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Abstract 21	

 22	
Drug target identification is one of the most important aspects of pre-clinical development yet it is 23	
also among the most complex, labor-intensive, and costly. This represents a major issue, as lack 24	
of proper target identification can be detrimental in determining the clinical application of a 25	
bioactive small molecule. To improve target identification, we developed BANDIT, a novel 26	
paradigm that integrates multiple data types within a Bayesian machine-learning framework to 27	
predict the targets and mechanisms for small molecules with unprecedented accuracy and 28	
versatility. Using only public data BANDIT achieved an accuracy of approximately 90% over 2000 29	
different small molecules – substantially better than any other published target identification 30	
platform. We applied BANDIT to a library of small molecules with no known targets and generated 31	
~4,000 novel molecule-target predictions. From this set we identified and experimentally validated 32	
a set of novel microtubule inhibitors, including three with activity on cancer cells resistant to 33	
clinically used anti-microtubule therapies. We next applied BANDIT to ONC201 – an active anti-34	
cancer small molecule in clinical development – whose target has remained elusive since its 35	
discovery in 2009. BANDIT identified dopamine receptor 2 as the unexpected target of ONC201, 36	
a prediction that we experimentally validated. Not only does this open the door for clinical trials 37	
focused on target-based selection of patient populations, but it also represents a novel way to 38	
target GPCRs in cancer. Additionally, BANDIT identified previously undocumented connections 39	
between approved drugs with disparate indications, shedding light onto previously unexplained 40	
clinical observations and suggesting new uses of marketed drugs. Overall, BANDIT represents an 41	
efficient and highly accurate platform that can be used as a resource to accelerate drug discovery 42	
and direct the clinical application of small molecule therapeutics with improved precision. 43	
 44	
Introduction 45	

 46	
It typically takes 15 years and 2.6 billion dollars to go from a small molecule in the lab to an 47	
approved drug 1-3, and for natural products and phenotypic screen derived small molecules, one 48	
of the greatest bottlenecks is identifying the targets of any candidate molecules2,4. Proper 49	
understanding of binding targets can position drugs for ideal indications and patients, allow for 50	
better analog design, and explain observed adverse events. There exist a number of 51	
experimental approaches for target identification ranging from affinity pull-downs to genome-wide 52	
knockdown screens 4,5, but these approaches are labor, resource, and time intensive, not to 53	
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mention failure prone. Computational target prediction has the potential to substantially reduce 54	
the work and resources needed for drug target identification. Existing computational methods 55	
traditionally fall into three major categories: ligand-based, molecular docking, and data driven. 56	
Ligand-based approaches take known binding targets for a given drug and attempt to find other 57	
proteins that are sufficiently similar to the known targets 6,7. These similar proteins are then 58	
predicted as novel targets. However, to achieve high predictive power they require a large input of 59	
known binding partners for each tested drug, and therefore can only be used on drugs which 60	
have prior comprehensive target information 6,7. Because of this, these methods are often not 61	
broadly applicable, especially to orphan molecules – molecules with no known binding targets. 62	
On the other hand, molecular docking uses simulations of small molecules interacting with 63	
proteins to model if and how a drug may bind a given protein 8,9. However, this approach requires 64	
significant computational power and complex 3D structures for each queried protein – data that is 65	
often unavailable.  66	
 67	
Traditionally, data-driven methods have focused on a single aspect out of a small molecule’s 68	
activity in a biological system. Wang et al. 10 used post-treatment gene expression changes to 69	
predict drugs with shared targets 11,12. Another method relied on side-effect similarity between 70	
drugs with known targets to predict new drug-protein interactions 13. However, this method was 71	
restricted to the small subset of small molecules that had been clinically tested and had thorough 72	
side effect annotation. Though each of these methods represents a significant advancement in 73	
the field, they all suffer from either lack of accuracy or broad utility – evidenced either by an 74	
inability to reliably validate target predictions, or by their limited applicability to a small subset of 75	
all small molecules. This is not very surprising though, as past research has demonstrated that 76	
these individual datasets are noisy, thus, it is expected that reliance on any single data type will 77	
lead to low predictive power 14-16.  78	
  79	
Additionally, other groups have shown how the combination of multiple types of data can improve 80	
the calculation of drug-drug similarities17 and adverse event prediction18, yet, this type of 81	
combinatorial approach has not been fully explored for drug-target prediction. The few reported 82	
studies using combinatorial approaches for drug-target prediction, suffer from significant 83	
limitations that minimize their impact in the field. These limitations include the use of gene-based 84	
similarity features, a method inherently biased against the discovery of diverse types of targets 85	
(favoring instead, the discovery of genes of the same class as the known drug-targets), the small 86	
number of drugs used in the study (<500), or lack of experimental target validation19-21. To 87	
overcome these limitations, we introduce BANDIT, a novel drug-target prediction platform. 88	
BANDIT achieves unprecedented target-identification accuracy, without any reliance on gene-89	
based similarities (making it broadly applicable to newly discovered compounds), uncovers novel 90	
targets for the treatment of cancer, and can be used to quickly pinpoint potential therapeutics with 91	
novel mechanisms of action to accelerate drug development.   92	
 93	
A novel combinatorial Big-Data Approach leads to a large increase in predictive power 94	
  95	
In the age of “Big Data” there has been an explosion of techniques that permit genomic, chemical, 96	
clinical, and pharmacological measurements to characterize a small molecule’s mechanism. 97	
Many such measurements are either already published or are reasonably straightforward to 98	
perform. We hypothesized that integrating the multiple, independent pieces of evidence provided 99	
by each data type into a cohesive prediction framework would dramatically improve target 100	
predictions. To test this hypothesis, we developed BANDIT: a Bayesian ANalysis to determine 101	
Drug Interaction Targets. BANDIT integrates over 20,000,000 data points from six distinct data 102	
types – drug efficacies22, post-treatment transcriptional responses 11,12, drug structures 23,24, 103	
reported adverse effects 25, bioassay results 23,24, and known targets 26,27 – to predict drug-target 104	
interactions. This underlying database contains information on approximately 2,000 different 105	
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drugs with 1,670 different known targets and over 50,000 unique orphan compounds (compounds 106	
with no known targets).  107	
   108	
For each data type we calculate a similarity score for all drug pairs with known targets. Since 109	
each dataset uses a distinct reporting metric, the similarity calculation was specific to the data 110	
type being considered (Figure S1; Methods). Previous approaches have argued that high 111	
similarity in one feature indicates high similarity in others, implying that only one or two data types 112	
are sufficient for target prediction since others can be inferred 28. However, using our vastly 113	
expanded dataset, we found little overall correlation across different similarity scores (Figure 1A; 114	
Figure S2). These results suggest that each data type is measuring a distinct aspect of a 115	
molecule’s activity and that individual features for a given drug cannot be extrapolated based on 116	
other data types. This shortcoming further supported our hypothesis that a novel approach that 117	
integrates independent data types could significantly improve target prediction accuracy.   118	
 119	
We next separated drug pairs into those that shared at least one known target (>34,000 pairs) 120	
and pairs with no known shared targets (>1,250,000 pairs). We applied a Kolmogorov-Smirnov 121	
test to each similarity score and used the associated D statistic to calculate the degree a given 122	
data type could separate out drug pairs that shared targets (Figure 1B). We found that all 123	
features were able to significantly separate the two classes (P < 2e-16), and structural similarity 124	
was found to be the most discriminative among all features evaluated (DStructure = 0.39). 125	
Additionally, we discovered that similarity across an unbiased set of bioassays and the relatively 126	
simple NCI-60 growth inhibition screen could strongly differentiate shared target drug pairs 127	
(DBioassay = 0.327 & DGI50 = 331), while, surprisingly 10,13,29, transcriptional responses (DTResponse = 128	
0.1) and reported adverse effects (DSideEffect = 0.14) were much weaker differentiators. This 129	
information not only identifies the strengths of each data type, but will also allow researchers to 130	
efficiently prioritize experiments when faced with limited resources. 131	
 132	
For every drug pair, BANDIT converts each individual similarity score into a distinct likelihood 133	
ratio. These individual likelihood ratios are then combined within a Naïve Bayes framework to 134	
obtain a total likelihood ratio (TLR) that is proportional to the odds of two drugs sharing a target 135	
given all available evidence (Figure 1C; Methods). We calculated TLRs for all possible drug 136	
pairs with known targets and the output was evaluated using 5-fold cross validation. We observed 137	
an Area Under the Receiver Operating Curve (AUROC) of 0.89 –higher than any competing 138	
approach 13,28– demonstrating that BANDIT’s integrative approach can accurately identify drugs 139	
that share targets. We recomputed the AUROC while varying the number of included data types 140	
and observed an overall increase in predictive power as we added new data types (Figure 2A). 141	
Furthermore we observed a steady increase in predictive power regardless of the addition order. 142	
This result verified the power of BANDIT’s “Big Data” approach and demonstrated how separate 143	
information sources can be combined to yield predictions more powerful than those obtained from 144	
any individual source (Figure S3). This was confirmed using the KS test where we saw that the 145	
TLR output could better separate shared target drug pairs than any individual similarity score with 146	
a drastic increase in performance when focusing on drug pairs with all 5 data types (DTLR = .69, 147	
Figure S4). Furthermore, we observed that BANDIT’s ratio of true to false positives continually 148	
increased as we raised the cutoff value, indicating that BANDIT’s TLR output is a dynamic value 149	
that estimates the strength and confidence level of a specific prediction and can effectively pick 150	
out high quality shared-target predictions (Figure 2B, Figure S5).  151	
 152	
BANDIT can replicate the results of experimental screens and predict specific target 153	
interactions 154	
 155	
We next investigated how we could use BANDIT to replicate results from published experimental 156	
screens. Peterson et al. 30 tested 178 known protein kinase inhibitors against a panel of 300 157	
different kinases and measured the level of inhibition (in terms of percent remaining kinase 158	
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activity) for each inhibitor-kinase pair. We examined all orphan molecules – molecules with no 159	
known targets – in both the Peterson kinase database and BANDIT’s, and, used BANDIT to 160	
predict potential kinases targets for each orphan molecule (Methods). We observed that the 161	
kinase targets BANDIT predicted for each orphan molecule had higher levels of reported 162	
inhibition in the Peterson dataset than non-predictions (p<1e-5; Figure S6). This result supports 163	
using BANDIT to guide experimental screens while minimizing operational costs. 164	
 165	
Moving forward from shared-target predictions, we examined whether for a given drug BANDIT 166	
could be used to predict a specific binding target from our database of over 1,600 unique 167	
proteins. We hypothesized that if a protein appeared as a known target in a large number of 168	
shared target predictions, then it is likely a target for the tested orphan molecule. To test this 169	
hypothesis, we developed a “voting” algorithm to predict specific targets for each orphan small 170	
molecule by identifying any recurring targets (Figure 2C, Methods). We applied our voting 171	
method to all drugs in our database with known targets and demonstrated that as we required 172	
more stringent TLR values for a pair of drugs to be predicted to share a target, the accuracy level 173	
– measured by whether BANDIT correctly identified a known drug target – steadily increased 174	
(Figure 2D). The accuracy level eventually reached ~90%, demonstrating that BANDIT could be 175	
used to accurately identify specific targets for a diverse set of small molecules.  176	
 177	
We then used BANDIT to predict novel targets for 14,168 small molecules with no known targets 178	
or mechanisms of action in our database. We confidently predicted targets for 4,167 unique small 179	
molecules (30% of our original set), with predictions spanning over 560 distinct protein targets. By 180	
setting a higher TLR cutoff for predictions and requiring a higher number of “votes” for any 181	
predicted targets, we further narrowed this list to 720 high confidence target predictions. To date, 182	
this is the largest database of novel drug-target predictions (nearly double the number of drugs in 183	
DrugBank’s drug-target database) and this list can be interrogated further to discover novel 184	
therapeutics and small molecules for a target of interest. Based on this success, we envisioned 185	
two main operating scenarios for BANDIT: 1) Using BANDIT in combination with the library of 186	
orphan small molecules to identify new small molecules targeting a specific protein and 2) to 187	
integrate BANDIT directly into the drug development pipeline to predict targets and guide 188	
experiments for drugs currently in development (Figure 2E).  189	
  190	
Discovery of Novel Microtubule-Targeting Compounds Capable of Overcoming Drug 191	
Resistance 192	
 193	
Beginning with the first operating scenario, we used BANDIT to identify novel ways to target 194	
microtubules. Anti-microtubule drugs make up one of the largest and most widely used classes of 195	
cancer chemotherapeutics, with tubulin being one of the most validated anticancer targets to date 196	
31-34. Interestingly, and unlike most classes of cancer chemotherapy drugs or targeted-therapies in 197	
oncology, microtubule inhibitors are further sub-categorized as microtubule-stabilizing (e.g. 198	
taxanes) and microtubule-depolymerizing drugs (e.g. vinca alkaloids). Each class shifts the 199	
cellular equilibrium that normally exists between soluble tubulin dimers and microtubule polymers, 200	
towards microtubules (taxanes) or soluble tubulin (vinca alkaloids). Despite the clinical success of 201	
the entire class of microtubule inhibitors, the development of drug resistance – which is the 202	
number one cause of cancer mortality in metastatic patients – along with the presence of toxic 203	
side effects limits their clinical applicability 35. Hence, the discovery of novel microtubule-targeting 204	
small molecules could significantly improve cancer therapy by identifying compounds with activity 205	
on refractory tumors or compounds with less toxic side effects. To this aim, we further focused 206	
our list of high confidence orphan-target predictions to small molecules predicted to target 207	
microtubules. To see how our novel predictions related to known microtubule-targeting 208	
therapeutics, we created a network of all known and predicted anti-microtubule small molecules 209	
with edges representing a predicted shared target interaction (Figure S7). Interestingly we found 210	
that the 14 known microtubule-targeting agents tended to cluster together based on their distinct 211	
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mechanism of action. For instance, we observe Paclitaxel clustering with Cabazitaxel and 212	
Docetaxel – all known microtubule-stabilizing drugs – while Colchicine clustered with other known 213	
microtubule-destabilizing drugs such as Podophyllotoxin. This is especially exciting since it 214	
demonstrates the potential for BANDIT to be used not only to identify a specific target for an 215	
orphan molecule but to differentiate between different modes of action on the same target. 216	
 217	
From our list of top anti-microtubule drug predictions we obtained a set of 24 compounds with 218	
varying structures for experimental testing (Methods, Table S1). We chose the human breast 219	
cancer MDA-MB-231 cells for the validation experiments as microtubule-inhibitors (both 220	
stabilizing and destabilizing) are commonly used in the treatment of breast cancer patients. Cells 221	
were treated for 6 hours with 1 and 10 μM of each small molecule, and the integrity of the 222	
microtubule cytoskeleton (assessed by confocal microscopy following tubulin 223	
immunofluorescence), was used as the bio-assay endpoint. Our results showed that 16 of the 24 224	
orphan small molecules exhibited significant effects on microtubules (Figure 3A-F, Figure S8-225	
13), a much higher success rate (67%) than one would expect by chance (p < 2e-16, Methods). 226	
To more accurately quantify the extent of drug-target engagement, we employed a second 227	
biochemical assay quantifying the effect that each small molecule exerted on the equilibrium 228	
between microtubule polymers and soluble tubulin, following 6 hours of treatment (Figure S14). 229	
Our results confirmed and corroborated the microscopy results, further revealing that while 230	
several small molecules had maximal microtubule-inhibitory activity at the lowest dose (1µM) 231	
(Figure 3C-F), others exhibited a dose-dependent effect on microtubule depolymerization (e.g. 232	
compounds #12, #13), further establishing microtubules as their bona-fide target (Figure 3G-I). 233	
Taken together, these experiments confirmed the predicted targets and mechanism of action for 234	
the majority of the newly identified microtubule inhibitors. While further testing will be needed 235	
before these small molecules can be used clinically, these results do demonstrate BANDIT’s 236	
target prediction accuracy and how it can be used on compound libraries to identify small 237	
molecules acting with a specific mode of action on specific targets, for further investigation.  238	
 239	
To inform future clinical development for these newly identified microtubule inhibitors, we next 240	
tested their activity against drug resistant models. Drug resistance remains one of the most 241	
challenging areas in clinical oncology, affecting both broad chemotherapy drugs and targeted-242	
therapies. In the case of microtubule inhibitors, overcoming drug resistance is even more 243	
challenging as the mechanisms are often multifactorial. As previously demonstrated, BANDIT can 244	
accurately identify a set of structurally diverse small molecules that all bind a common target (in 245	
this case microtubules), therefore we next investigated whether any of our newly identified 246	
microtubule-depolymerizing small molecules could successfully act on tumors resistant to other 247	
known anti-microtubule drugs. Using the 1A9 human ovarian carcinoma cell line – which has 248	
previously been used successfully in selecting microtubule-inhibitor resistant clones and for high 249	
throughput small molecule screening,  36-40 – we created clones resistant to Eribulin mesylate, a 250	
microtubule depolymerizing drug that is FDA approved for the treatment of docetaxel-refractory 251	
breast cancer patients 41,42 (Figure 4A). Interestingly, recent clinical data demonstrated that fewer 252	
than 50% of breast cancer patients showed any detectable response after treatment with Eribulin, 253	
further highlighting the importance of finding new molecules that share the same validated target 254	
but are active against the large population of refractory patients 43. Our results, using 72-hr 255	
cytotoxicity assays showed that the Eribulin-resistant 1A9 cells (1A9-ERB) were more than 7,000 256	
–fold more resistant to Eribulin than the parental cells and exhibited cross-resistance to all 257	
classes of clinically used microtubule-depolymerizing drugs (Table S2). To test whether the drug-258	
resistance phenotype was due to impaired drug-target engagement, we treated parental and 259	
resistant cells for 6 hr only with 1uM of Eribulin or each of the FDA-approved depolymerizing 260	
drugs. Consistent with their drug resistance phenotypes, our results showed lack of drug-induced 261	
microtubule depolymerization in 1A9-ERB cells in contrast to the complete depolymerization 262	
observed in the microtubule network of drug-sensitive 1A9 parental cells (Figure 4B-C, Figure 263	
S15-16). These on-target drug efficacy results are in agreement with the lack of antitumor activity 264	
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revealed by the cytotoxicity data further highlighting the importance of discovering novel small 265	
molecules that could act on these refractory tumors. We tested the top 4 performing small 266	
molecules (#15, 16, 24, and 2) on the 1A9-ERB cells and found that 3 out of 4 compounds tested, 267	
were active against the 1A9-ERB cells and effectively depolymerized microtubules, as evidenced 268	
by the diffuse soluble tubulin staining following drug treatment (Figures 4E-F, Figure S15-16), in 269	
contrast to the fine and intricate microtubule network observed in untreated cells (Figures 4E-A). 270	
Compound No 15, which was the most active of the 4 compounds, was tested using cytotoxicity 271	
assays and was found to almost completely reverse drug-resistance from 7050-fold observed 272	
with Eribulin down to 4-fold (Table S2). While further in vitro and in vivo studies are required for 273	
the clinical development of these compounds, these results clearly demonstrate BANDIT’s utility 274	
in identifying lead small molecules with potential activity against drug resistance tumor models 275	
without the labor-and cost-intensive physical screening of thousands of small molecules. Even 276	
though BANDIT is “trained” using a database of drugs with known targets and mechanisms, our 277	
results show that it can accurately identify small molecules with distinct modes of action from any 278	
known drugs in the training set. This also highlights how BANDIT can pinpoint small molecules 279	
from large compound libraries with unique mechanisms that could potentially act on drug resistant 280	
cells. Compounds such as these could represent the next generation of clinically developed drugs 281	
reducing the need for extensive medicinal chemistry and structure-activity studies, therefore, 282	
expediting drug development.  283	
 284	
BANDIT Uncovers Selective Antagonism of DRD2 by Anti-Cancer Small Molecule ONC201  285	
 286	
Given BANDIT’s demonstrated capability to accurately identify specific targets for orphan small 287	
molecules, we next investigated how we could integrate BANDIT directly into the drug 288	
development pipeline and test its ability to predict targets for small molecules with promising 289	
clinical activity but without a specific target. Therefore we applied BANDIT to ONC201– a small 290	
molecule discovered in a phenotypic screen for p53-independent inducers of TRAIL-mediated 291	
apoptosis – currently in multiple phase II clinical trials for select advanced cancers. Despite its 292	
promising preclinical and early clinical anticancer activity and its reported effects on a few 293	
signaling pathways, including Akt/ERK pathway 44-46, a bona-fide target for this compound 294	
remains elusive. 295	
 296	
To identify direct binding targets for ONC201, we used BANDIT to compute likelihood ratios 297	
between ONC201 and all drugs with known targets in BANDIT’s database.  BANDIT’s top shared 298	
target prediction were between ONC201 and Oxiperomide and Thioridazine, both a dopaminergic 299	
antagonists previously used the treatment of dyskinesias and schizophrenia respectively 47-50. 300	
Interestingly, our voting analysis indicated that the most likely targets of ONC201 were dopamine 301	
receptors – specifically DRD2 – and adrenergic receptor alpha (Figure 5A), both of which are 302	
members of the G-protein coupled receptor (GPCR) superfamily.  303	
 304	
To test these predicted targets we performed in vitro profiling of GPCR activity using a 305	
hetereologous reporter assay for arrestin recruitment, which is a hallmark of GPCR activation51. 306	
Our results indicated that ONC201 selectively antagonized the D2-like (DRD2/3/4L), but not D1-307	
like (DRD1/5L), subfamily of dopamine receptors (Figure 5B; Figure S17A), with no observed 308	
antagonism of other GPCRs under the evaluated conditions. Among the DRD2 family, ONC201 309	
antagonized both short and long isoforms of DRD2 and DRD3, with weaker potency for DRD4. 310	
Further characterization of ONC201-mediated antagonism of arrestin recruitment to DRD2L was 311	
assessed by a Gaddam/Schild EC50 shift analysis, which determined a dissociation constant of 312	
2.9 uM for ONC201 that is equivalent to its effective dose in many human cancer cells (Figure 313	
5C). Confirmatory results were obtained for cAMP modulation in response to ONC201, which is 314	
another measure of DRD2L activation (Figure 5D). The ability of dopamine to completely reverse 315	
the dose-dependent antagonism of up to 100uM ONC201 suggests direct, competitive 316	
antagonism of DRD2L (Figure S17B-C). In agreement with the specificity of ONC201 for the 317	
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target predicted by BANDIT, no significant interactions were identified between ONC201 and 318	
nuclear hormone receptors, the kinome, or other drug targets of FDA-approved cancer therapies 319	
(Figure S17D-E; data not shown). Interestingly, a biologically inactive constitutional isomer of 320	
ONC201 52) did not inhibit DRD2L, suggesting that antagonism of this receptor could be linked to 321	
its biological activity (Figure S17F). In summary, these studies establish that ONC201 selectively 322	
antagonizes the D2-like subfamily of dopamine receptors, which is an “unconventional” target for 323	
oncology drugs and further demonstrate BANDIT’s ability to act as a tool to advance drug 324	
development.  325	
 326	
This unexpected discovery on the DRD2L being a direct-binding target for ONC201, has also led 327	
to the design and launch of a clinical trial of ONC201 in pheochromocytomas, owing to high levels 328	
of DRD2L expression in this rare tumor type. Taken together, these results demonstrate the 329	
extreme potential of BANDIT to expedite drug development by using global, novel drug-target 330	
engagement predictions in combination with gene expression studies to enable the identification 331	
of select patient and indications groups more likely to benefit from a particular drug treatment. 332	
 333	
BANDIT can determine drug mechanisms and can help understand the drug “universe” 334	
 335	
Following validation that BANDIT could accurately determine the specific targets for small 336	
molecules, we then examined how it could also be used to understand the target binding 337	
mechanism, otherwise known as its mechanism of action (MoA). First we used BANDIT to test all 338	
known microtubule-targeting drugs, and created a hierarchical cluster based on their TLR outputs 339	
(Methods). We observed a clean separation between drugs known to destabilize microtubule 340	
depolymerizing and polymerizing agents (Figure 6A). A similar MoA-based clustering was 341	
observed when we tested all known protein kinase inhibitors, which showed a clear separation 342	
between receptor tyrosine kinase inhibitors, serine/threonine kinase inhibitors, and nucleoside 343	
analogs (Figure 6B). Overall these results demonstrate that BANDIT can be used to differentiate 344	
small molecules based on their specific MoA without additional model training. Combined with the 345	
earlier voting algorithm, this demonstrates an efficient pipeline for small molecule target and 346	
mechanism identification: first using BANDIT to predict targets for an orphan small molecule, 347	
followed by clustering with other drugs known to act on the same target to discern MoA.  348	
  349	
We next used BANDIT to get an overview of how different classes of drugs, spanning the entire 350	
clinical landscape, may be related to one another. Based on the TLR between each drug pair, we 351	
constructed a network representative of the drug “universe,” or all known drugs with at least one 352	
predicted shared target interaction (Figure 6C). Each drug was classified according to its 1st 353	
order Anatomical Therapeutic Chemical (ATC) classification – characteristic of the type and 354	
intended use of each drug. As expected, drugs of a similar ATC code cluster together, however 355	
we also observed many “unexpected” clusters indicative of drug mechanisms or effect. 356	
Interestingly, among all classes of cancer chemotherapeutics, microtubule inhibitors clustered 357	
together with camptothecin analogues, for which a dual role as topoisomerase I and tubulin 358	
polymerization inhibitors has been previously reported 53, but which is not widely acknowledged in 359	
clinical oncology. Conversely, we unexpectedly found opioids closely interconnected with 360	
microtubule targeting agents; this unanticipated observation is in line with previous reports 361	
showing how exposure to microtubule targeting drugs can increase the levels of the opioid 362	
receptor in rat cerebellums and that treatment of cardiac myocytes with opioids induces 363	
microtubule alterations 54,55. This unexploited finding could reveal novel biology linking the opioid 364	
receptor signaling pathway with the microtubule cytoskeleton, as well as potentially represent an 365	
example of drug repurposing, suggesting novel clinical indications for drugs already FDA-366	
approved. As further proof of the clinical value of the broad universe clustering information 367	
revealed by BANDIT, we detected close clustering of known beta-blockers with many Parkinson’s 368	
medications, which was especially interesting given that one of the most controversial clinical 369	
applications of beta-blockers was to reduce tremors in Parkinson’s patients 56. Drug clustering 370	
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was also strongly indicative of potential side effects, as suggested by the link between 371	
antiretroviral medications, which often cause metabolic side effects like hypercholesterolemia, 372	
and statins, FDA-approved cholesterol lowering drugs 57. Overall we believe this broad universe 373	
clustering approach could greatly advance future drug development by “indicating” novel 374	
potentially synergistic drug combinations, potentially cumulative side effects, and by assisting in 375	
drug repositioning.  376	
 377	
Discussion 378	
 379	
One of the strengths of the Bayesian framework is that it can easily accommodate new features, 380	
and, as we have observed, we expect that the addition of new data to only improve the overall 381	
performance. In addition, as more information becomes available there are many aspects of the 382	
current implementation that can be improved. For instance, we can better understand the 383	
dependencies between distinct data types and model those within our Bayesian network, and as 384	
more information on binding kinetics becomes available, BANDIT could be adapted to better 385	
predict on versus off-target effects. As drug development often stops in early clinical studies due 386	
to “unanticipated” toxic side effects, BANDIT could help overcome these roadblocks by identifying 387	
side effects due to unknown off-target bindings.  388	
 389	
In summary, we have developed BANDIT, an integrative Big-Data approach that combines a set 390	
of individually weak features into a single reliable and robust predictor of shared-target drug 391	
relationships. Not dependent on complex 3D models or large known target cohorts, BANDIT can 392	
be used to predict shared target drugs and mechanisms of action for any drug or small molecule 393	
(over 50,000 in our database) which differentiates it from other target prediction approaches. By 394	
using the top shared-target predictions we can further predict with high accuracy specific targets 395	
for a given small molecule and demonstrate how BANDIT can be used to both efficiently discover 396	
new drugs with novel mechanisms for specific targets and identify targets for small molecules in 397	
the development pipeline – all without tedious, labor-intense and inaccurate drug screening 398	
approaches.  399	

 400	
Our BANDIT predictions replicated shared-target relationships, individual drug-target 401	
relationships, and known mechanisms of action within our test set and replicated results of large-402	
scale experimental screens. Moreover, we experimentally confirmed several of our novel 403	
predictions using different bioassays and model systems and demonstrated BANDIT’s capability 404	
to efficiently discover novel small molecules, which could be used in refractory tumors. As the 405	
development of drug resistance is inevitable in oncology and applicable to both chemotherapy 406	
and targeted therapies, BANDIT has the potential to quickly and accurately identify drugs that can 407	
potentially overcome resistance and improve patient outcomes. Finally, BANDIT can be used on 408	
a broader scale to discern mechanisms of approved drugs, characterize the global drug universe 409	
landscape, and explain existing, yet puzzling, clinical phenotypes. That function alone holds 410	
tremendous potential for drug repurposing, identification of novel drug combinations, and side 411	
effect predictions.   412	
 413	
We show herein the potential of BANDIT in expediting drug development, as it spans the entire 414	
space ranging from new target-identification and validation to clinical drug development and 415	
beyond, by informing repurposing efforts. We expect that BANDIT will help reduce failure rates in 416	
the clinic and shorten the time required for drug approval by identifying the right patient population 417	
most likely to benefit from a given therapeutic. By allowing researchers to quickly obtain target 418	
predictions it could streamline all subsequent drug development efforts and save both time and 419	
resources. Furthermore BANDIT could be used to rapidly screen a large database of compounds 420	
and efficiently identify any promising therapeutics that could be further evaluated. Overall our 421	
results demonstrate that BANDIT is a novel and effective screening and target-prediction platform 422	
for drug development and is poised to positively impact current efforts.  423	
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Methods 424	
Datasets:  425	

1. Growth inhibition data: We used publicly available growth inhibition data from the National 426	
Cancer Institutes Development Therapeutics Program (NCI-DTP). Each of the NCI60 cell 427	
lines were treated with a small molecule and the concentration that caused a 50% 428	
decrease in cells was measured. When there were multiple high quality experiments 429	
done for the same compound, we averaged the values to obtain a single GI50 value for 430	
each small molecule – cell line pair. Contains data on 20,000+ unique compounds. 431	
Version 1.6.2 was downloaded from cellminer.com.  432	

2. Gene expression data: All post-treatment gene expression data was downloaded from 433	
the Broad Connectivity Map (CMap) project. Fold change data across all cell lines were 434	
averaged to obtain a single gene expression signature for each compound. Contains data 435	
on 1309 different compounds. Build 02 was downloaded from the Broad CMap Portal. 436	

3. Adverse effects: Side effects (mined from drug package inserts and public information) 437	
were downloaded from the SIDER database. Each side effect was classified using the 438	
MedDRA (version 16.1) dictionary.  439	

4. Bioassays/Chemical structures: All bioassay results and chemical structures were 440	
downloaded from PubChem and organized based on each small molecule’s PubChem 441	
Compound Identification (CID). 442	

5. Known Drug Targets: All known drug targets were extracted from the DrugBank database 443	
(Version 4.1). 444	

 445	
Calculating similarity scores:   446	

1. Growth Inhibition Data: For each pair of drugs we calculated a pearson correlation value 447	
across the 60 data points (Figure S1). 448	

2. Gene expression and Chemogenomic Fitness Scores: A pearson correlation was used to 449	
measure the degree of similarity for the profiles of two drugs 450	

3. Bioassays: All bioassays were classified as either positive or negative based on the data 451	
available in Pubchem. A jaccard index was calculated based on the number of shared 452	
“positive” assays between two drugs. We required that each drug pair have been tested 453	
in at least one similar assay for a similarity score to be calculated. 454	

4. Chemical Structures: For each drug we extracted the isomeric SMILES and used the 455	
atom-pair method 58 to calculate the structural similarity between two compounds (Figure 456	
S1).  457	

5. Adverse Effects: Using the SIDER2 database 25 we extracted the “preferred term” side 458	
effects for each drug. A jaccard index was then calculated for the shared side effects for 459	
each drug pair.  460	

 461	
Calculating correlations between similarity types: 462	
 463	
For each pair of similarity scores we separated out drug pairs where both similarity types were 464	
measured and plotted the different similarity scores against one another (Figure 1a, Figure S2). 465	
We computed the Pearson correlation coefficient (PCC) and the coefficient of determination (R2) 466	
between each pair of similarity scores. Across all pairs, we observed a low correlation – 467	
measured by both the PCC and R2. This finding demonstrated that high similarity of one type 468	
does not necessarily implied high similarity in another. Furthermore this indicated that each 469	
similarity score could be modeled as an independent variable.  470	
 471	
Calculating the Total Likelihood Ratio: 472	
 473	
For each data type BANDIT calculates a “likelihood ratio” L(sn) is defined as the fraction of drug 474	
pairs with a shared target (ST pairs) having a given similarity score sn, divided by the fraction of 475	
the non-ST pairs with the same similarity score: 476	
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Eq. 1:  477	
 478	

𝐿 𝑠! =  
Pr (𝑠!|𝑆𝑇)

Pr 𝑠! 𝑛𝑜𝑛 − 𝑆𝑇)
 

 479	
 480	
Our previous analysis highlighted the minimal correlation between the similarity types and how 481	
data types could be modeled independently under a Naïve Bayes framework. This assumption of 482	
independence implies that the joint probability of two drugs sharing a target given a set of 483	
similarity scores can be modeled as the product involving individual similarity scores. Therefore 484	
the total likelihood ratio L(s) can be expressed as the product of the individual likelihood ratios:  485	

 486	
Eq. 2: 487	

 488	
𝑇𝐿𝑅 =  𝐿 𝑠 =  𝐿(𝑠!!!)

!

=  𝐿(𝑠!)𝐿(𝑠!)… 𝐿(𝑠!) 

𝑛 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 # 𝑜𝑓 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠   
 489	
 490	
The total likelihood ratio (TLR) is then proportional to the odds of two drugs sharing a given target 491	
n given sources of information  492	
 493	
Overall we decided to use this Bayesian framework for multiple reasons, such as the readily 494	
interpretable nature of a likelihood ratio compared to other more complicated machine learning 495	
scores and the ability to easily add in new data types as they become available.  496	
 497	
Testing Against Drugs with Known Targets: 498	
 499	
Drug targets were extracted from DrugBank and drug pairs were classified as a “shared-target” 500	
pair if they had at least 1 target in common. We used 5-fold cross validation to split our set of drug 501	
pairs into a test and training set containing 20% and 80% of the drug pairs respectively. We sub-502	
sampled the two classes (ST and non-ST drug pairs) and required the ratio of true positives (ST 503	
pairs) to true negatives (non-ST pairs) to remain the same as the total set. For each fold we 504	
computed TLRs for each drug pair in the test set based on the background probabilities within the 505	
training set. Each of the 5 test folds combined at the end to produce an ROC Curve and calculate 506	
the AUROC value. We calculated the AUROC value for each individual likelihood ratio from a 507	
single data type (Figure S3)  508	
  509	
We performed this analysis with the TLR output while varying the number of data types being 510	
considered and found a significant increase in the predictive power, measured by the AUROC, as 511	
we increased the number of included datasets (Figure 2A). We computed two sets of ROC curves   512	
– one where we required drugs have available data in each included data type (our preferred 513	
method) and another where we imputed the data type median for each missing data type. We 514	
varied the order in which datasets were added and observed a positive relationship between 515	
AUROC value and the number of included data types regardless of the addition order. 516	
Furthermore we used a KS test to measure how our TLR value could separate out ST and non-517	
ST pairs and saw that in each case our TLR value outperformed any individual variable (Figure 518	
S4). We repeated this analysis increasing the minimum number of data types we required a pair 519	
of compounds to have and saw the separation steadily improve (D = .44 to .69).  520	
 521	
Replicating Kinase Experimental Screen 522	
 523	
We first separated out the kinases in the Peterson et al. database that were classified as BANDIT 524	
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orphan small molecules – molecules that were in at least two of the considered BANDIT 525	
databases and had no known targets. For each orphan kinase inhibitor we used BANDIT to 526	
predict shared target drugs. Each known kinase target of the shared target drugs was classified 527	
as a potential kinase target of the orphan inhibitor. We then observed that the “percent remaining 528	
kinase activity” was significantly lower between the orphan kinase inhibitors and the BANDIT 529	
predicted kinases than between the orphan inhibitors and any non-predicted kinases (Wilcoxon 530	
Rank Sum Test P = 3.62e−06) (Figure S6). 531	

Specific Target Voting  532	
 533	
For each orphan small molecule we identified all shared target drug predictions, or any drugs with 534	
known targets that exceeded a given BANDIT likelihood ratio. For each shared target drug 535	
prediction, we compiled all known targets of that given drug and ranked specific protein targets 536	
based on how often it appeared as known target in shared drug target predictions. “Votes” for 537	
particular protein targets were weighted based on the likelihood ratio of the shared target 538	
prediction they originated from. The top voted target for each orphan small molecule that we 539	
tested was then predicted to be a novel specific target (Figure 2e).  540	
 541	
To test the accuracy, we used leave-one-out cross validation on our test set of drugs with known 542	
targets. For each drug we used BANDIT to compare it to all other drugs with known targets and 543	
identify the top ranked target for the tested drug. This was repeated for every drug in our test set 544	
and we calculated how often the top ranked target was a known target of the drug being tested. 545	
We recomputed these accuracies while varying the likelihood ratio cutoff for a drug pair to be 546	
considered a shared-target prediction. As expected we observed a steady rise in accuracy as we 547	
increased the cutoff value, with the accuracy plateauing at an accuracy level of approximately 548	
90% – revealing that BANDIT’s voting protocol could accurately identify specific targets (Figure 549	
2F).  550	
 551	
Identification of Novel Anti-Microtubule Small Molecules 552	
 553	
For each orphan small molecule in BANDIT (defined as a molecule tested in any of the individual 554	
databases but without any known targets in DrugBank) we used the BANDIT voting protocol to 555	
predict specific protein targets. We required that each orphan small molecule be in at least 3 of 556	
BANDIT’s databases, leaving us with a set of ~15,000 small molecules. To refine our initial list of 557	
predictions into a high confidence set, we required a TLR cutoff of 500, that each predicted target 558	
appear in the majority of shared target predictions, and that the highest ranked target appear in 559	
the top shared target prediction for each orphan molecule. From this list of high confidence 560	
predictions we identified a set of small molecules predicted to bind to microtubules.  561	
 562	
For each predicted microtubule inhibitor (MTI) we examined how it related to known MTIs using a 563	
network approach (Figure S7). We required that each predicted MTI have a TLR greater than 500 564	
with at least two known MTIs. Each edge in our network represents a predicted shared target 565	
interaction with the length and width of each corresponding to the strength of the prediction 566	
(measured by the TLR value). We used the Fruchterman Reingold projection within the R igraph 567	
package. We observed a distinct clustering of known MTIs based on their mechanism of action.  568	
 569	
Most of the novel MTIs we predicted were not easily obtained, thus we specifically focused on the 570	
subset that we could obtain from the National Cancer Institutes Developmental Therapeutics 571	
Program (Table S1).  572	
 573	
Microtubule Imaging/Testing 574	
 575	
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Human breast MDA-MD-231 cells were cultured in DMEM (obtained from Corning Cellgro) with 576	
10% fetal bovine serum and 1% penicillin and streptomycin. Cells were plated at the density of 577	
90,000 Cells/ml onto 12mm round cover slips in 48 well plates for 24 hours and then treated for 6 578	
hours with small molecules at the given concentrations. Small molecules (obtained from the NCI 579	
Drug Bank) were dissolved in DMSO and stored at -20oC. Control experiments were done using 580	
DMSO and it was less than 0.5% of total media volume. After 6hrs drug treatment media was 581	
removed and cells were per-meabilized with 0.5% Triton X-100 and fixed with PHEMO Buffer 582	
(3.7% formaldehyde, 0.05% glutaraldehyde, 0.068M Pipes, 0.025M HEPES, 0.015M EGTANa2, 583	
0.003M MgCl26H2O and 10% DMSO and adjust pH=6.8) for 10minutes. Fixed cells were washed 584	
three times with PBS buffer. Cells were blocked with 10% goat serum at room temperature for 10 585	
minutes. Cells were incubated with monoclonal α-tubulin antibody (clone YL 1/2, obtained from 586	
EMD Millipore), for 1hr and washed three times with PBS buffer before incubation with a 587	
secondary Alexa Fluor 488 goat anti-mouse antibody (obtained from Invitrogen). Cell chromatin 588	
was stained with DAPI for 5min and washed with water three times. Cover slips were mounted 589	
and photographed in a RSM 700 microscope for microtubule visualization. DNA was 590	
counterstained with DAPI. Images were acquired with Zeiss LSM 700 confocal microscope under 591	
a 63×/1.4NA objective (Zeiss, Germany) (Figure 3A-H, Figure S8-S13).  592	
 593	
A Fisher’s exact test was used to determine whether the number of observed successes – 594	
defined as a predicted microtubule inhibitor showing an effect against microtubules in imaging – 595	
was greater than what would be expected by random chance. To determine the background 596	
probability we used the number of drugs with known targets in our database that were known to 597	
target microtubules (~ 1%).  598	
 599	
Microtubule Effect Quantification  600	
 601	
Following 6hrs treatment, cells (12 well plate) were washed once with warm phosphate-buffered 602	
saline. Each well was incubated with 150 μL either with low salts or high salt buffer at 37 oC for 10 603	
minutes. Cell were then scraped and were either lysed in low salt buffer to test for the degree of 604	
tubulin polymerization (20 mM Tris–HCl pH 6.8, 1 mM MgCl2, 2 mM EGTA, 0.5% NP-40, 1X 605	
protease inhibitor cocktail and 0.5% NP-40) or high salt buffer to test for the degree of tubulin 606	
depolymerization (0.1M Pipes, 1mM EGTA, 1mM MgSO4, 30% glycerol, 5% DMSO, 1mM DTT, 607	
0.02% NAAzide, 0.125% NP-40, 1mM DTT and 1X protease inhibitor cocktail). Samples were 608	
spun at max speed in a tabletop centrifuge for 30 min at room temperature. The supernatant (S) 609	
was separated from the pellet (P). The pellet was resuspended in 150 μL 1 × Laemmli buffer and 610	
sonicated. Equal volumes of supernatant and pellet samples were loaded onto a 12% gel for a 611	
western blot. Tubulin bands were visualized with a DM1α monoclonal antibody (obtained from 612	
Sigma-Aldrich). % Tubulin in pellet levels were calculated as the densitometric value of the pellet 613	
band divided by the total densitometric value of the pellet and supernatant bands times 100. 614	
Three biological repeats were performed (Figure S14). 615	
 616	
Imaging of Treatment Against Resistant Cell Lines 617	
 618	
1A9-ERB is a clone of the 1A9 human ovarian carcinoma cell line resistant to the effects of 619	
Eribulin mesylate. It was prepared by exposing 1A9 cells to 1ng/ml Eribulin (obtained from Eisai 620	
pharmaceuticals) in the presence of 10ug/ml verapamil (obtained from Acros Organics), a Pgp 621	
antagonist. The cells were maintained in the 0.5ng/ml eribulin and 10ug/ml verapamil 622	
concentrations. Cells were removed from this drug solution 3 days prior to any future 623	
experimentation. Additional treatment and imaging was done using the same protocols as 624	
described earlier (Figure S15-S17).  625	
 626	
Characterization of ONC201-DRD2 Interaction 627	
 628	
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ONC201 dihydrochloride was obtained from Oncoceutics. Kinase inhibition assays for the kinome 629	
were performed as previously described 59. GPCR arrestin recruitment and cAMP modulation 630	
reporter assays were performed as previously described 60. PathHunterTM (DiscoveRx) beta-631	
arrestin cells expressing one of several GPCR targets were plated onto 384-well white solid 632	
bottom assay plates (Corning 3570) at 5000 cells per well in a 20 µL volume in the appropriate 633	
cell plating reagent.  Cells were incubated at 37 °C, 5% CO2 for 18-24 h. Samples were prepared 634	
in buffer containing 0.05% fatty-acid free BSA (Sigma).  For agonist mode tests, samples (5 µL) 635	
were added to pre-plated cells and incubated for 90 minutes at 37 °C, 5% CO2.  For antagonist 636	
mode tests, samples (5 µL) were added to pre-plated cells and incubated for 30 minutes at 37 °C, 637	
5% CO2 followed by addition of EC80 agonist (5 µL) for 90 minutes at 37 °C, 5% CO2.  For Schild 638	
analysis, samples (5 µL) were added to pre-plated cells and incubated for 30 minutes at 37 °C, 639	
5% CO2 followed by addition of serially dliuted agonist (5 µL) for 90 minutes at 37 °C, 5% CO2.  640	
Control wells defining the maximal and minimal response for each assay mode were tested in 641	
parallel.  Arrestin recruitment was measured by addition of 15 µL PathHunter Detection reagent 642	
and incubated for 1-2 h at room temperature and read on a Perkin Elmer Envision Plate Reader.  643	
For agonist and antagonist tests, data was normalized for percent efficacy using the appropriate 644	
controls and fitted to a sigmoidal dose-response (variable slope), Y=Bottom + (Top-645	
Bottom)/(1+10^((LogEC50-X)*HillSlope)), where X is the log concentration of compound.  646	
 647	
For Schild analysis, data was normalized for percent efficacy using the appropriate controls and 648	
fitted to a Gaddum/Schild EC50 shift using global fitting, where Y=Bottom + (Top-649	
Bottom)/(1+10^((LogEC-X)*HillSlope)), Antag=1+(B/(10^(-1*pA2)))^SchildSlope and 650	
LogEC=Log(EC50*Antag).  EC50 / IC50 analysis was performed in CBIS data analysis suite 651	
(Cheminnovation) and Schild analysis performed in GraphPad Prism 6.0.5 (Figure 5, Figure S17). 652	
 653	
The kinase assay and nuclear hormone receptor profiling (S16) were performed as previously 654	
described by Reaction Biology Corp and DiscoverX respectively 61-63.  655	
 656	
Drug Mechanism Clustering  657	
 658	
For each drug pair we converted the TLR between them into a distance metric used to estimate 659	
“closeness” between any two drugs: 660	
 661	

Eq. 3: 662	
𝐵𝐴𝑁𝐷𝐼𝑇 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =

1
𝑇𝐿𝑅

 
 663	
We next separated all drugs know to target microtubules that were in at least 3 of BANDIT’s 664	
dataset. With the BANDIT distance metric as an input we created a hierarchical cluster of all 665	
known MTIs using the hclust R method with an “average” based clustering method. Known MTIs 666	
were labeled based on whether they were known to polymerize or depolymerize microtubules, 667	
and we observed a distinct separation based on the mechanism of action (MoA). We repeated 668	
this clustering while removing drug structures from our likelihood calculations and continued to 669	
see a MoA-based separation (Figure S18). This revealed that BANDIT’s clustering approach is 670	
not dependent on any single data type, and that observed results are due to BANDIT’s integrative 671	
approach. This analysis was then repeated using similar conditions for known protein kinases.   672	
 673	
Drug “Universe” Clustering  674	
 675	
Using the same protocol as was used to create the MTI network, we created a network of all 676	
drugs with known targets with each edge representing a predicted shared target interaction and 677	
the edge weight corresponding to the strength of the interaction. Using the KEGG drug 678	
database64 and DrugBank27 we annotated each drug based on its most prevalent ATC code and 679	
colored each drug accordingly. We specifically isolated out 3 clusters representing: 1) beta-680	
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blockers with Parkinson’s medications, 2) antiretrovirals and statins and 3) opioids and 681	
microtubule inhbitors.  682	
 683	
To get a better understanding of how orphan small molecules fit into this drug “universe” we 684	
computed the distance between every pair of small molecules and used multi-dimensional scaling 685	
to visualize the overall structure (Figure S19). We used the same distance metric as described in 686	
the mechanism of action clustering section to create a distance matrix between all small 687	
molecules (known drugs and orphan) and used the R cmdscale package for the multi-dimensional 688	
scaling. We noticed a definite structure with known drugs tightly clustering around each other, 689	
while orphan molecules had a more diffuse organization. One explanation for this structure is that 690	
drugs with known targets are more likely to be used to treat patients and thus may have similar 691	
effects due to safety precautions, whereas orphan molecules which have not gone through 692	
clinical trials and FDA approval are more likely to have a wide variety of effects and 693	
characteristics. 694	

  695	
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696	
Figure 1: BANDIT exploits both the independence and individual predictive powers of each data 697	
type – A) Density plots showing how various different similarity scores correlate with one another, 698	
with darker area corresponding to a higher density of values. R2 and P value were calculated 699	
using a pearson correlation. B) Distributions of similarity scores across two sets – drug pairs 700	
known to share a target and those with no known shared targets. P values and D statistics were 701	
calculated using the Kolmogorov-Smirnov test. C) Schematic of BANDIT’s method of integrating 702	
multiple data types to predict shared target drug pairs.  703	
  704	
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705	
Figure 2: BANDIT can accurately predict shared targets and specific target interactions – A) Area 706	
under the receiver-operating curve for different sets of data types. SE = Side effects; C = CMap; 707	
N = NCI60; B = Bioassays; S = Structure. B) Ratio of true positives to false positives at different 708	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2017. ; https://doi.org/10.1101/134973doi: bioRxiv preprint 

https://doi.org/10.1101/134973
http://creativecommons.org/licenses/by-nc/4.0/


likelihood ratio cutoffs. C) Schematic of the BANDIT voting schematic for predicting specific target 709	
interactions. D) Accuracy level of BANDIT’s voting algorithm at various likelihood ratio cutoffs E) 710	
Schematic of two proposed operating scenarios for BANDIT  711	
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 712	
 713	
Figure 3: Microtubules are a correct target of the newly identified small molecules – Effect of 714	
various compounds (1μM) on the microtubule integrity of MDA-MB-231 cells after 6 hours of 715	
treatment. A) Control with DMSO (Scale bar: 5 μm), B) Vinblastine as a positive control, C) 716	
Compound #16, D) Compound #15, E) Compound #24 F) Compound #2. G) Dose dependent 717	
effect of Compound #12 and H) Compound #13. I) Bar graph showing the % tubulin in the pellet 718	
compared to the supernatant (averaged over three independent replicates) for depolymerizing 719	
drugs at 1 and 10 μM.  720	
 721	
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 722	
Figure 4: A set of the BANDIT predicted small molecules can act on cells resistant to Eribulin and 723	
other microtubule depolymerizing drugs – Effect of various compounds on the microtubule 724	
integrity of 1A9-ERB cells after 6 hours of treatment: A) Control with DMSO (Scale bar: 5 μm), 725	
100nM of B) Eribulin and C) Vinblastine, and 1μM of D) Compound #15, E) Compound #16 and 726	
F) Compound #24.   727	
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 728	
 729	
 730	
Figure 5: ONC201 is a selective DRD2 antagonist – (A) BANDIT target predictions for ONC201. 731	
Connections between ONC201 and known drugs are weighted based on the likelihood ratio and 732	
predicted targets are sized based on the prediction strength. (B) Antagonism of ligand-stimulated 733	
dopamine receptors by ONC201. C) Schild analysis of DRD2L antagonism by ONC201 using 734	
arrestin recruitment or (D) cAMP modulation reporters. 735	
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 736	
Figure 6: BANDIT can predict specific mechanisms of action and connections between drug 737	
classes – A) Hierarchical clustering of drugs known to target microtubules and B) drugs known to 738	
target protein kinases. C) Network of drugs based on shared target interactions. Drugs are 739	
colored based on their most prevalent ATC code. Three specific clusters corresponding to beta-740	
blockers and Parkinson’s medications, anti-retrovirals and statins, and opioids and anti-741	
microtubule drugs are highlighted.   742	
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