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ABSTRACT 

Threshold generation in fate-selection circuits is often achieved through deterministic 
bistability, which requires cooperativity (i.e., nonlinear activation) and associated 
hysteresis.  However, the Tat positive-feedback loop that controls HIV’s fate decision 
between replication and proviral latency lacks self-cooperativity and deterministic 
bistability.  Absent cooperativity, it is unclear how HIV can temporarily remain in an off 
state long enough for the kinetically slower epigenetic silencing mechanisms to act—
expression fluctuations should rapidly trigger active positive feedback and replication, 
precluding establishment of latency.  Here, using flow cytometry and single-cell imaging, 
we find that the Tat circuit exhibits a transient activation threshold.  This threshold largely 
disappears after ~40 hours—accounting for the lack of deterministic bistability—and 
promoter activation shortens the lifetime of this transient threshold.  Continuous 
differential equation models do not recapitulate this phenomenon.  However, chemical 
reaction (master equation) models where the transcriptional transactivator and promoter 
toggle between ‘inactive’ and ‘active’ states can recapitulate the phenomenon since they 
intrinsically create a single-molecule threshold transiently requiring excess molecules in the 
‘inactive’ state to achieve at least one molecule (rather than a continuous fractional value) 
in the ‘active’ state.  Given the widespread nature of promoter toggling and transcription 
factor modifications, transient thresholds may be a general feature of inducible promoters. 

 
INTRODUCTION 
 
Thresholds allow biological systems to either respond to or disregard a signaling input, based on 
the input’s strength or level.  Such thresholds are critical for cellular decision-making and are 
often a key design feature of gene-regulatory circuits, enabling the regulatory circuit to be robust 
to spurious signals or noise (1-3).  Historically, the mechanism for threshold generation was 
thought to be either the presence of deterministic multistability (4-6) or zero-order 
ultrasensitivity (7, 8), both of which require specific regulatory architectures (high-order self-
cooperativity with hysteresis and zero-order oppositional reactions, respectively).  For example, 
if a putative activator molecule requires homo-dimerization (i.e., self-cooperativity) to become 
functional, this automatically generates a molecular threshold—determined by the dimerization 
disassociation constant—and can lead to deterministic bistability; below the dimerization 
threshold, there is no functional activator, whereas above the threshold, activation ensues.  
 
Formally, deterministic multistability requires nonlinearity in the governing differential 
equations, which can be achieved by self-cooperative positive feedback:  

 

where X is the activator, a is the feedback strength, k is a Michaelis constant, r is the decay rate, 
and H is the Hill coefficient (Figure 1A, left).  When the positive feedback is self-cooperative 
(i.e., H > 1), the circuit can exhibits deterministic multistability; in particular, if H = 2, the 
system can be bistable with two stable states (ON and OFF) separated by an unstable state, the 
‘separatrix’.  Bistable circuits exhibit a response threshold (specifically, at the unstable 
‘separatrix’) and are characterized by hysteresis, a type of memory in which the circuit produces 
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different dose-response curves, depending on whether signal increases or decreases (6).  In 
contrast, positive-feedback circuits lacking self-cooperativity (H = 1) are monostable, having no 
separatrix (or threshold), no hysteresis, and only a single stable state; if this circuit can be turned 
ON, then the only stable state is the ON state (assuming the biochemical rate constants are not 
changing), with the OFF state being necessarily unstable (Fig. 1A, right). 
 
Gene-regulatory circuits typically achieve H > 1 and bistability via cooperative binding of a 
transcription factor to its promoter (9, 10).  Notable examples of bistable gene-regulatory circuits 
include the toggle switch (11), phage lambda lysis-lyogeny (12, 13), the lac operon (14), and 
competence in Bacillus subtilis (15, 16), all of which have thresholds established by high-
cooperativity feedback loops.  Other mechanisms for generating a threshold include zero-order 
ultrasensitivity (7, 8) and buffered threshold-linear responses (17, 18); however, when applied to 
transcription-factor induction of a promoter, these models (19) either fail to generate a threshold 
response (see Appendix 1) or rely on an excess of substrate (i.e., the promoter itself) (20), 
respectively. 
 
In stark contrast to these canonical examples, the circuit that controls HIV’s fate decision 
between active replication and proviral latency (Fig. 1B) appears to lack the classic mechanisms 
associated with deterministic bistability or ultrasensitivity (21).  Latent HIV is the chief barrier to 
a cure (22) and the decision between active replication and latency in HIV is governed primarily 
by the virus’s positive-feedback circuit in which HIV Tat protein transactivates expression of the 
HIV long terminal repeat (LTR) promoter, the only promoter in the virus (Fig. 1B).  During 
latency, the LTR is largely quiescent but establishment of latency is not correlated with viral 
integration site (23-25) or progressive cellular silencing (26).  Specifically, epigenetic silencing 
occurs on the order of weeks (27), whereas ~50% of infections result in immediate establishment 
of latency in vitro (28, 29), and latency is established within 72 hours in vivo (30).  Overall, 
latency establishment occurs too quickly to be accounted for by epigenetic silencing, which acts 
on timescales of weeks in T cells (27).  Instead, the data appear more parsimonious with the Tat-
LTR positive-feedback circuit being necessary and sufficient for establishment of latency (26), 
while long-term stability of latency is likely mediated by epigenetic silencing (31). 
 
Tat acts as a monomeric transactivator, binding to a single site on a nascent RNA hairpin formed 
by stalled RNA polymerase II at the LTR promoter.  Because Tat binds non-cooperatively, 
classical deterministic models predict that the circuit should have no activation threshold and 
thus the latent state would be unstable (32).  Thus, it is unclear how, without bistability, HIV 
generates a molecular threshold in Tat so that it can even temporarily remain in an off state and 
provide an opportunity for the kinetically slower epigenetic silencing mechanism to act.  Given 
the noisy expression of the HIV LTR promoter (33, 34), Tat positive feedback should trigger 
active replication within these first few days.  This would preclude establishment of proviral 
latency, as active replication destroys the cell within hours (35) and silencing of an actively 
replicating cell cannot overcome active HIV gene expression (26).  In general, it remains unclear 
how the Tat positive-feedback circuit that lacks deterministic bistability (and ultrasensitivity) can 
generate a threshold to establish a stable off state. 
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Here, we examine the HIV Tat-LTR circuit to determine how a threshold can be generated
without self-cooperativity.  Using a combination of single-cell experimental analyses, both flow
cytometry and time-lapse fluorescence microscopy, we find that the LTR circuit exhibits a
transient threshold for activation by Tat.  The threshold gradually disappears, and at ~40 hours,
there appears to be no effective threshold such that the LTR-Tat circuit exhibits no hysteresis or
deterministic bistability and cellular activation (e.g., NF-κB signaling), which modulates the
kinetics of promoter toggling, shortens the transient lifetime of the threshold. Stochastic models
where the transcriptional transactivator and promoter toggle between ‘inactive’ and ‘active’
states appear sufficient to recapitulate the transient threshold phenomenon. 

 
 
 
MATERIALS AND METHODS 
 
Cell lines and reagents 
The minimal Ld2GITF feedback circuit and the doxycycline-inducible Tat-Dendra cell line have
been described (26).  Here, the lentiviral LTR mCherry reporter from (26) was modified to
contain an N-terminal PEST tag, giving LTR mCherry-deg, with mCherry protein half-life 10.7
hours (data not shown).  Plasmid maps and cloning details available on request. LTR mCherry-
deg was packaged in 293T cells and used to infect Jurkat Tat-Dendra cells at low MOI (mCherry
positive cells < 5%).  These cells were induced at high Dox (500 ng/mL) for 2 days, and FACS
sorted to isolate dual-positive single cells with a FACSAria II (BD Biosciences USA, San Jose,
CA) that were grown into isoclonal populations.  Isoclones were screened to confirm robust
dual-positive response to Dox with negligible expression at baseline.  Unless otherwise stated, all
chemical reagents were sourced from Sigma-Aldrich USA (Saint Louis, MO).  When specified,
the HIV reactivating agents TNF (10 ng/mL tumor necrosis factor alpha) or TSA (400 nM
trichostatin A) were supplied at the time of Dox addition. 
 
Flow cytometry data collection and analysis 
To generate dose-response plots, each isoclone and condition was tested at eight doxycycline
(Dox) levels: seven twofold dilutions, from 250 to 3.9 ng/mL, plus a zero-Dox control.  Data
were collected on a MACSQuant™ high-throughput flow cytometer (Miltenyi Biotec, Bergisch
Gladbach, Germany), gated for live single cells in FlowJo™ (Tree Star, Ashland, OR).  The
mCherry positive cutoff was chosen to exclude non-induced cells.  All eight Dox dilutions were
pooled and cells were grouped by Tat-Dendra signal to estimate the conditional probability of
LTR response for the specific Tat level.  A schematic of this workflow, with sample data, is
presented in Fig. 2B-D (all Tat-Dendra values were background-subtracted, using the mean of
zero-Dox control as background; clusters with non-positive Tat-Dendra values were not
considered in the analysis).  The dose-response and dose-mean expression curves obtained by

this method were fit to a standard Hill function: .  Nonlinear

least-squares fitting was performed in R, using the nlsLM function from the minpack.lm package
(CRAN). 
 
Immobilization of cells for time-lapse imaging 
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5–10x106 actively dividing (healthy) Jurkat cells were washed twice in regular phosphate 
buffered saline (PBS), then again in mildly alkalized PBS (pH 8.0).  Immediately before use, a 
single aliquot of biotinylation reagent (1 mg EZ-Link Sulfo-NHS-LC-Biotin, ThermoFisher, 
Waltham, MA) was re-suspended in 800 μL PBS (pH 8.0).  Of this, 500 μL was used to re-
suspend the cells after the final wash, while the rest was added to a collagen-coated coverslip 
plate (#1.5, 35 mm, MatTek, Ashland, MA).  Both cells and coverslip were kept at room 
temperature. After 30 min, the coverslip was thoroughly rinsed with PBS + 50 mM glycine, then 
coated with 80 μL streptavidin (1 mg/mL, New England Biolabs, Ipswich, MA).  The cells were 
washed twice in glycine solution, then again in standard culture medium.  During the final wash 
step (~15 min later), the coverslip was rinsed with PBS to remove unbound streptavidin.  The 
biotinylated cells were resuspended in ~300 μL culture medium, transferred to the coverslip, then 
placed in the incubator for 30 min to settle by gravity.  Unbound cells were then carefully rinsed 
away, and the plate was refilled with 2.5 mL of culture medium containing 250 ng/mL Dox.  The 
finished plate was placed on the microscope for thermal equilibration (~1 hr) and subsequent 
imaging. 
 
Microscope setup and imaging conditions 
All imaging was performed on a Zeiss AxioVert inverted fluorescence microscope (Carl Zeiss, 
Jena, Germany), equipped with a Yokogawa spinning disc, CoolSNAP HQ2 14-bit camera 
(Photometrics, Tucson, AZ), and laser lines for 488 nm and 561 nm excitation.  To facilitate 
time-lapse imaging, the microscope has a programmable stage with Definite Focus, and also a 
stage enclosure that maintains samples at 37°C and 5% CO2 with humidity.  Images were 
captured every 10 min, sampling a 5x5 X-Y grid, one Z-position each.  Exposures were 800 ms 
at 20% power with the 561-nm laser, then 400 ms at 10% power with the 488-nm laser, then 600 
ms for brightfield.  The objective used was a 40X oil, 1.3NA, with 2x2 camera binning applied.  
For all “induced Tat” movies, imaging was started no more than 2.5 hours after Dox addition, 
and was continued until 20 hours.  For protein half-life measurements, imaging was started 10 
min after addition of 10 μg/mL cycloheximide and continued for 50 10-min intervals.  Bleaching 
half-life was measured with the same image settings, but taken at one location in 5-sec intervals 
to minimize changes in total protein level.  For HSV-GFP imaging, to maximize the visibility of 
these very small particles, the 488-nm exposure time was increased to 40 sec and binning was 
turned off.  For each location in a 7x7 X-Y grid, nine Z-positions were sampled at 0.2 μm 
intervals; the most in-focus image was chosen for analysis. 
 
Image segmentation analysis to generate single-cell trajectories 
The center of each cell was manually marked, using the final brightfield image and a custom 
script (MATLAB, The MathWorks, Natick, MA).  For each cell location, a 23-pixel diameter 
circle was marked around it, and the mean fluorescence intensity within that circle was recorded 
at each time point to generate single-cell trajectories.  Each trajectory was then subjected to 
automated quality control (QC): cells in which any two consecutive readings differed by more 
than 15% in either channel were excluded; upon review of the source images, these events were 
typically due to cell division, or another cell drifting into view.  Cells that began the experiment 
“on” were also excluded (LTR >2% over background at 2.5 hours post-Dox addition; this was 
rare, 2–5 cells per condition).  Illustrations of the raw image data and QC process are available in 
Fig. S2 (Supporting Materials).  For these movies, between 2001 and 2193 cell trajectories 
passed QC.  The trajectories were normalized to set their lowest values to zero, then fit to a 
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smoothing spline in base R (df=10, n=105) to further reduce noise.  Tat-Dendra trajectories were 
also corrected for photobleaching.  This was not necessary for mCherry, which did not bleach 
under the imaging conditions used (data not shown).  The photobleaching correction process is 
described in Fig. S3 (Supporting Materials). 
 
Quantitation of Tat-Dendra molecular number by GFP molecular rulers 
For quantitation using the HSV-GFP molecular ruler (36, 37), the images of viral particles were 
processed using a custom script (MATLAB, The MathWorks, Natick, MA).  Each image was 
background-subtracted, using the median of all 49 images as background, then thresholded to 
include the bright particles and the first Airy disk surrounding them.  The MATLAB function 
bwconncomp was used to identify potential features within the images.  To set the correct size, 
TetraSpeck™ beads (ThermoFisher, Waltham, MA) were analyzed by the same method; the 0.2-
μm beads were 15–18 pixels (data not shown).  Since the HSV-1 capsid is 125 nm (38), features 
between 10–14 pixels were selected.  For each feature, the total intensity above background was 
recorded. The mean value was 1424 units.  (95% CI 1412–1435; n=5004.).  Given that the HSV-
GFP images had 100X the exposure time, and 4X as many pixels, relative to the Tat-Dendra 
images, each intensity unit of HSV-GFP represents 25X less signal.  EGFP is also brighter than 
Dendra2 by 1.47X (39) such that there are [1424 / 25] intensity equivalents per [900 x 1.47] 
molecular equivalents, which reduces to 1 intensity unit per 23.2 Tat-Dendra (Fig. S4, 
Supporting Materials).  From the single-cell imaging data, the threshold level of Tat proteins 
required to minimally activate the LTR (i.e., > 2% mCherry positive cells) gives an intensity 
signal of 5.0 units per pixel, or 1900 units per cell (each cell is 377 pixels).  The conversion 
factor calculated from molecular ruler thus estimates the minimal activation threshold at 4.4x104 
Tat molecules per cell (Fig. 3C). 
 
Computational modeling 
Deterministic and stochastic computational modeling (Appendix I and Fig. 5, respectively) was 
carried out in Mathematica™.    Deterministic ordinary differential equation (ODE) models of 
Tat transactivation of the LTR were based on generalized mathematical models of ultrasensitive 
responses (19) and previous experimentally validated LTR-Tat circuit models (32) that 
incorporate reversible acetylation-deacetylation of Tat protein (i.e., so-called ‘futile cycles’).  For 
stochastic models of chemical master equations, the two-state model of the LTR promoter (40-
43) was simulated by Gillespie’s method (44) using the Mathematica™ xSSA package 
(http://www.xlr8r.info/SSA/).  The outputs from simulations are presented in arbitrary numbers.  
Initial conditions for all species were set to 0 (except LTROFF = 1) and simulations were run to 
time=200 (arbitrary time units, 200 simulations were run per model and parameter set, and mean 
Tat and mCherry values for all runs were calculated at specified time points. 
 
 

RESULTS 

The HIV LTR-Tat circuit lacks hysteresis and bistability 
Previous studies demonstrated that the HIV Tat-LTR positive-feedback loop exhibits a purely 
linear expression rate at early times (i.e., scales linearly with Tat and lacks cooperativity) (32), as 
expected for non-cooperative positive feedback (Fig. 1A).  To confirm that the LTR-Tat circuit 
does not establish bistability through other mechanisms (e.g., nonlinear degradation), we tested 
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for hysteresis in a minimal Tat-LTR feedback circuit, where LTR drives expression of an 
unstable (2 hr half-life) GFP reporter (d2GFP) and an IRES enables co-expression of Tat fused 
to the tunable proteolysis tag FKBP (Fig. 1C).  In this circuit (hereafter Ld2GITF), Tat 
proteolysis can be protected by the small molecule Shield-1 (45), thereby allowing feedback 
strength to be tuned (26) and alternate paths of the circuit—ON-to-OFF versus OFF-to-ON—to 
be examined.  Specifically, cells in the GFP ON state (i.e., pre-incubated in Shield-1) can be 
exposed to successively decreasing Shield-1 levels to examine turning OFF of the circuit, while 
cells in the GFP OFF state (i.e., no Shield-1 pre-incubation) can be exposed to successively 
increasing Shield-1 levels to examine turning ON of the circuit.  The difference (Δ) in percentage 
of GFP ON cells for a specific Shield-1 concentration can be quantified, with Δ > 1 indicating 
hysteresis.  If hysteresis is present, cells beginning in the ON state (i.e., pretreated with high 
Shield-1) will be more likely remain ON at a specific intermediate dose of Shield-1, as compared 
to cells that began in the OFF state (i.e., non-pretreated cells); whereas, if hysteresis is not 
present (Δ = 1), there will no difference in ON-OFF percentages for cells beginning in either the 
ON or OFF state.  We tested five isoclonal Ld2GITF populations carrying single integrations of 
the Ld2GITF circuit, and measured Δ to be ≈1 (Mean 1.008; 95% CI 0.813-1.203; Fig. 1D), 
indicating that hysteresis is unlikely.  These hysteresis measurements build upon previous data 
indicating that the necessary conditions for deterministic bistability are absent in the HIV Tat-
LTR circuit (32). 
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Figure 1: The HIV LTR-Tat positive-feedback circuit lacks hysteresis and 
bistability.  (A) Schematic of the HIV fate decision between active replication 
(ON) and latent (OFF) states.  This fate decision is controlled by the HIV Tat-
LTR positive-feedback circuit.  Transactivation of LTR, the sole promoter of 
HIV, by its gene product Tat drives further Tat production and HIV replication.  
(B) Bistability versus monostability in positive-feedback transcriptional circuits.  
Formally, deterministic multistability requires nonlinearity in the governing 
differential equations (6); for example, if the activator requires cooperative self-
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association to bind its promoter, its expression is described by a nonlinear Hill 
equation (Hill coefficient H > 1) (20).  Such circuits exhibit bistability, having 
two attractor states (ON and OFF) separated by a response threshold—at low 
activator levels, the decay rate (dashed line) dominates over synthesis (solid line), 
and at high levels, the opposite is true—and hysteresis, a type of memory in 
which the response is history dependent, following different paths from ON-to-
OFF versus OFF-to-ON (the difference between paths is Δ > 1).  In contrast, 
circuits lacking self-cooperativity (H = 1) are monostable, having neither a 
threshold nor hysteresis (Δ = 1)—if a monostable circuit can be turned ON, its 
only stable state is the ON state (assuming the biochemical rate constants are not 
changing), with the OFF state being necessarily unstable (6).  (C) Schematic of 
the minimal HIV “Ld2GITF” positive-feedback circuit used to test for hysteresis 
(LTR driving a 2-hour half-life GFP reporter and an IRES expressing Tat fused to 
FKBP, a degradation tag inactivated by the small molecule Shield-1).  (D) 
Hysteresis test by flow cytometry analysis of Ld2GITF.  Isoclonal Jurkat 
Ld2GITF cells were either pretreated with 1 μM Shield-1 for 4 days to activate 
cells to start in an ON start (oval data points) or not pretreated to start in an OFF 
state (square data points).  All cells were washed and then incubated in the 
specified Shield-1 alongside for an additional 4 days, and the percentage of GFP+ 
cells was measured.  Inset: Δ (the ratio of pretreated to not-pretreated GFP+ cells) 
calculated for five isoclonal populations of Ld2GITF (<Δ> ≈ 1).  

 
 
Single-cell flow cytometry analysis of the HIV LTR-Tat dose-response function shows a 
threshold-like response that is transient in time 
Absent bistability, it was unclear how the Tat-LTR circuit might encode a threshold to 
temporarily remain OFF to provide an opportunity for the kinetically slower epigenetic-silencing 
mechanisms to act.  Importantly, chromatin-silencing mechanisms appear unable to silence the 
actively transcribing promoter (26). 
 
First, to check if the Tat-LTR circuit encodes an activation threshold, we directly quantified LTR 
activity as a function of Tat levels using an ‘open-loop’ Tat-LTR dose-response system.  In this 
system, one construct encodes Tat fused to the fluorescent reporter Dendra2 expressed from a 
doxycycline-inducible tet promoter, while a second construct encodes an mCherry reporter 
expressed from the LTR promoter (Fig. 2A).  This open-loop system allows Tat levels to be 
tuned by doxycycline (Dox) and enables both Tat (dose) levels and LTR (response) levels to be 
quantified in the same cell (26) so that the dose-response ‘transfer’ function for Tat and LTR can 
be fit and an effective Hill coefficient calculated.  
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Figure 2. (Caption on next page). 
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Figure 2: The LTR promoter exhibits a transient threshold in its response to 
Tat.  (A) Schematic of constructs used to directly quantify LTR-Tat dose-
response function.  A doxycycline-inducible promoter (Tet-ON system) drives 
expression of a Tat-Dendra2 fusion protein, which activates the LTR promoter to 
drive expression of destabilized mCherry reporter.  (B) Scheme for estimating 
conditional probability of LTR activity for a given Tat level, with a representative 
two-color flow cytometry dot plot of an isoclonal Jurkat cell line stably 
expressing constructs in panel A after 20 hours of Dox induction (plot shown is 
Clone #2).  To estimate the conditional probability of LTR expression for a given 
Tat level, data was combined from eight Dox dilutions (0–250 nM).  The dense 
spot in the lower left corner corresponds to non-induced cells (i.e., auto-
fluorescence background), which the mCherry positive cutoff gate excludes (as 
indicated by the black horizontal line).  Cells with similar Tat-Dendra values were 
grouped, as indicated by the vertical dashed lines, and the percentage of cells 
above the mCherry positive cutoff and mean mCherry fluorescence was recorded 
for each group.  For visual clarity, this panel depicts a group of 2500 cells, while 
the analysis uses a tighter group of 1000 cells.  (C) Histogram of mCherry 
intensity for cells in the marked group.  Density above the mCherry positive 
cutoff is shaded.  Despite the narrow band of Tat-Dendra intensities, the LTR 
response is variable.  (D) Full flow cytometry time-course for three isoclones of 
Jurkat encoding both Tet-Tat-Dendra and LTR-mCherry-deg induced with eight 
Dox dilutions, and measured by flow cytometry over time.  Horizontal lines 
indicate the mCherry positive cutoff.  At early times, a pronounced “shoulder” is 
visible in Tat expression where a substantial percentage of cells express Tat-
Dendra but these cells do not express mCherry from the LTR.  (E) Calculated 
dose-response curves for percentage of mCherry+ cells (top) and mCherry mean 
fluorescence intensity (MFI, bottom) from data in panel D.  Clone #1 is shown; 
the other isoclones, and Hill fits, are presented in Fig. S1 (Supporting Materials).  
(F) Calculated Hill coefficients (H) from dose-response curves over time.  The 
expected non-cooperative response (H = 1) is indicated by a dashed line, all data 
points are above the expected H = 1 line.  Maximum H-values occur at 
intermediate time points for both %mCherry cells and MFI.  (G) Calculated half-
maximal response (K50) from fits of the dose-response curves over time.  K50 
declines over time, indicating that the threshold becomes progressively weaker. 

 
 
To estimate the conditional probability of LTR mean expression level and percentage ON for a 
given Tat level from flow cytometry data, a binning method similar to previous methods (46) 
was used (Fig. 2B-C).  Examination of the flow cytometry time-course data showed that the LTR 
appears essentially non-responsive to Tat at low Tat levels, but LTR activity then increases 
sharply over a narrow range of Tat (Fig. 2D).  At early times after Dox activation, a pronounced 
“shoulder” is visible in Tat expression where a substantial percentage of cells express Tat-
Dendra, but these cells do not express mCherry from the LTR.  This delay between Tat-Dendra 
and mCherry expression is on the order of 8–12 hours, which is too long to simply be a temporal 
delay in expression of mCherry due to activation by Tat-Dendra. 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/134858doi: bioRxiv preprint 

https://doi.org/10.1101/134858
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

For all LTR isoclones (i.e., integration sites) examined, the dose-response expression curves for 
mCherry mean expression and percentage of mCherry ON cells exhibit a conspicuous activation 
threshold (Fig. 2E).  The LTR appears essentially non-responsive to Tat at low Tat levels, but 
LTR activity then increases sharply over a narrow range of Tat.  This thresholding behavior 
appears to be maximized at intermediate time points of 16–20 hours (Fig. 2F-G).  At early times, 
the response is incomplete, but by 40 hours, the dose-response curves flatten with the K50 
shifting to lower Tat expression.  
 
 
Time-lapse microscopy analysis verifies the threshold-like LTR response to Tat at early 
times after activation 
To verify that this result was not simply a peculiarity of the flow cytometry approach, we next 
examined activation of this ‘open-loop’ activation circuit using quantitative time-lapse imaging 
(Fig. 3A).  Jurkat isoclones, as above, were imaged for 20 hours after Dox activation, and for all 
isoclones, there was a conspicuous delay of approximately seven hours in mCherry expression 
relative to Tat-Dendra expression (Fig. 3A–B).  The single-cell trajectories were then used to 
construct Tat-LTR dose-response trajectories via the same conditional binning method as used 
for flow cytometry (Supporting Material).  For all LTR isoclones examined, the dose-response 
expression curves for both mCherry mean expression and percentage of mCherry ON cells 
exhibits a conspicuous activation threshold (Fig. 3C–D).  As observed in flow cytometry, the 
microscopy imaging shows that the LTR is essentially non-responsive to Tat at low Tat levels, 
but LTR activity then increases sharply over a narrow range of Tat. 
 
We used a ‘molecular ruler’ approach (36, 37) to convert Tat-Dendra fluorescence levels to 
molecular number (Methods and Supporting Material).  For all clones tested, the threshold level 
of Tat proteins required to minimally activate the LTR (i.e., > 2% mCherry positive cells) is in 
the tens of thousands of molecules, with the average being 4.4x104 Tat/cell (Fig. 3C–D).  
Comparable values for Tat molecules per cell were previously obtained in a minimal Tat-LTR 
feedback circuit, with quantitation performed by GFP standard beads (47).  Upon accounting for 
cell size differences, this molecular threshold value was also not dissimilar to those calculated 
for phage lambda, where 55 Cro molecules are required for lytic infection and 145 CI molecules 
are required for lysogeny (13); human lymphocytes are ~103 times the volume of E. coli (48). 
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Figure 3: Time-lapse microscopy verifies that the LTR exhibits an activation 
threshold at early times.  (A) Time-lapse fluorescence microscopy imaging of 
single cells from three Jurkat cell isoclonal populations each encoding both Tat-
Dendra and LTR-mCherry-deg.  Cells were activated and then imaged for 20 
hours.  Tat-Dendra trajectories are green; mCherry trajectories are magenta; mean 
intensity trace shown in black.  ~2000 cell trajectories shown for each clone.  (B) 
Flow-style dot plot of Tat-Dendra versus mCherry intensities from time-lapse 
images at t = 10 h (upper) and t = 20 h (lower) of Clone #2.  Each dot represents 
an individual cell.  As in Fig. 2, the horizontal line marks the mCherry-positive 
cutoff gate.  (C-D) Dose-response curves for %mCherry+ cells (left) and mCherry 
mean fluorescence intensity (MFI, right) versus Tat MFI and calculated number 
of Tat molecules per cell.  Single-cell intensities extracted from all images were 
pooled and processed in the same manner as the flow data (each point summarizes 
104 observations).  Tat-Dendra signal intensity was converted to molecular 
number using a GFP “molecular ruler”.  

 
 
Transcriptional activation by TNF effectively accelerates the transient lifetime of the LTR 
activation threshold 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/134858doi: bioRxiv preprint 

https://doi.org/10.1101/134858
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

Based on observations that HIV latency can be partially reversed by transcriptional activators, 
we next asked if transcriptional activators could alter the observed LTR-activation threshold.  To 
transcriptionally active the LTR, we used the well-characterized cytokine tumor necrosis factor 
alpha (TNF), which acts through nuclear factor kappa B (NF-κB) signaling to recruit 
transcriptional activators to the LTR (26, 49, 50), thereby increasing LTR transcriptional burst 
frequency (33, 51, 52).  
 
When the dose-response function is measured post Dox induction in the presence of TNF, the 
response functions show a both marked shortening of the lifetime of the threshold and a reduced 
threshold (Fig. 4A and Fig. S5–6, Supporting Materials).  In fact, when comparing the dose-
responses in the presence and absence of TNF, the presence of TNF caused the 20-hour dose-
response curve to look similar to the 40-hour non-TNF dose-response curves (compare Fig. 4A 
to Fig. 2E).  Consistent with this observation, the calculated Hill coefficients, H, decreases in the 
presence of TNF (Fig. 4B) and, with the exception of clone #2 MFI, the K50 values decline in the 
presence of TNF (Fig. 4C), indicating that the threshold becomes progressively weaker.  
 

 

Figure 4: Transcriptional activation by TNF effectively accelerates the 
transient lifetime of the LTR activation threshold.  (A) Dose-response curves 
for %mCherry-positive cells (top) and mCherry MFI (bottom) from flow 
cytometry measurements of three isoclones of Jurkat Tet-Tat-Dendra + LTR-
mCherry, at 20 hours post Dox induction in the presence or absence of TNF.  
Each data point depicts a group of 500 cells.  These data were fit to a Hill function 
(dashed lines); numeric results are given in Fig. S6 (Supporting Materials).  (B) 
Hill coefficients, H, determined from dose-response curve fitting, demonstrate 
empirical positive cooperativity (H > 1) with lowering of H-values for cells 
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treated with TNF.  The expected non-cooperative response is indicated by the 
dotted line at H = 1.  (C) Half-maximal response (K50), determined from dose-
response curve fitting.  

 
 
A minimal stochastic model is sufficient to recapitulate the transient-threshold effect 
We next explored whether a mechanistic model could be developed to explain the transient 
threshold effect.  Given the lack of bistability (32) and hysteresis in the circuit (Fig. 1), we 
neglected models that postulated built-in cooperative responses or deterministic thresholds (i.e., 
models with a deterministic H >1). 
 
Based on previous literature on ‘ultrasensitive’ threshold responses (19), we first examined a set 
of deterministic ordinary differential equation (ODE) models (Appendix I) that are non-
cooperative (i.e., H = 1) but have architectures found in ultrasensitive responses, namely 
enzymatic inter-conversions in the zero-order regime.  In these models, Tat is reversibly 
covalently modified—acetylated at lysine residues by p300 and de-acetylated by SirT1, with 
acetylation required for efficient transactivation of the LTR but deacetylation being more rapid 
than acetylation (32, 53).  The rationale for testing these models was that the Tat-Dendra reporter 
(Fig. 2) does not distinguish between acetylated and deacteylated Tat and most Tat in the cell is 
deacetylated (32, 53), so Dendra intensity primarily quantifies Tat that is not transactivating the 
LTR.  Moreover, given the faster deacetylation rate, a large amount of deacetylated Tat protein is 
required for significant acetylated Tat to be present.  Nevertheless, in the deterministic regime, 
models of this form do not generate threshold responses either at steady state or in the pre-
steady-state transient regime (Appendix I).  This is because—without postulating an ad-hoc 
threshold for Tat acetylation—the continuous nature of deterministic ODEs results in a small 
fractional value of Tat protein continuously acetylated and thus transactivation competent. 
 
Given the continuous nature of ODE models, we next examined minimal stochastic chemical 
reaction (master equation) models as these models account for integer molecule numbers.  These 
models intrinsically form a threshold since a single molecule of active transactivator (rather than 
a continuous fractional value) is required for a reaction to occur.  As above, we hypothesized that 
the rates of conversion from the ‘inactive’ to the ‘active’ state, could allow many transactivator 
molecules to be transiently present in the ‘inactive’ state before a single molecule of active 
transactivator (acetylated Tat) is produced, thereby establishing a transient threshold.  To test this 
hypothesis, four stochastic models of increasing complexity were built (models i–iv, below).   
 
The models are presented using a generic nomenclature where the active ‘transcription factor’ 
(TF) represents Tat; the TF can be in an inactive form (TFi) requiring a single modification to 
become active TF or (TFii) requiring two modifications to become active TF.  The promoter, 
which represents the LTR, can toggle between an ‘on’ state (Pron) or ‘off’ state (Proff).  For 
computational expediency and simplicity, the models are course grained to neglect the mRNA 
intermediate. 
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where all models (i–iv) also include the following common reactions: 
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 ���� and ���� also decay at rate γ2% 
 
Models i–iv were then numerically simulated for the LTR-Tat system [TF = Tat-Dendra, Pr = 
LTR, Protein = mCherry, and k� is Dox induction; (Fig. 5)].  In model i, active TF is produced at 
linear rate k�, transactivates Pron by forming the [TF_Pron] complex and, as expected, generates 
linear dose-responses for Protein (mCherry) as a function of TF (Tat-Dendra) (Fig. 5).  When the 
model is extended (model ii) so that TF is produced as inactive and reversibly modified to active 
(TFi↔TF), a slight threshold in dose response appears at early times (Fig. 5).  The lifetime of 
this transient threshold is extended by inclusion of promoter toggling (model iii) and further 
extended (model iv) by additional transactivator toggling reactions (TFii↔TFi↔TF) (Fig. 5).   
 
One prediction of these models (Fig. 5) is that accelerating the promoter toggling transition from 
Proff to Pron (increasing kon) should shorten the transient lifetime (for the extreme case: compare 
models iii/iv to model ii in Fig. 5 where kon→∞).  In support of this, TNF induction increases kon 
for the LTR (33, 51), and the data in Fig. 4 show that TNF substantially shortens the lifetime of 
the transient threshold. 
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Figure 5:  Stochastic models where the transactivator and promoter toggle between 
‘active’ and ‘inactive’ qualitatively recapitulate the transient dose-response threshold.  
(Left) Schematics of models i-iv for the LTR-Tat system (i.e., TF = Tat, Pr = LTR, Protein = 
mCherry, and ka is Dox induction). In all models, Tat is generated from the Dox-inducible 
promoter (at rate k�), and mCherry is driven from the LTR.  (Right) Corresponding dose-
response functions from stochastic simulations.  Mean mCherry and mean Tat-Dendra 
calculated from 200 simulation runs at each specified time point (arbitrary time units). Both 
active transactivator (Tat) and inactive transactivator (Tati and Tatii) are Dendra labeled; 
reverse reactions (e.g., LTROFF→LTRON and Tat→Tati) are 10-fold faster than forward 
reaction rates. (i) A model where neither the promoter toggles (only LTRON) nor the 
transactivator toggles (only Tat) exhibits a linear dose response of mCherry to Tat even at 
early times; (ii) a model where the transactivator is produced as inactive but is then converted 
to active (i.e., only the transactivator toggles: Tat↔Tati), exhibits a slight threshold in dose 
response at early times; (iii) a model where both the transactivator and promoter toggle 
(LTROFF↔LTRON and Tat↔Tati) extends the transient threshold; (iv) a model where the 
promoter toggles (LTROFF↔LTRON) and the transactivator toggles between three forms 
(Tatii↔Tati↔Tat) further extends the transient threshold lifetime.  Parameter values used 
were: {k�varied [0.5–10] to generate different Tat-Dendra levels, ka=0.05, ki=0.5, γ=γ2=0.1, 
koff=0.5, kon=0.1, kf=kr=0.5} and all initial conditions were set to zero (except LTROFF=1). 
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DISCUSSION 
 
HIV’s ability to establish latency in resting CD4+ T lymphocytes remains the chief barrier to 
curative therapy (22) and an area of active study.  Latency establishment does not correlate with 
viral integration site (23-25) or progressive cellular silencing, and the Tat positive-feedback 
circuit is necessary and sufficient for latency establishment (26), with epigenetic chromatin 
silencing possibly maintaining the latent state (31).  However, given the non-cooperative nature 
of Tat feedback (32), the circuit was thought to lack an activation threshold, and so it was 
unclear how HIV could even temporarily remain in an ‘off’ state to provide an opportunity for 
the kinetically slower epigenetic silencing mechanisms to act and stabilize latency. 
 
Here, using combination of single-cell analyses (flow cytometry and time-lapse microscopy), we 
find that the HIV Tat circuit exhibits a transient threshold in activation that disappears over time 
(Fig. 2–3).  Promoter activation by TNF shortens the lifetime of this transient threshold (Fig. 4).  
The transient nature of the threshold accounts for the lack of deterministic bistability and 
hysteresis in the circuit and previous findings that Tat feedback is non-cooperative (32).  We find 
that a stochastic model, combining two previous models (32, 51), where the transcriptional 
transactivator and promoter both toggle between ‘active’ and ‘inactive’ states, qualitatively 
recapitulates the transient-threshold effect (Fig. 5).  Other models with additional promoter states 
(e.g., three-state LTR models) would likely also recapitulate the effect (54). 
 
At its core, the stochastic model generates this threshold—while continuous ODE models do 
not—because the stochastic model accounts for integer numbers of TF molecules.  Thus, the 
stochastic model intrinsically forms a threshold by requiring a single molecule of acetylated Tat 
(active TF), rather than a continuous fractional value.  Due to rates of conversion, excess 
molecules are transiently present in the ‘inactive’ state before a single molecule appears in the 
‘active’ state, thereby establishing a transient threshold.  This effect is interesting to contrast with 
the other effects of stochasticity in ultrasensitive systems (55). 
 
Physiologically, the transient nature of the threshold may allow the Tat circuit to temporarily 
remain in an off state and buffer stochastic fluctuations from rapidly triggering positive feedback 
and active replication, thereby providing a ‘temporal window’ for the kinetically slower 
epigenetic silencing mechanisms to stabilize the off state.   Given the widespread nature of 
promoter toggling and transcription factor modifications, transient thresholds may be a general 
feature of inducible promoters. 
 
One caveat to our study is that we only examined a small number of isoclonal integration sites 
for the LTR promoter.  It is possible that these integration sites are somehow unique in their 
ability to generate a threshold and that higher-throughput analyses of integration sites will 
produce a different result.  It is also important to note that different integration sites yield 
different effective Hill coefficients (Fig. 2E) and given this range of Hill coefficients, additional 
integration sites should be analyzed to establish whether the circuit in fact exhibits H > 1.  If 
indeed H > 1, the model would need to generate a probability of the system being in the active 
promoter complex [TF_Pron] that scales with hyperbolic curvature as a function of TF; more 
formally, there must be some non-zero value of TF where ∂2[P(TF_Pron)] / ∂[TF]2 = 0.  
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However, in models i–iv, it is straightforward to algebraically show that ∂2[P(TF_Pron)] / ∂[TF]2 

≠ 0 for any non-zero value of TF.   
 
To transiently generate H > 1, some form of TF cooperativity is required.  This cooperativity 
could in principle be achieved through homo-multimerization (1, 20, 56) of the TF protein, or 
successive covalent modifications (57) of TF, or successive TF-dependent steps required for 
promoter activation.  However, to recapitulate the data, it is absolutely critical that the 
mechanism of cooperativity be transient and disappear over time (or disappear as TF levels 
increase).  The homo-multimerization mechanism is the most difficult to reconcile with this.  
While the active form of Tat might multimerize at early times (low levels of Tat) but then 
become a monomer at later times (high Tat levels) or under TNF stimulation, this scenario would 
be an exotic departure from the typical biophysical models of concentration-dependent 
multimerization of a protein (i.e., monomeric at low concentrations with crowding-induced 
multimerization).  In contrast, it may be more appealing to consider models where at early times 
(low Tat or LTR-expression levels) two successive Tat dependent steps are required for LTR 
activation but as the promoter increases in transcriptional activity, one of these Tat-dependent 
steps becomes a Tat-independent step.  For example, active and quiescent promoters 
differentially localize in the nucleus (58, 59), and if the genomic locus where the LTR integrates 
repositions as LTR activity increases, the LTR may be subject to different activation signals 
when it reaches a new nuclear microenvironment (60).  In other words, at early times during 
activation the LTR locus is in a quiescent nuclear micro-environment, whereas at later times 
after activation, the LTR may reposition to a more “TNF-like” nuclear micro-environment. 
 
There may also exist additional thresholds in LTR activation, such as in response to chromatin 
remodeling (61).  However, as discussed above, the epigenetic chromatin-silencing mechanisms 
that allow for chromatin-mediated reactivation are dynamically slower effects that cannot 
explain establishment of latency (26), and thus, this chromatin threshold is likely distinct from 
the early-time transient thresholding results observed here. 
 
Regarding the potential benefits of such transient thresholding relative to multi-stability, we can 
only provide speculation.  When molecular thresholds are established through self-cooperativity 
and multistability, it is biochemically difficult to alter the threshold level.  In the case of the Tat-
LTR circuit, TNF (Fig. 4) and other cellular activators (e.g., trichostatin A, Fig. S6 in Supporting 
Material) can alter the threshold.  Thus, somehow the mechanisms that establish the Tat-LTR 
threshold are distinct and enable ‘tuning’ of the threshold value.  Future work will focus on 
elucidating the molecular mechanisms that establish the transient threshold and its tunability. 
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