂2ρ(Sy1|X , Sy2|X).

An estimate of the standard error of h2 can be obtained using the Delta method[17].

2.2 Reducing bias due to genetic correlation between exposure and out-
come

The logic from above can be extended to situations where the question of interest is not
the SNP heritability of y per se, but rather the influence of some non-randomized exposure
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on y (e.g. a behavioral or environmental variable, or a non-randomized treatment due to
policy or medical interventions). We can rewrite equation 1 by adding a treatment variable
of interest T , such that

y = α+ δT +Xβ + (γS∗y|XT + ε) (7)

where, for example, y could be educational attainment and T could be body height. In each
case, it is presumed that the outcome variable is to some extent caused by genetic factors,
and the concern is that the genetic propensity for the outcome variable is also correlated
with the treatment represented by T in equation (7). If S∗y|XT is not observed, it is part

of the disturbance term. Equation (7) is written without any interaction terms involving
S∗y|XT and T , implying that while the effect of T may vary with S∗y|XT , δ is a (variance-

weighted) average effect of T across values of S∗y|XT [13]. If the same (uncontrolled for)
genetic tendencies that affect the outcome variable also affect or are otherwise correlated
with T (e.g., if T is influenced by parental genes that are correlated with S∗y|XT ), then δ̂
will be a biased estimate of the effects of T.

In standard MR, a measure of genetic tendency (ST ) for a behavior of interest (T in
equation 7) is used as an IV in an effort to purge δ̂ of bias that arises from correlation
between T and unobservable variables in the disturbance term under the argument that the
genetic tendency variable, e.g., the measured PGS ST , is exogenous ([18];[14]). Implicitly,
the true PGS for y is in the error term, as is shown in equation 7. One such example would
be the use of a PGS for height as an instrument for height in a regression of the effect
of height on educational attainment. The second stage regression in MR, then, takes the
form

y = α+ δT̂ +Xβ + {ε+ γS∗y|XT + δ(T − T̂ )} (8)

The problem with this approach is that the PGS for height will typically fail to satisfy
the exclusion restriction because of so-called Type 1 pleiotropy [15]: the genetic variants
that predispose individuals to be tall may also directly increase the predisposition for
higher educational attainment [19, 20] (e.g. via healthy cell growth and metabolism). This
problem is not solved even if we could use the true PGS S∗T as the IV.

The multiple indicator strategy described above provides potentially attractive ap-
proaches for addressing the bias in MR. If the genetic propensity for y could be directly
controlled in the regression, MR would provide less biased estimates of the effect of T . We
refer to the combined use of Sy1|XT as a control and ST as an IV as “enhanced Mendelian
Randomization” (EMR). However, controlling for Sy1|XT as a proxy for S∗y|XT is not ad-
equate, both because it leaves a component of S∗y|XT in the error term which causes the
exclusion restriction assumption of MR to fail, and because the bias in the estimated coef-
ficient of Sy1 also produces bias in the estimated coefficient of T . The bias arising from the
use of a proxy for S∗y|XT as a control variable in OLS regression is a form of omitted variable
bias. To see this, assume that ST is a valid instrument for T if S∗y|XT were measured and

controlled. In this case, the second stage of 2SLS would involve the substitution of T̂ for
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T , and the regression would give a consistent estimate of δ if S∗y|XT were observed, i.e.

y = α+ δT + γS∗y|XT + ε

= α+ δT̂ + γSy1|XT + {ε− γv1 + δ(T − T̂ )} (9)

where
v1 = Guy1|XT

and where (for simplicity) we drop other covariates from the model.3 If v1 is omitted from
the regression, then the bias in δ and γ is equal to the product of γ and the regression
coefficients of the regression of v1 on T̂ and Sy1.
More generally, if a set of variables z is omitted from a regression of y on a vector X , then

β̂ = (X ′X)−1X ′y = (X ′X)−1X ′(Xβ + Zλ+ ε)

and

E(β̂|X) = β + (X ′X)−1X ′Zλ, i.e., (10)

Bias = (X ′X)−1X ′Zλ

where X and Z are the matrices of included and omitted variables. The expression
(X ′X)−1X ′Z gives the matrix of coefficients from regressions of each of the omitted
variables on the included variables, and λ is the vector of coefficients of the variables
in z in the regression of y on x and z. If z consists of a single omitted variable, then
E(β̂|X) = β + (X ′X)−1X ′zλ, and (X ′X)−1X ′z is the vector of estimated regression coef-
ficients of z on the included variables x.

Violation of the exclusion restriction in EMR due to genetic correlation is potentially
solved (or at least is less severe) when an additional indicator of the PGS for y, i.e.,
Sy3|XT , is used to instrument simultaneously both Sy1|XT and T in equation 1. The
practical problem with using two indicators of S∗y|XT as the sole instruments is that their

mutual correlation will be relatively high (depending on their reliability) and they are weak
instruments for T . Instead, as a practical – and, we will argue, effective– strategy, the best
solution is arguably to use ST along with Sy2|XT (or Sy2|XT and Sy3|XT ) as instruments
for Sy1|XT and T . ST will still violate the exclusion restriction to the extent that it is
correlated with v1. However, the extent of the violation will be reduced by the presence of
Sy1|XT in the regression.

Arguably a strategy that both reduces the correlation between ST and ε (through the
inclusion of Sy1|XT in the model) and eliminates or greatly reduces omitted variable bias
through the inclusion of an instrument for Sy1|XT in the first stage equation will outperform
MR in the estimation of a consistent effect of T that is purged of genetic correlation. As

3We could, for example, imagine replacing each of the variables in equation 8 with the residual of this
variable from an OLS regression of that variable on the variables in X.
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noted above, if not all relevant genetic effects are contained in the PGS (e.g. interaction
effects, structural variants, or rare alleles may be missing given currently available GWAS
data), the PGS instruments above will not perfectly satisfy the exclusion restriction to
the extent that S∗y is correlated with the omitted genetic variables. However, the above
approach would generally be expected to reduce bias due to genetic correlation, given that
a large fraction of heritability can be attributed to linear effects of common SNPs that are
well tagged by currently available genotyping arrays [8, 21, 9, 22]).

This argument can be made more formally. MR assumes a regression of y on covariates
and T , with S∗y in the error term of equation 7. If, as above, we omit the covariates X (or,
more precisely, residualize y, T , and Sy1|XT from their dependence on X), then the bias in
MR equals

Bias(δ̂(MR)) = η
(MR)
11 λ

(MR)
1 + η

(MR)
12 λ

(MR)
2

where coefficient η
(MR)
11 is the coefficient of T̂ in the regression of S∗y|XT on T̂ , λ

(MR)
1 is

the effect of S∗y|XT on y, net of Xand T , and the second term is ignorable because T̂ is
orthogonal to its residual.

If we estimate δ using EMR, the omitted variables are now v1 (instead of S∗y) and

(T − T̂ ), and the bias in the estimator for δ is

Bias(δ̂EMR) = η
(EMR)
11 λ

(EMR)
1 + η

(EMR)
12 λ

(EMR)
2

where the first term is the product of η
(EMR)
11 (the coefficient of T̂ in the regression of v1

on T̂ and Sy1|XT ) and coefficient λ
(MR)
1 , which is the effect of v1 on y, net of X, T̂ , and

Sy1|XT . The second term is the product of the coefficient of T̂ in the regression of T − T̂
on T̂ and Sy1|XT and the coefficient of T − T̂ on y, net of X, T̂ , and Sy1|XT . As with MR,
the second term is ignorable.

Lastly, we consider GIV regression. The second stage of GIV regression is

y = α+ δT + γS∗y|XT + ε

=α+ δT̂ + γSy1|XT + {δ(T − T̂ ) + ε− γv1}
=α+ δT̂ + γŜy1|XT + {ε+ γ(S∗y|XT − Ŝy1|XT ) + δ(T − T̂ )} (11)

In GIV regression, the bias of δ is given by

Bias(δ̂GIV ) = η
(GIV )
11 λ

(GIV )
1 + η

(GIV )
12 λ

(GIV )
2 (12)

The first term is the product of η
(GIV )
11 , which is the coefficient of T̂ in the regression of

(S∗y|XT−Ŝy1|XT ) on T̂ and Ŝy1|XT multiplied by λ1, the effect of (S∗y|XT−Ŝy1|XT ) on y. The

second term is the coefficient of T̂ in the regression of (T − T̂ ) on T̂ and Ŝy1|XT multiplied

by λ2,, the effect of (T − T̂ ) on y. As with MR and EMR, the second term is ignorable.
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The major difference between the bias in MR and the bias in GIV regression stems

from the relative sizes of η
(MR)
11 and η

(GIV )
11 . In general, we expect that the correlation

between the true PGS for y and that part of T which is predicted by the observed PGS for

T (which drives η
(MR)
11 ) will be stronger than is the correlation between the residual PGS

for y (i.e., the difference between the true PGS for y, controlling for X and T, and the
predicted PGS from Sy2|XT ) and that part of T which is predicted by the observed PGS

for T and Sy2|XT (which drives η
(GIV )
11 ). Therefore, in general, we expect a lower bias in

the estimate of δ using GIV regression than using MR. We find support for our expectation
in the simulations and empirical analyses discussed below.

In principle, PGS can be computed that include controls for T as well as for X. In
practice, however, PGS are typically computed without a control for T . How would the
situation above change if instead of Sy1|XT and Sy2|XT , we used Sy1|X and Sy2|X? Now
the second stage of GIV regression is

y = α+ δT + γS∗y|X +
{
ε+ γGdy|XT

}
=α+ δT̂ + γSy1|X + {δ(T − T̂ ) + ε+ γGdy|XT − γv1}
=α+ δT̂ + γŜy1|X + {ε+ γ(S∗y|X − Ŝy1|X) + γGdy|XT + δ(T − T̂ )} (13)

where dy|XT is the vector of differences in the effects of each of the genetic markers in G
on y when both X and T are controlled and when only X is controlled. In GIV regression,
the bias of δ is given by

Bias(δ̂GIV ) = η
(GIV )
11 λ

(GIV )
1 + η

(GIV )
12 λ

(GIV )
2 (14)

The first term is the product of η
(GIV )
11 , which is the coefficient of T̂ in the regression of

(S∗y − Ŝy1) + Gdy|XT on T̂ and Ŝy1 multiplied by λ1, the effect of (S∗y − Ŝy1) + Gdy|XT
on y. The second term is the coefficient of T̂ in the regression of (T − T̂ ) on T̂ and Ŝy1
multiplied by λ2,, the effect of (T − T̂ ) on y. As with MR and EMR, the second term is
ignorable. We expect that the correlation between the true PGS for y and that part of T

which is predicted by the observed PGS for T (which drives η
(MR)
11 ) will be stronger than

is the correlation between the two components of the residual PGS for y 4 and that part of

T which is predicted by the observed PGS for T and Sy2 (which drives η
(GIV )
11 ). We expect

the advantage of GIV regression to be smaller when the error term also includes Gdy|XT
stemming from the use of PGS for y that lacks a control for T. However, there is no serious
barrier to the construction of PGS for y that include or exclude a control for T and so it
can be established empirically (e.g., via correlations between the PGS calculated with and
without controls) about the practical importance of including this control for purposes of
GIV regression analysis.

4one component is the difference between the true PGS for y, without controls for X and T, and the
predicted PGS for y (without controls for X and T ) from Sy2). The other component is the difference in
the coefficients of G on y in the presence and the absence of Xand T .
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2.3 Gene-environment interactions

We next generalize equation (7) to the case of gene-environment interactions, where the
effect of T varies with the PGS. In principle, these interactions could be extremely com-
plicated and so for practical reasons, we focus her on obtaining plausible estimates of the
linear interaction between S∗y|XT and T. We rewrite equation (7) as
Now there are three endogenous variables, T , Sy1|XT , and TSy1|XT . Also the disturbance
term has now been elaborated to include a term that is a function of T , and so an additional
instrument, Sy4|XT , is needed. As before, Sy4|XT will be a valid instrument for the same
reasons as in equation (6) to the extent that problems deriving from correlation between
the instrument and f(G) are relatively small.

3 Simulations

We describe the basic simulation model and the data generating process in 3.1. Section
3.2 studies various violations of the model assumptions.

3.1 Standard model

Our interest lies in studying the effect of a treatment T on an outcome y. Both T and
y are partly heritable and the genetic propensities of individuals for both variables are
summarized by polygenic scores, S∗T and S∗y . These polygenic scores are not observed
directly. Instead, they are empirically approximated from genome-wide association study
(GWAS) results for T and y with finite sample sizes. The estimated regression coefficients
from the GWAS are used as weights to construct the scores in an independent sample with
genetic data. Since the GWASs were conducted in finite sample sizes, the estimated betas
will have standard errors greater than zero, which implies that the constructed PGS will
be noisy proxies of the true PGS [2]. We denote the actually available (noisy) PGS for T
and y for individuals i = 1, ..., N as ST i and Syi|XT , respectively.
The data generating process is as follows:

y = γS∗y|XT + δT + ε, ε ∼ N (0, σ2ε ) (15)

T = βS∗T + η, η ∼ N (0, σ2η) (16)

Syi|XT = S∗y|XT + εyi, εyi ∼ N (0, σ2yi) (17)

ST i = S∗T + εT i, εT i ∼ N (0, σ2T i) (18)

S∗y|XT and S∗T are drawn from a multivariate normal distribution with non-zero covari-
ance and have a correlation of ρG, where in our simulation, we for simplicitly assume that
X = 0. We assume that all measurement errors are independent of each other. Both y
and T are standardized and have a mean of 0 and a variance of 1. Furthermore, the true
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polygenic scores (S∗T and S∗y|XT ) are also assumed to be standardized. This implies the
following variances for T and y:

var(T ) = β2 + σ2η = 1 (19)

var(y) = γ2 + δ2β2 + 2γδβρG + σ2ε + δ2σ2η + 2δσε,η = 1 (20)

where σε,η is the covariance between ε and η. One can calculate from this variance de-
composition what β and γ should be in terms of their heritability (h2T and h2y) and their
genetic correlation:

β =
√
h2T (21)

γ = −δβρG +
√
δ2β2ρ2G − δ2β2 + h2y. (22)

Similarly, σ2ε and σ2η can be expresses as

σ2η = 1− h2T (23)

σ2ε = (−δρeση +
√
δ2ρ2eσ

2
η − δ2σ2η − 1− h2y)2 (24)

where ρe is the correlation between ε and η, and where we assume that h is the heritability
of G net of X.

In practice, an important concern is endogeneity and bias due to unobserved environ-
mental factors that jointly influence T and y (i.e., ρe 6= 0). Our simulations cover two
broad scenarios. In one scenario, we assume that endogeneity in the naive OLS estimates
arises solely due to genetic correlations between T and y (i.e., ρG 6= 0). In this case,
the endogeneity problem would be solved if the true PGS S∗y|XT would be known. We
simulate this scenario of entirely genetically caused endogeneity by drawing ε and η from
independent distributions. In the second scenario, there is ”additional endogeneity” due
to unobserved non-genetic effects that matter for both T and y (i.e., ρe 6= 0). We simulate
this more realistic scenario by drawing ε and η from a multivariate normal distribution
with ρe = 0.4.

The variances of the error terms σ2ε and σ2η can be derived using the model of Dudbridge
[2]. In the original Dudbridge model, the polygenic scores are not standardized and have a
variance equal to the heritability of the trait. The effect sizes are assumed to be randomly
distributed across the genome. Therefore, the true polygenic score and the estimated
polygenic score are defined as

S∗y|XT = GζXT (25)

Sy|XT = G ˆζXT . (26)
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The variance of this score is equal to

h2y ≈ var(S∗y|XT ) =
m∑
i=1

var(ζi|XTGi) ≈ mvar(ζi|XT ) (27)

where m is the number of independent genetic markers and where the first approximately
equals sign reflects that fact that the variance of S∗y|XT will generally be slightly smaller
than is the variance of S∗y|X . The variance of the estimation error can now be written as

var(Sy|XT − S∗y|XT ) = var(G(ζ̂XT − ζXT )) ≈ mvar(ζ̂XTi − ζXTi) (28)

= m
1− var(ζXTi)

n
≈ m

1− h2y/m
n

(29)

Here n is the sample size used to estimate ζ̂. Since we standardized our polygenic scores
in our simulations, we divide this variance by the heritability such that our true polygenic
score has a variance of one. Therefore, the variance of the error in the polygenic score for
observation i and trait k is

σ2ki =
mki

h2k

1− h2k/mki

nki
. (30)

For our simulations, we use parameters in a range close to the empirical values we
estimated in the Health and Retirement Study (see section 4). For all scores we assume
mki equal to 300,000. The GWAS discovery sample sizes are assumed to vary between
200,000 and 2,000,000 per trait. Several recently published GWAS already had sample
sizes exceeding 200,000 [23, 24, 25, 20] and 2,000,000 will be a realistic sample size for
many traits in the near future. For models that include multiple polygenic scores per
trait, we assume that the GWAS discovery sample was divided into equal parts per score.
The size of our estimation sample is set to 8,600 (again similar to the sample size of
the HRS, see section 4). We assume chip heritabilities of h2y = 0.2 (similar to results
reported for educational attainment [9, 16]) and h2T = 0.55 (similar to results reported for
body height [21]). For δ, we assume 0.15, which is the phenotypic correlation between
height and educational attainment in the HRS. The genetic correlation between height and
educational attainment has been estimated to be 0.15 by [20]. Hence, we use this value
for ρG. Note that this implies we assume that the entire genetic correlation between the
traits is due to Type 1 pleiotropy, i.e. we assume that all genes that are associated with
both phenotypes have direct effects on both rather than some of the genes having cascade
effects (e.g. a direct effect on height that triggers higher educational attainment, which
shows up in the genetic correlation estimate). Surely, this is a conservative assumption to
the disadvantage of classic MR. However, since there is no way to exclude the possibility
that Type 1 pleiotropy is underlying the observed genetic correlation between the two
traits, we prefer this conservative assumption.
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All simulations were written in MatLab and the code is posted on Github
(https://github.com/cburik/GIVsim). Each simulation is conducted as follows:

i. Calculate the simulation parameters from the input parameters.

ii. Draw the true PGSs from a multivariate normal distribution.

iii. Draw the error terms and measurement errors from their respective distributions;

iv. Compute the ”measured” PGS, T , and y from equations 15-18;

v. Estimate β̂ and γ̂ in the simulated data and save the estimation results.

vi. Repeat steps ii-v to create a distribution of estimated effect sizes and their confidence
intervals for each method.

We estimate the coefficients:

1. using OLS.

2. in y = δT̂ + ε using 2SLS and ST as the IV (i.e., Mendelian Randomization - MR).

3. using 2SLS with ST as the instrument for T, treating Sy1|XT as exogenous (i.e.,
Enhanced Mendelian Randomization - EMR).

4. using 2SLS with Sy2|XT as the instrument for T, treating Sy1|XT as exogenous (i.e.
EMR with an alternative instrument).

5. using 2SLS with Sy2|XT and Sy3|XT as instruments (i.e., Genetic Instrumental Vari-
ables regression - GIV).

6. using 2SLS with Sy2|XT and ST as instruments (i.e., Genetic Instrumental Variables
regression - GIV).

7. using 2SLS with Sy2|XT , Sy3|XT , and ST as instruments (i.e., Genetic Instrumental
Variables regression - GIV).

The results of the simulations are shown in Supplementary Figures 1-14. The results of
the standard model (with valid assumptions) are depicted in Supplementary Figures 1 to
6.

Supplementary Figures 1-3 shows results from the relatively simple scenario of genetic
endogeneity only (ρg = 0.15, but ρe = 0). In this case, we would not need an instrument
for T if the true PGS for y (S∗y|XT ) would be known or if measurement error in S∗y|XT would
be dealt with. This is also apparent in this figure – when the GWAS sample becomes large
enough, the OLS estimates converge to the true coefficients. We see the same tendency
for EMR (method 3) in Supplementary Figure 1, but it performs slightly worse then OLS.
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MR estimates (Supplementary Figures 1 and 2) are biased for all sample sizes due to the
omitted effect of S∗y|XT and the correlation of the instrument Sy1|XT with that omitted
variable. Supplementary Figure 1 also reports estimates for GIV regression using the 6th
method, using Sy2|XT and ST as instruments. This version of GIV regression outperforms
the other methods and provides consistent estimates even for GWAS samples of 200,000
observations that are split into two samples of 100,000 to create two indicators of the score.
The variance of the estimates is larger compared to the other methods, but decreases with
total GWAS sample size.

Supplementary Figure 2 shows the same results, but now with GIV regression estimates
using the 5th method that uses Sy2|XT and Sy3|XT as instruments and EMR estimates using
the 4th method that uses Sy2|XT as instrument. In this version, the variance of the GIV
regression estimates is so large that the confidence bounds are outside of the figure. The
high correlation between Sy1|XT , Sy2|XT and Sy3|XT implies large standard errors of the
estimated coefficients due to multicollinearity. In other words, the instruments do not
contain enough additional information to get precise estimates for S∗y|XT and T . EMR
using method 4 also does not perform as well as EMR using method 3.

Supplementary Figure 3 compares the OLS estimates with all three GIV regression
methods (5, 6 and 7). Again, it is clear that method 5 yields very imprecise results.
Methods 6 and 7 perform equally well. However, method 7 requires the construction of an
additional polygenic score. This additional effort does not seem to be justified compared to
the results from method 6. Thus, we recommend method 6 for most practical applications.

Supplementary Figures 4, 5 and 6 show simulation results of the same methods, but
now for the more complex scenario with additional endogeneity (ρg = 0.15, ρe > 0). As can
be seen from Supplementary Figure 4, the OLS estimates are biased for the effects of both
S∗y|XT and T even if the PGS was based on large GWAS samples. As the GWAS sample
size increases, the estimate for S∗y|XT converges towards the true value, while the effect
of T remains systematically overestimated due to unobserved environmental effects. The
estimates of MR are also biased in this scenario due to the omitted effect of S∗y|XT . EMR
estimates are likewise biased. However, EMR estimates of T are much closer to the true
value than OLS and MR estimates. Furthermore, the EMR estimates converge towards
the true coefficients as the GWAS sample sizes increase towards infinity. Furthermore,
Supplementary Figure 4 also shows that the GIV regression estimates using method 6
are very close to being consistent for all GWAS sample sizes. Supplementary Figures 5
and 6 show that methods 4 and 5 again perform very poorly. Furthermore, we find no
performance increase of method 7 compared to our preferred method 6.

3.2 Simulations of violated assumptions

We now turn to a set of simulations that systematically violate the identifying assumptions
of GIV regression. The goal of this exercise is to explore how sensitive GIV regression
reacts to these violated assumptions in finite sample sizes. Our simulations focus on the
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best performing GIV regression and EMR variants from section 3.1 (i.e., methods 6 and
3). We add OLS and standard MR estimates as benchmarks.

3.2.1 Skewness and kurtosis

Since GIV regression is a instrumental variables method, theoretical proofs of consistency
rely on the central limit theorem. Yet, the more relevant question in practice is how
sensitive the method reacts to skewness and kurtosis in finite sample sizes. To explore this
question, we simulate samples with different degrees of skewness and kurtosis by drawing
variables from a normal distribution using Fleishman’s power method[26, 27] , keeping the
GWAS sample size fixed at n = 1, 000, 000. The other parameters remained the same as
in the standard model with additional endogeneity (ρg = 0.15, ρe = 0.4).

We investigate three different models. First, we add skewness to y via ε in equation 15.
Second, we add skewness to T via η in equation 16. Note that if T is skewed, y will also
become skewed. Third, we simulate a model with kurtosis in both y and T via ε and η.

For the first and second scenario, we used a kurtosis of 3 (corresponding to a normal
distribution), unless that was not possible. Not all combinations of kurtosis and skewness
are attainable, in the case of high skewness more kurtosis is needed. In those cases, we
used the minimum kurtosis needed to obtain a certain skewness. The minimum kurtosis is
found via the formula from [27]:

k = 1.7735511 + 1.6410373s2

where k is the minimal amount of kurtosis needed and s is skewness.
Supplementary Figures 7 and 8 present the results for scenarios 1 and 2, with skewness

in T and y, respectively. In both cases, it appears that only the OLS estimates are affected
by skewness, while GIV regression estimates remain consistent. Supplementary Figure 9
shows the results for scenario 3 with kurtosis. Again, GIV regression estimates remain
consistent, while kurtosis also does not diminish the performance of the other methods
relative to the base-line scenario with normally distributed variables.

3.2.2 Dependent measurement errors

One of the key assumptions of GIV regression is independence of the measurement errors of
the polygenic scores. Specifically, the measurement errors of the scores used as instruments
(εy2, εT ) should be independent from the score used as regressor (εy1). The independence
of the measurement errors is violated if there is an overlap in the GWAS samples used
to construct the different scores and the correlation betweenεy1and εy2 will depend on
the extent to which there is sample overlap. Furthermore, if the GWAS samples used
to construct Sy1|XT and ST overlap, then the strength of the correlation between the
measurement errors also depends on the extent to which the outcome variables (y and T )
are correlated.
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We simulate a violation of the independent measurement errors assumption by drawing
the measurement errors from a multivariate normal distribution using a non-zero correla-
tion between them. We fixed the GWAS sample size at n = 1, 000, 000 in these simulations
and varied the correlation between the measurement errors. Again, there are different ver-
sions of this model. In the first scenario, only the measurement errors in Sy1|XT and Sy2|XT
(εy1 and εy2) are correlated with each other. In the second scenario, the measurement error
of ST (εT ) is also correlated with the others.

The results of the first scenario are shown in Supplementary Figure 10. GIV regression
outperforms the alternative methods for small to moderately correlated measurement errors
(ρ < 0.5). As the correlation of the measurement errors increases, GIV regression starts to
underestimate the genetic effects on y due to the attenuation bias. At the same time, GIV
begins to overestimate the effect of the T , but only to a small extent. The GIV regression
estimates of the treatment remain much closer to the true effect than the OLS estimates,
even for severe violations of the independent error assumptions. However, for very strong
violations (i.e. for very strong sample overlap between the samples used to construct Sy1
and Sy2), GIV regression performs slightly worse than MR and EMR.

Supplementary Figure 11 displays the results of the second scenario, now with two
invalid instruments (Sy2|XT and ST ). Again, more strongly correlated measurements errors
induce a stronger bias in the GIV regression estimates. However, in contrast to the first
scenario, GIV regression now underestimates both the genetic effect and the effect of the
treatment. None of the displayed estimation methods get anywhere close to the true
parameters in the case of strongly correlated measurement errors.

3.2.3 Missing genetic variants

We simulate a situation where not all genetic variants are captured by the polygenic scores.
A situation that will be common in practice, since GWAS results never include all genetic
variants and rare variants may be left out. In this situation, we augment the model of
equations 15-18 by splitting the scores in two parts: one part for common variants and the
second part for rare variants. This situation is described with the following equations:

y = γ1S
∗
y|XT + γ2S

∗
y,rare + δT + ε, ε ∼ N (0, σ2ε ) (31)

T = β1S
∗
T + β2S

∗
T,rare + η, η ∼ N (0, σ2η) (32)

Syi|XT = S∗y|XT + eyi, eyi ∼ N (0, σ2yi) (33)

ST i = S∗T + eT i, eT i ∼ N (0, σ2Ti) (34)

We determined β1, β2, γ1 and γ2 using the observed heritability and the estimated
missing heritability. [21] estimate the chip heritability of height to be 0.56 and state that
the total narrow-sense heritability is likely to be between 0.6 and 0.7 (the current estimate
is still attenuated due to imperfect tagging of rare and structural genetic variants). For
this simulation exercise we assume the observed chip heritability of T to be 0.55 and the
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total narrow-sense heritability to be 0.65. For y, we extrapolate this ratio and assume
the observed chip heritability and the total narrow-sense heritability to be 0.2 and 0.24,
respectively.

h2T,tot =β21 + β22 + 2ρrβ1β2 (35)

h2T,obs = cov(T, S∗T )2 = (β1 + ρrβ2)
2 (36)

⇒β2 =

√
h2T,tot − h2T,obs

1− ρ2r
(37)

β1 =
√
h2T,obs − ρrβ2 (38)

similarly:

h2y,tot = γ21 + 2γ1γ2ρr + 2γ1δβ1ρG + 2γ1δβ2ρGρr + γ22 + 2γ2δβ1ρGρr + 2γ2δβ2ρG (39)

+ δ2β21 + 2δβ1β2ρr + δ2β2 (40)

h2y,obs = γ21 + δ2β21 + 2γ1δβ1ρr + 2γ2δβ1ρGρr + 2γ1δβ2ρGρr + 2δ2β1β2ρr (41)

+ ρ2r(γ
2
2 + δ2β22 + 2γ2δβ2ρG) (42)

⇒γ2 = (−2δβ1ρG +

√
(2δβ1ρG)2 − 4(δ2β22 −

h2y,tot − h2y,obs
1− ρ2r

) )/2 (43)

γ1 = (−(2δβ1ρG + 2δβ2ρGρr) +
√

(2δβ1ρG + 2δβ2ρGρr)2 − 4C )/2 (44)

with:

C = δ2β21 + 2γ2δβ1ρGρr + 2δ2β1β2ρr + ρ2r(γ
2
2 + δ2β22 + 2γ2δβ2ρG) (45)

We assume that the rare variants are correlated with the common variants, but they
are unobserved. In practice, we do not know the size of this correlation. To get a sense,
we deconstructed the scores used in the empirical part of our paper into different parts.
Specifically, we constructed PGS for EA and height using three different subsets of GWAS
data from the 1000 Genomes project: (G1) a PGS score based only on SNPs included
in HapMap 3 (G2) a PGS score based on common SNPs not included in HapMap 3, but
included in 1000 Genomes (MAF>5%), and (G3) a PGS score based on rare SNPs not
included in HapMap 3, but included in 1000 Genomes (MAF ≤ 5%). Due to LD, the three
scores should be correlated with each other, but the question is the extent to which this
correlation affects the correlation of PGS for two different traits. The following correlation
matrices show the correlation of G1 with the common SNPs not included in Hapmap 3,
and the correlation between G2 and the rare SNPs included in 1000 Genomes (MAF ≤
5%).
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EA G1 EA G2 EA G3

EA G1 1
EA G2 0.8257 1
EA G3 0.0549 0.0539 1

Height G1 Height G2 Height G3

Height G1 1
Height G2 0.8685 1
Height G3 0.0542 0.0447 1

During the simulations, we again fix the GWAS sample at 1,000,000. We vary the
correlation between the common and the rare genetic variants (ρr). Because γ1 depends
on ρr, γ1 will have different values depending on the input parameters.

The simulation results are shown in Supplementary Figure 12. We see that the effect
of T is still consistently estimated across all simulated scenarios. Thus, we conclude that
missing (rare or structural) genetic variants do not lead to a noteworthy bias in the GIV
regression estimate of the treatment T on outcome y.

3.2.4 Parental effects

The last situation we simulate is concerned with unobserved parental effects. In particular,
the genetic correlation between a biological parent and his or her offspring is on average 0.5.
Since the genotypes of the parents partly influence the environment of the offspring (e.g.
via socio-economic status and parental habits), it is possible that environmental factors
that are ”inherited” via the parents will violate the exclusion restriction of IV regression
because unobserved genotypes of the parents would partly correlate with the polygenic
scores of the offspring and residual environmental factors captured by the error term. In
principal, it is possible to control for parental genotypes directly (via genetic data from
the parents) or indirectly (via the inclusion of family fixed-effects, e.g. in a large sample
of dizygotic twins). However, only very few samples currently exist that either contain a
large enough sample of genotyped trios (i.e. mother, father, child) or genotyped dizygotic
twins and also the phenotypes of interest.

Our simulations below explore the consequences arising from unobserved ”inherited
environments” in a standard GIV regression model. Specifically, we model a situation
where the unobserved weighted average polygenic score of the parents for the treatment
variable (PT ) has a direct or indirect effect on the outcome, y. We augment the standard
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model as follows:

y = γS∗y|XT + δT + θPT + ε, ε ∼ N (0, σ2ε ) (46)

T = βS∗T + η, η ∼ N (0, σ2η) (47)

Syi|XT = S∗y|XT + eyi, eyi ∼ N (0, σ2yi) (48)

ST i = S∗T + eT i, eT i ∼ N (0, σ2T i) (49)

We assume PT has a correlation of 0.5 with S∗T and a correlation of ρg = 0.5 with S∗y|XT .
Furthermore, we assume that the parental effect is directly related to S∗T and only related
to S∗y|XT through pleiotropy between T and y. A scenario where the parental genetic effect
is more directly related to S∗y can also be imagined. In both cases, the assumptions for GIV
regression will be violated. However, a stronger bias can be expected when the omitted
parental environment has a stronger correlation with the instrument for the treatment
variable (ST ). Hence, these simulations can be seen as a worst case scenario. Furthermore,
we vary θ from 0 to 0.15 (i.e., the effect of PT on y is not stronger than the effect of T
on y). In this situation β is the same as in the standard model. However, the simulations
need to adjust γ to account for overestimation of the heritability due to the unobserved
effect of PT :

h2y = γ2 + 2γδβρG + γθρG + δ2β2 + δβθ + θ2 (50)

⇒ γ = (−2δβρG − θρG +
√

(2δβρG + θρG)2 + 4(δ2β2 + δβθ + θ2 − h2y) )/2 (51)

As before, the simulations fixed the GWAS sample at n = 1, 000, 000. We varied the
strength of the parental effects (θ). Because γ depends on θ, γ has different values depend-
ing on the input parameters.

The results of these simulations are shown in supplementary figure 13.While we can see
from the top panel that the genetic effects are estimated consistently with GIV regression,
it is clear from the bottom panel that the parental effects bias the estimated effect of T .
Our treatment effects are overestimated because of the omitted variable bias caused by PT .
Note that GIV regression still outperforms all the other models even in this case.

3.3 Simulation of gene-environment interactions

Next, we simulate the gene-environment interaction model described in SI section 2.3.
In principle, these gene-environment interactions could be extremely complicated, but for
practical reasons we focus on a simple linear interaction between T and S∗y . The equations
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of the data generating process have been augmented to equations 52-55.

y = γS∗y|XT + δ1T + δ2TS
∗
y + ε, ε ∼ N (0, σ2ε ) (52)

T = βS∗T + η, η ∼ N (0, σ2η) (53)

Syi = S∗y|XT + eyi, eyi ∼ N (0, σ2yi) (54)

ST i = S∗T + eT i, eT i ∼ N (0, σ2T i) (55)

We assume here that δ2 is of the same size of δ1 (0.15). Hence, the interaction term is
relatively important. The other parameters have the same value as they do in the standard
model (including the additional endogeneity), only we have to take the interaction term
into account when calculating γ.

h2y = γ2 + δ21β
2 + 2γδ1βρG + δ2(1 + ρ2G) (56)

⇒ γ = (−2δ1βρG +
√

(2δ1βρG + θρG)2 + 4(δ21β
2 + δ2(1 + ρ2G)− h2y) )/2 (57)

As in the standard model, the GWAS sample varied from 200,000 to 2,000,000. The
parameters are estimated with two methods, OLS and GIV regression. For GIV regression,
Sy1|XT , T , and TSy1|XT are used as endogenous regressors and Sy2|XT , ST , and Sy2|XTST
are used as instruments.

The results of these simulations are shown in SI figure 14. From all three panels it is
clear that the GIV regression estimates all three coefficients of equation 52 consistently,
while the OLS estimates are clearly biased also for larger GWAS samples. The variance
of the GIV regression estimates is relatively large compared to OLS. This should be taken
into consideration if the effect size of the interaction term is expected to be smaller. We
have not compared GIV regression to MR in this scenario, as there is not a standard way
to do MR with polygenic scores and gene-environment interactions.

4 Data

We use data from the Health and Retirement Survey (HRS)[28]. The HRS is a longitudinal
survey on health, retirement and aging which is presentative for the US population aged 50
years or older. The survey consists of eleven waves from 1992 to 2012. We used phenotypic
data that has been cleaned and harmonized by the RAND cooperation.5

Since 2006, data collection has expanded to include biomarkers and a subset of the
participants has been genotyped.6 Autosomal SNPs were imputed using the worldwide
reference panel from phase I of the 1000 Genomes project (v3, released March 2012)[29]. If

5RAND HRS Data, Version O. Produced by the RAND Center for the Study of Aging, with funding
from the National Institute on Aging and the Social Security Administration. Santa Monica, CA (August
2016). See http://www.rand.org/labor/aging/dataprod/hrs-data.html for additional information.

6See https://hrs.isr.umich.edu/data-products/genetic-data
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the uncertainty about the genotype of an individual was greater than 10 percent, the SNP
was removed. Furthermore, SNPs were removed from the entire sample if the imputation
quality was below 70 percent, if the minor allele frequency was smaller than 1 percent,
or if the SNP was missing in over 5 percent of the sample. Our analyses are restricted
to unrelated participants of European descent according to the standard HRS protocol.
Specifically, HRS filtered out parent-offspring pairs, siblings and half-siblings. Selection on
European descent was done based on self reported race and principal component analysis
[30]. The polygenic score for educational attainment is negatively correlated with birth year
(r = -0.06; p < 0.0001) and educational attainment influences longevity [31, 32]. Since the
HRS is a sample of an older population, we further restrict our sample to a smaller range
of birth years (1935 to 1945) to reduce sample selection bias that is correlated with the
PGS. This resulted in a sample of 2,839 individuals.

We constructed polygenic scores starting with a set of 2,224,079 SNPs that were either
directly genotyped in HRS or present in the HapMap3 reference panel [33], providing
us with a high-resolution coverage of common genetic variants. To control for linkage
disequilibrium (LD) between SNPs, we constructed all polygenic scores using LDpred [6]
with the default LD window (total number of SNPs divided by 3000) and assuming that
30 percent of the SNPs are causal.

The polygenic scores for educational attainment were constructed by using GWAS
results provided by the Social Science Genetic Association Consortium [20], excluding
HRS and the 23andMe cohort from the meta-analysis, but including the UK Biobank (see
Supplementary Table 1). Three polygenic scores are constructed. First, a score using
a meta-analysis of all available data. This score uses a sample of 318,954 individuals
(1,873,557 SNPs). The other two scores are created by splitting the sample in two. One
score is created by only using data of the UK Biobank (n = 111, 349; 1,873,557 SNPs)
and a score using the remaining sub-sample of several cohorts from around the world
(n = 207, 605; 1,849,602 SNPs).

The first polygenic score for height was constructed using the publicly available GWAS
summary results from the GIANT consortium (n = 253, 288) [25]7 which are based on
≈ 2.5 million autosomal SNPs that were imputed using the HapMap 2 CEU reference
panel [34] (See Supplementary Table 2). Merging this set with the directly genotyped and
HapMap 3 SNPs resulted in 1,264,571 SNPs that were included in the score by LDpred.

For the second polygenic score for height, we conducted a GWAS on body height in the
UK Biobank (UKB). The UKB is a publicly available population-based prospective study
of individuals aged 40-69 years during recruitment in 2006-2010 [35]. We restricted the
analysis to unrelated Brits of European descent [36] that were available in the interim re-
lease of the genetic data (n = 112, 151). Autosomal SNPs were imputed using the UK10K
reference panel. Details on genotyping, pre-imputation quality control, and imputation
have been documented extensively elsewhere [36]. GWAS analysis included as control vari-

7http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files\#GWAS Anthropometric 2014 Height
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ables dummies for genotyping batches, years of age, sex, and all interaction terms between
age dummies and sex. Furthermore, the first 15 principal components of the genetic data
were also included to control for subtle population structure. GWAS results underwent
quality control following an extended version of the EasyQC protocol [37] described in
detail elsewhere [23]. This yielded 1,861,232 autosomal SNPs that were included in the
LDpred scores.

5 Empirical applications

We demonstrate the value of GIV regression approach in several important empirical ap-
plications. First, we estimate the chip heritability of educational attainment (EA) in the
HRS data from a PGS for EA. We use the residual of EA after regressing it on control
variables. The results are shown in Table 1 of the main text. All reported coefficients
are standardized. Since the squarred standardized coefficient in OLS equals R2, our OLS
result in column 1 of Table 1 implies that the PGS for EA currently captures 6.3% of the
variance in EA (with a 95% confidence interval of +/- 1.8%, obtained from multiplying the
standard error estimate by 1.96).

Using the GIV regression results reported in columns 2 and 3 of Table 1 and the error
correction described above 2.1, we obtain chip heritability estimates of 8.8% (95% CI +/-
3.4%) and 15.5% (+/- 4.8%), respectively.

Second, we estimate the (causal) effect of body height on EA. Earlier studies have
reported a positive relationship between these variables [38, 39, 40]. Third, we present
results from a negative control that estimates the (causal) effect of EA on body height
(which should be zero). We estimate these effects using OLS, MR, EMR, and GIV regres-
sion. We include birth year, birth year squared, educational attainment of both parents
and (in pooled models) gender as control variables. We included PGS of EA or height
depending on the method. All variables have been standardized.

There is an overlap in the cohorts used by the GIANT consortium in the GWAS on
height and by the SSGAC GWAS on EA [20]. To ensure independence of measurement
errors in the PGS, whenever the GIANT height PGS was used, we excluded the other as
an instrument and used a PGS constructed from the UK Biobank GWAS results instead.

The OLS results in Table 2 in the main text appear to show that height has a strong
effect on EA. MR seems to confirm the causal interpretation of the OLS result; indeed, the
point estimate from MR is even slightly larger than from OLS. However, and as discussed
above, MR suffers from probable violations of the exclusion restriction. These violations
could stem from the possibility that the same genetic factors that increase height are also
directly increasing EA. They could also stem from the possibility that the PGS for height
by itself is correlated with the genetic tendency for parents to have higher EA and income,
and therefore a lower nutritional or disease risk for their children, who therefore are more
likely to reach their full cognitive potential and have higher EA. Controlling for the PGS

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2017. ; https://doi.org/10.1101/134197doi: bioRxiv preprint 

https://doi.org/10.1101/134197
http://creativecommons.org/licenses/by-nc-nd/4.0/


(i.e., EMR) is an imperfect strategy for eliminating this source of endogeneity, because the
bias in the estimated effect of the PGS score also biases the estimated effect of height (the
omitted variable bias discussed earlier).

In contrast, estimates from both GIV regressions in Table 2 in the main text show
both a considerably larger effect of the education PGS score on EA, and a small and
statistically insignificant effect of height on EA. These results imply that the positive
correlation between height and EA is not a causal relationship. Instead, the phenotypic
correlation seems to be entirely explained by the genetic correlation between the two traits.

Supplementary Table 3 shows the estimates of EA on height (which should be zero)
using the four estimation strategies. OLS and MR both find (erroneously) a statistically
significant positive effect of EA on height. The GIV regression estimate for the effect of
EA on height is indistinguishable from zero in both specifications. In this application,
EMR also finds a small and statistically insignificant effect of EA on height, though it
underestimates the genetic contribution to height.
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SI table 1: Cohort list for Educational Attainment

Study Full name Sampling Country Sample size

ACPRC
Manchester Studies of Cognitive
Ageing

Population-based England 1713

AGES
Age, Gene/ Environment
SusceptibilityReykjavik Study

Population-based Iceland 3212

ALSPAC
Avon Longitudinal Study of Parents
and Children

Population-based
birth cohort

England 2877

ASPS Austrian Stroke Prevention Study Population-based Austria 777

BASE-II Berlin Aging Study II Population-based Germany 1619

CoLaus Cohorte Lausannoise Population-based Switzerland 3269

COPSAC2000
Copenhagen Studies on Asthma in
Childhood 2000

Case-control birth
cohort

Germany 318

CROATIA-Korula Croatia Korula
Population-based
(Isolate)

Croatia 842

deCODE deCODE genetics Population-based Iceland 46758

DHS Dortmund Health Study Population-based Germany 953

DIL
Wellcome Trust Diabetes and
Inflammation Laboratory

Population-based England 2578

EGCUT1
Estonian Genome Center, University
of Tartu

Population-based Estonia 5597

EGCUT2
Estonian Genome Center, University
of Tartu

Population-based Estonia 1328

EGCUT3
Estonian Genome Center, University
of Tartu

Population-based Estonia 2047

ERF Erasmus Rucphen Family Study Family-based Netherlands 2433

FamHS Family Heart Study Family-based USA 3483

FINRISK The National FINRISK Study
Case-control
(Cardiovascular
health)

Finland 1685

FTC Finnish Twin Cohort Family-based Finland 2418

GOYA Genetics of Overweight Young Adults
Case-control
(Obesity)

Denmark 1459
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SI table 1 – continued

Study Full name Sampling Country Sample size

GRAPHIC
Genetic Regulation of Arterial
Pressure in Humans

Population-based England 727

GS Generation Scotland Population-based Scotland 8776

H2000 Cases Health 2000
Case-control
(Metabolic
syndrome)

Finland 797

H2000 Controls Same as above
Case-control
(Metabolic
syndrome)

Finland 819

HBCS Helsinki Birth Cohort Study
Population-based
birth cohort

Finland 1617

HCS Hunter Community Study Population-based Australia 1946

HNRS (CorexB) Heinz Nixdorf Recall Study Population-based Germany 1401

HNRS (Oexpr) Same as above Same as above Germany 1347

HNRS (Omni1) Same as above Same as above Germany 778

Hypergenes Hypergenes Case-control
Italy/ UK/
Belgium

815

INGI-CARL
Italian Network of Genetic Isolates -
Carlantino

Population-based
(Isolate)

Italy 947

INGI-FVG
Italian Network of Genetic Isolates -
Friuli Venezia Giulia

Population-based
(Isolate)

Italy 943

KORA S3
Kooperative Gesundheitsforschung in
der Region Augsburg

Population-based Germany 2655

KORA S4 Same as above Population-based Germany 2721

LBC1921 Lothian Birth Cohort 1921
Population-based
birth cohort

Scotland 515

LBC1936 Lothian Birth Cohort 1936
Population-based
birth cohort

Scotland 1003

LifeLines The LifeLines Cohort Study Population-based Netherlands 12539

MCTFR
Minnesota Center for Twin and
Family Research

Family-based, but
only founders used.

USA 3819

MGS Molecular Genetics of Schizophrenia Population-based USA 2313

MoBa Mother and Child Cohort of NIPH
Population-based
(Nested
case-control)

Norway 622

NBS Nijmegen Biomedical Study Population-based Netherlands 1808

NESDA
Netherlands Study of Depression and
Anxiety

Case-control
(Mental health)

Netherlands 1820

NFBC66 Northern Finland Birth Cohort 1966 Population-based Finland 5297

NTR Netherlands Twin Register Family-based Netherlands 5246

OGP Ogliastra Genetic Park Population-based Italy 370

OGP-Talana Ogliastra Genetic Park-Talana
Population-based
(Isolate)

Italy 544

ORCADES Orkney Complex Disease Study
Population-based
(Isolate)

Scotland 1828
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SI table 1 – continued

Study Full name Sampling Country Sample size

PREVEND
Prevention of Renal and Vascular
End-stage Disease

Population-based Netherlands 3578

QIMR
Queensland Institute of Medical
Research

Family-based Australia 8006

RS-I Rotterdam Study Baseline Population-based Netherlands 6108

RS-II
Rotterdam Study Extension of
Baseline

Population-based Netherlands 1667

RS-III Rotterdam Study Young Population-based Netherlands 3040

Rush-MAP
Rush University Medical Center -
Memory and Aging Project

Community-based USA 887

Rush-ROS
Rush University Medical Center -
Religious Orders Study

Community-based USA 808

SardiNIA SardiNIA Study of Aging Family-based Italy 5616

SHIP Study of Health in Pomerania Population-based Germany 3556

SHIP-TREND Study of Health in Pomerania Population-based Germany 901

STR - Salty Swedish Twin Registry Family-based Sweden 4832

STR - Twingene Swedish Twin Registry Family-based Sweden 9553

THISEAS
The Hellenic Study of Interactions
between SNPs & Eating in
Atherosclerosis Susceptibility

Case-control Greece 829

TwinsUK St Thomas UK Adult Twin Registry Population-based England 4012

WTCCC58C 1958 British Birth Cohort Population-based England 2804

YFS
The Cardiovascular Risk in Young
Finns Study

Population-based Finland 2029

This table contains the list of cohorts used in the GWAS of Educational Attainment of [1], excluding the Health and
Retirement Study and 23andMe cohorts. A more detailed list and description can be found in the supplementary materials
of [1]
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SI table 2: Cohort list for Height

Study Full name Sampling Country Sample size

ACTG The AIDS Clinical Trials Group Population-based International 1055

ADVANCE
Atherosclerotic Disease, VAscular
FunctioN, and GenetiC Epidemiology

Population-based
case-control

USA 584

AE Athero-Express Biobank Study patient-cohort
The
Netherlands

686

AGES
Age, Gene/Environment
SusceptibilityReykjavik Study

Population-based Iceland 3219

Amish HAPI Heart
Study

Amish Heredity and Phenotype
Intervention Heart Study

Founder
population

USA 907

ARIC
Atherosclerosis Risk in Communities
Study

Population-based USA 8110

ASCOT
AngloScandinavian Cardiac Outcome
Trial

”Randomised
control clinical
trial”

UK, Ireland
and Nordic
Regions

3802

B58C-T1DGC
British 1958 birth cohort (Type 1
Diabetes Genetic Consortium controls)

Populationbased
birth cohort

UK 2591

B58C-WTCCC
British 1958 birth cohort (Wellcome
Trust Case Control Consortium
controls)

Populationbased
birth cohort

UK 1479

BHS Busselton Health Study Population-based Australia 1328

BLSA
Baltimore Longitudinal Study on
Aging

Population-based USA 844

B-PROOF
Baltimore Longitudinal Study on
Aging

”Randomised
control clinical
trial”

Netherlands 2669

BRIGHT
British Genetic of Hypertension
(BRIGHT) study

Hypertension cases UK 1806

CAD-WTCCC
WTCCC Coronary Arteryt Disease
cases

Case series UK 1879

CAPS1 cases Cancer Prostate in Sweden 1 Case-control Sweden 489

CAPS1 controls Cancer Prostate in Sweden 1 Case-control Sweden 491

CAPS2 cases Cancer Prostate in Sweden 2 Case-control Sweden 1483

CAPS2 controls Cancer Prostate in Sweden 2 Case-control Sweden 519

CHS Cardiovascular Health Study Population-based USA 3228

CoLaus Cohorte Lausannoise Population-based Switserland 5409

Corogene
Genetic Predisposition of Coronary
Heart Disease in Patients Verified with
Coronary Angiogram

Population-based Finland 3758

deCODE deCODE genetics sample set Population-based Iceland 26799

DESIR
Data from an Epidemiological Study
on the Insulin Resistance syndrome

Population-based France 716

DGI cases Diabetes Genetics Initiative Case-control Scandinavia 1317

DGI controls Diabetes Genetics Initiative Case-control Scandinavia 1090

DNBC
Danish National Birth Cohort -
Preterm Delivery Study

Case-control Denmark 1802
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SI table 2 – continued

Study Full name Sampling Country Sample size

EGCUT
Estonian Genome Center, University
of Tartu

Population-based Estonia 1417

EGCUT-370
Estonian Genome Center, University
of Tartu

Population-based Estonia 866

EGCUT-OMNI
Estonian Genome Center, University
of Tartu

Population-based Estonia 1356

EPIC-Obesity
Study

European Prospective Investigation
into Cancer and Nutrition - Obesity
Study

Population-based UK 3552

ERF Erasmus Rucphen Family Study Family-based Netherlands 2726

FamHS Family Heart Study Population-based USA 1463

Fenland Fenland Study Population-based UK 1402

FINGESTURE
cases

Finnish Genetic Study of Arrhythmic
Events

Disease cohort (MI
cases only)

Finland 943

FRAM Framingham Heart Study
Population-based,
multi-generational

USA 8089

FTC Finnish Twin Cohort Monozygotic twins Finland 125

FUSION cases
Finland-United States Investigation of
NIDDM Genetics

Case-control Finland 1082

FUSION controls
Finland-United States Investigation of
NIDDM Genetics

Case-control Finland 1167

GENMETS cases
Health 2000 / GENMETS substudy of
Metabolic syndrome

Case-control Finland 824

GENMETS
controls

Health 2000 / GENMETS substudy of
Metabolic syndrome

Case-control Finland 823

GerMiFSI (cases
only)

German Myocard Infarct Family
Study I

Case-control Germany 600

GerMiFSII (cases
only)

German Myocard Infarct Family
Study II

Case-control Germany 1124

GOOD
Gothenburg Osteoporosis and Obesity
Determinants Study

Population-based Sweden 938

HBCS Helsinki Birth Cohort Study Birth cohort study Finland 1726

Health ABC
Health, Aging, and Body Composition
Study

longitudinal cohort
study

USA 1655

HERITAGE
Family Study

Health, Risk Factors, Training and
Genetics (HERITAGE) Family Study

Family Study,
baseline data from
an exercise training
intervention

USA 500

HYPERGENES
Cases

HYPERGENES Case-control
Italy/ UK/
Belgium

1841

HYPERGENES
Controls

HYPERGENES Case-control
Italy/ UK/
Belgium

1900

InCHIANTI Invecchiare in Chianti Population-based Italy 1138

IPM Mount Sinai
BioMe

The Charles Bronfman Institute for
Personalized Medicine BioMe Biobank
Program

Hospital-based USA 2867
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SI table 2 – continued

Study Full name Sampling Country Sample size

KORA S3

Cooperative Health Research in the
Region of Augsburg, KOoperative
Gesundheitsforschu ng in der Region
Augsburg

Population-based Germany 1643

KORA S4

Cooperative Health Research in the
Region of Augsburg, KOoperative
Gesundheitsforschu ng in der Region
Augsburg

Population-based Germany 1811

LifeLines LifeLines Cohort study Population-based Netherlands 8118

LLS Leiden Longevity Study Family based Netherlands 1903

LOLIPOP EW610
London Life Sciences Prospective
Population Study

Population-based UK 927

LOLIPOP EWA
London Life Sciences Prospective
Population Study

Population-based
with some
enrichment

UK 513

LOLIPOP EWP
London Life Sciences Prospective
Population Study

Population-based
with some
enrichment

UK 651

MGS
Molecular Genetics of
Schizophrenia/NIMH Repository
Control Sample

Population-based
(survey research
method)

USA 2597

MICROS MICROS (EUROSPAN) Population-based Italy 1079

MIGEN
Myocardial Infarction Genetics
Consortium

Case-control

USA /
Finland /
Italy / Spain
/ Sweden

2652

NBS-WTCCC
WTCCC National Blood Service
donors

Population-based UK 1441

NELSON
Dutch and Belgian Lung Cancer
Screening Trial

Netherlands
and Belgium

2668

NFBC1966 Northern Finland Birth Cohort 1966 Population-based Finland 4499

NHS The Nurses’ Health Study Nested case-control USA 3217

NSPHS
Northern Sweden Population Health
Study (EUROSPAN)

Population-based Sweden 652

NTRNESDA
Netherlands Twin Register & the
Netherlands Study of Depression and
Anxiety

Case-control Netherlands 3522

ORCADES
Orkney Complex Disease Study (part
of EUROSPAN)

Population-based Scotland 695

PLCO
The Prostate, Lung Colorectal and
Ovarian Cancer Screening Trial

Case-control USA 2244

PLCO2 controls
Prostate, Lung, Colorectal, and
Ovarian Cancer Screening Trial

Population-based
case-control

USA 1193

PREVEND
Prevention of REnal and Vascular
ENdstage Disease (PREVEND) Study

Population-based Netherlands 3624

PROCARDIS Precocious Coronary Artery Disease Population-based UK 7000
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SI table 2 – continued

Study Full name Sampling Country Sample size

PROSPER/
PHASE

The PROspective study of Pravastatin
in the Elderly at Risk for vascular
disease

Randomized
controlled trial

Netherlands,
Scotland
and Ireland

5244

QFS Quebec Family Study Family-based??? Canada 860

QIMR
Twin study at Queensland Institute of
Medical Research

Population-based Australia 3627

RISC
Relationship between Insulin
Sensitivity and Cardiovascular disease
Study

Population-based Europe 1031

RS-I Rotterdam Study I Population-based Netherlands 5744

RS-II Rotterdam Study II Population-based Netherlands 2124

RS-III Rotterdam Study III Population-based Netherlands 2009

RUNMC

Nijmegen Bladder Cancer Study
(NBCS) & Nijmegen Biomedical Study
(NBS), Radboud University Nijmegen
Medical Centre

Population-based Netherlands 2873

SardiNIA SARDINIA Population-based Italy 4298

SASBAC cases
Swedish And Singapore Breast
Association Consortium

Case-control Sweden 794

SASBAC controls
Swedish And Singapore Breast
Association Consortium

Case-control Sweden 758

SEARCH /
UKOPS

Studies of Epidemiology and Risk
factors in Cancer Heredity / UK
Ovarian Cancer Population Study

Population-based UK 1592

SHIP Study of Health in Pomerania Population-based Germany 4092

SHIP-TREND
Study of Health in Pomerania -
TREND

Population-based Germany 986

Sorbs
Sorbs are selfcontained population
from Eastern Germany, European
Descent

Population-based Germany 907

T2D-WTCCC WTCCC Type 2 Diabetes cases case series UK 1903

TRAILS
Tracking Adolescents’ Individual Lives
Survey

Population-based
(measured at 18yrs
of age)

Netherlands 1139

TWINGENE TWINGENE Population-based Sweden 9380

TwinsUK TwinsUK Twins pairs UK 1479

VIS VIS (EUROSPAN) and KORCULA Population-based Croatia 784

WGHS Women’s Genome Health Study Population-based USA 23099

YFS
The Cardiovascular Risk in Young
Finns Study

Population-based
cohort

Finland 1995

This table contains the list of cohorts used in the GWAS of Educational Attainment by Wood et al. (2014). A more detailed
list and description can be found in the supplementary materials of [2] and [3]

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2017. ; https://doi.org/10.1101/134197doi: bioRxiv preprint 

https://doi.org/10.1101/134197
http://creativecommons.org/licenses/by-nc-nd/4.0/


SI table 3: Regression of height on educational attainment in the Health and
Retirement Study (HRS)

(1) (2) (3) (4) (5)
OLS MR EMR GIV1 GIV2

EA 0.0563∗∗∗ 0.156∗ -0.00686 0.0396 -0.0646
(0.0121) (0.0645) (0.0577) (0.0882) (0.0679)

PGS Height GIANT 0.165∗∗∗ 0.165∗∗∗ 0.634∗∗∗

(0.0139) (0.0140) (0.0293)
PGS Height UKB 0.206∗∗∗ 0.208∗∗∗ 0.512∗∗∗

(0.0125) (0.0126) (0.0252)
Birth Year 2.524 14.43 2.558 -2.961 -3.793

(14.54) (16.58) (14.62) (17.24) (16.23)
Birth Year Squared -2.534 -14.44 -2.566 2.955 3.786

(14.54) (16.58) (14.62) (17.24) (16.23)
Gender -0.759∗∗∗ -0.739∗∗∗ -0.765∗∗∗ -0.773∗∗∗ -0.771∗∗∗

(0.0108) (0.0135) (0.0120) (0.0150) (0.0135)
Mother’s EA 0.0202 0.00109 0.0367 0.0146 0.0525∗

(0.0136) (0.0226) (0.0201) (0.0278) (0.0230)
Father’s EA -0.000745 -0.0222 0.0132 0.0231 0.0126

(0.0134) (0.0207) (0.0184) (0.0251) (0.0209)
N 2839 2839 2839 2839 2839

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Standard errors in parentheses. All variables have been standardized. EA is measured in years

of schooling needed to obtain the highest achieved educational degree according to ISCED

classifications. The first 10 principal components in the genetic data were included as control

variables. PGS Height GIANT: PGS for Height using data from the GIANT consortium [2].

PGS Height UKB: PGS for Height using UKB data. PGS EA UKB: PGS for EA using UKB

data. PGS EA Total: PGS for EA using GWAS meta analysis of UKB + SSGAC [1], exclud-

ing data from 23andMe and HRS; PGS EA SSGAC: PGS for EA using meta analysis from Ok-

bay et al [1], excluding data from23andMe, UKB, and HRS. MR and EMR use PGS EA Total

as an instrument for EA. GIV1 uses PGS Height UKB and PGS EA UKB as instruments for

EA and PGS Height GIANT. GIV2 uses PGS Height GIANT and PGS EA SSGAC as in-

struments for EA and PGS Height UKB.
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SI figure 1: Model with measurement errors and no additional endogeneity and
methods 1,2,3,6 (see main text)

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T.
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SI figure 2: Model with measurement errors and no additional endogeneity and
methods 1,2,4,5 (see main text)

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. Note that for
method 5 the confidence bounds are outside of the figure.
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SI figure 3: Model with measurement errors and no additional endogeneity and
methods 1,5,6,7 (see main text)

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. Note that for
method 5 the confidence bounds are outside of the figure.
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SI figure 4: Model with measurement errors, additional endogeneity, and meth-
ods 1,2,4,7 (see main text)

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T.
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SI figure 5: Model with measurement errors, additional endogeneity, and meth-
ods 1,2,4,7 (see main text)

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,000, assuming
300,000 independent SNPs, a heritability of 0.2 for both traits, a genetic correlation of 0.6, a coefficient of 0.25 for
T and a correlation of 0.4 between the error terms in T and y. Note that for method 5 the confidence bounds are
outside of the figure.
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SI figure 6: Model with measurement errors, additional endogeneity, and meth-
ods 1,5,6,7 (see main text)

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. Note that for
method 5 the confidence bounds are outside of the figure.
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SI figure 7: Model with measurement errors and skewness in T

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. The total GWAS
sample size is 1,000,000. Skewness is added to the error term in T.
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SI figure 8: Model with measurement errors and skewness in y

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. The total GWAS
sample size is 1,000,000. Skewness is added to the error term in y.
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SI figure 9: Model with measurement errors and kurtosis

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. The total GWAS
sample size is 1,000,000. Kurtosis is added to the error term in y and T.
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SI figure 10: Model with dependent measurement errors between multiple indi-
cators of S

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. The total GWAS
sample size was 1,000,000. The measurement errors in the PGS for y are correlated, the one in PGS for T is
independent.
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SI figure 11: Model with dependent measurement errors among T and multiple
indicators of S (all correlations assumed equally large)

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. The total GWAS
sample size was 1,000,000. The measurement errors in all PGS are correlated.
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SI figure 12: Model with correlations between common and rare genetic vari-
ances

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. The total GWAS
sample size was 1,000,000. Unobserved causal genetic variants were added too model A.
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SI figure 13: Model with parental effects

Estimated coefficients for model A, using various methods. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y and a correlation of 0.4 between the error terms in y and T. The total GWAS
sample size was 1,000,000. Unobserved parental effects were added to model A.
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SI figure 14: Model with interaction term

Estimated coefficients for model B, using OLS and GIV. The mean of the simulations for each method is shown,
together with simulated 95% confidence interval is shown. The simulations are based on a sample of 8,600, assuming
300,000 independent SNPs, a heritability of 0.2 and 0.55 for y and T respectively, a genetic correlation of 0.15, a
coefficient of 0.15 for effect of T on y, a coefficient of 0.15 for the interaction term and a correlation of 0.4 between
the error terms in y and T. The total GWAS sample size was 1,000,000. Unobserved parental effects were added to
model A.
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