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Key Points 

◦ Complexity: tRNAs exhibit a complex fragmentation pattern into a multitude of tRFs that are con-

served within the samples of a given cancer but differ across cancers. 

◦ Very extensive mitochondrial contributions: the 22 tRNAs of the mitochondrion (MT) contribute 

1/3rd of all tRFs found across cancers, a disproportionately high number compared to the tRFs from 

the 610 nuclear tRNAs. 

◦ Uridylated (not guanylated) 5´-His tRFs: in all human tissues analyzed, tRNAHisGTG produces many 

abundant modified 5´-tRFs with a U at their “-1” position (-1U 5´-tRFs), instead of a G. 

◦ Likely central roles for tRNAHisGTG: the relative abundances of the -1U 5´-tRFs from tRNAHisGTG re-

main strikingly conserved across the 32 cancers, a property that makes tRNAHisGTG unique among 

all tRNAs and isoacceptors. 

◦ Selective tRF-mRNA networks: tRFs are negatively correlated with mRNAs that differ characteristi-

cally from cancer to cancer. 

◦ Mitochondrion-encoded tRFs are associated with nuclear proteins: in nearly all cancers, and in a 

cancer-specific manner, tRFs produced by the 22 mitochondrial tRNAs are negatively correlated 

with mRNAs whose protein products localize to the nucleus. 

◦ tRFs are associated with membrane proteins: in all cancers, and in a cancer-specific manner, nucle-

us-encoded and MT-encoded tRFs are negatively correlated with mRNAs whose protein products 

localize to the cell’s membrane. 

◦ tRFs are associated with secreted proteins: in all cancers, and in a cancer-specific manner, nucleus-

encoded and MT-encoded tRFs are negatively correlated with mRNAs whose protein products are 

secreted from the cell. 

◦ tRFs are associated with numerous mRNAs through repeat elements: in all cancers, and in a cancer-

specific manner, the genomic span of mRNAs that are negatively correlated with tRFs are enriched 

in specific categories of repeat elements. 

◦ intra-cancer tRF networks can depend on sex and population origin: within a cancer, positive and 

negative tRF-tRF correlations can be modulated by patient attributes such as sex and population 

origin. 

◦ web-enabled exploration of an “Atlas for tRFs”: we released a new version of MINTbase to provide 

users with the ability to study 26,531 tRFs compiled by mining 11,719 public datasets (TCGA and 

other sources). 
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We mined 10,274 datasets from The Cancer Genome Atlas (TCGA) for tRNA fragments (tRFs) 

that overlap nuclear and mitochondrial (MT) mature tRNAs. Across 32 cancer types, we identified 

20,722 distinct tRFs, a third of which arise from MT tRNAs. Most of the fragments belong to the 

novel category of i-tRFs, i.e. they are wholly internal to the mature tRNAs. The abundances and 

cleavage patterns of the identified tRFs depend strongly on cancer type. Of note, in all 32 cancer 

types, we find that tRNAHisGTG produces multiple and abundant 5´-tRFs with a uracil at the -1 posi-

tion, instead of the expected post-transcriptionally-added guanosine. Strikingly, these -1U His 5´-

tRFs are produced in ratios that remain constant across all analyzed normal and cancer samples, a 

property that makes tRNAHisGTG unique among all tRNAs. We also found numerous tRFs to be 

negatively correlated with many messenger RNAs (mRNAs) that belong primarily to four universal 

biological processes: transcription, cell adhesion, chromatin organization and develop-

ment/morphogenesis. However, the identities of the mRNAs that belong to these processes and are 

negatively correlated with tRFs differ from cancer to cancer. Notably, the protein products of these 

mRNAs localize to specific cellular compartments, and do so in a cancer-dependent manner. More-

over, the genomic span of mRNAs that are negatively correlated with tRFs are enriched in multiple 

categories of repeat elements. Conversely, the genomic span of mRNAs that are positively correlated 

with tRFs are depleted in repeat elements. These findings suggest novel and far-reaching roles for 

tRFs and indicate their involvement in system-wide interconnections in the cell. All discovered tRFs 

from TCGA can be downloaded from https://cm.jefferson.edu/tcga-mintmap-profiles or studied 

interactively through the newly-designed version 2.0 of MINTbase at 

https://cm.jefferson.edu/MINTbase.  

NOTE: while the manuscript is under review, the content on the page https://cm.jefferson.edu/tcga-

mintmap-profiles is password protected and available only to Reviewers.                                               

 

 

Activity in recent years has been drawing increasing attention to a new group of molecules that appear to 

be produced at the same time as transfer RNAs (tRNAs). These molecules are referred to as tRNA frag-

ments or tRFs and are believed to arise from both the precursor and the mature tRNAs1-3. For those tRFs 

that overlap the span of the mature tRNA, four structural categories were reported originally: 5´-tRFs, 3´-

tRFs, 5´-halves (5´-tRHs), and 3´-halves (3´-tRHs). In a recent analysis of hundreds of human tissues we 

reported a fifth structural category, the internal tRFs or i-tRFs that comprises numerous members ex-

pressed in high abundance4. In the same analysis, we also demonstrated that the identity and abundance of 

tRFs depends on previously unrecognized variables such as a person’s sex, population origin, and race as 

well as on tissue, tissue state, and disease subtype4. Despite these dependencies, samples from the same 
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tissue obtained from individuals with the same sex, race and disease subtype were found to express the 

same tRFs and with the same relative abundances, which indicates that these molecules are constitutive4. 

More recent work showed that tRNA “halves” can be produced under stress conditions5,6 as well as con-

stitutively7-9 and to exist in variants that are not visible by standard RNA-seq7.  

In terms of function, tRFs have been shown to associate with Argonaute10 in a cell-type specific man-

ner4. This indicates that at least a subset of tRFs enter the RNA interference (RNAi) pathway. In addition, 

tRFs have been shown to be produced differentially in response to infections11,12, in cancer tissues com-

pared to normal4,13,14, to be affected by diet15, by trauma16, to be involved in trans-generational inher-

itance17, and to regulate translation18. 

In summary, there is very strong evidence that tRFs: 1) represent a novel category of regulatory mol-

ecules in their own right; 2) are important in homeostasis and in disease; and, 3) warrant in-depth 

studies19,20. In this presentation, we extend our earlier work4 to the entirety of the TCGA collection. Spe-

cifically, we processed 11,198 cancer samples representing 32 cancer types with an emphasis on identify-

ing intra- and inter-cancer features involving tRFs. The 32 cancer types included: ACC (Adrenocortical 

carcinoma), BLCA (Bladder Urothelial Carcinoma), BRCA (Breast invasive carcinoma), CESC (Cervical 

squamous cell carcinoma and endocervical adenocarcinoma), CHOL (Cholangiocarcinoma), COAD (Co-

lon adenocarcinoma), DLBC (Lymphoid Neoplasm Diffuse Large B-cell Lymphoma), ESCA (Esophage-

al carcinoma), HNSC (Head and Neck squamous cell carcinoma), KICH (Kidney Chromophobe), KIRC 

(Kidney renal clear cell carcinoma), KIRP (Kidney renal papillary cell carcinoma), LAML (Acute Mye-

loid Leukemia), LGG (Brain Lower Grade Glioma), LIHC (Liver hepatocellular carcinoma), LUAD 

(Lung adenocarcinoma), LUSC (Lung squamous cell carcinoma), MESO (Mesothelioma), OV (Ovarian 

serous cystadenocarcinoma), PAAD (Pancreatic adenocarcinoma), PCPG (Pheochromocytoma and 

Paraganglioma), PRAD (Prostate adenocarcinoma), READ (Rectum adenocarcinoma), SARC (Sarcoma), 

SKCM (Skin Cutaneous Melanoma), STAD (Stomach adenocarcinoma), TGCT (Testicular Germ Cell 

Tumors), THCA (Thyroid carcinoma), THYM (Thymoma), UCEC (Uterine Corpus Endometrial Carci-

noma), UCS (Uterine Carcinosarcoma), and UVM (Uveal Melanoma). Lastly, where relevant, we use the 

NIH/TCGA designations to refer to race groups (see Methods). 

 

 

RESULTS 

We discovered tRFs from all 11,198 datasets of TCGA, which we make available at 

https://cm.jefferson.edu/tcga-mintmap-profiles. For our analyses, we used the 10,274 datasets that were 

not tagged with special annotations by the TCGA consortia (see Methods). Our analyses focus only on 

tRFs whose sequences fully overlap a mature tRNA. These tRFs can belong to one of five structural cate-
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gories (5´t-RFs, i-tRFs, 3´-tRFs, 5´-tRHs and 3´-tRHs). They can also belong to two categories (exclusive 

and ambiguous) based on their potential genomic origin. In terms of length, all generated tRFs range from 

16 to 30 nucleotides (nt). See Methods.  

 

A multitude of tRFs across the 32 TCGA cancer types 

We used our recently developed Threshold-seq algorithm21 to automatically determine a support threshold 

for each of the analyzed datasets. Threshold-seq adapts to a dataset’s depth of sequencing while being 

immune to the potential presence of outliers, making it ideal for this purpose. We report tRFs that exceed-

ed Threshold-seq’s recommended threshold in at least one of the analyzed datasets. For the range 16-30 

nt, we find a total of 20,722 distinct tRFs that exceed threshold. These tRFs comprise 1,717 5´-tRFs, 

16,133 i-tRFs, 2,840 3´-tRFs, and 32 5´-tRHs. We note that fragments with lengths larger than 27 nt 

could be truncated versions of tRFs longer than 30 nt (see Methods). 18,453 of the 20,722 tRFs have 

lengths between 16 and 27 nt inclusive (= 1,395 5´-tRFs, 14,478 i-tRFs, 2,574 3´-tRFs, and six 5´-tRHs). 

We note that i-tRFs are abundant and very diverse, in agreement with our earlier findings4,8,22. Of the 

20,722 tRFs, 13,904 (67%) are exclusive to tRNA space whereas the remaining 6,818 have ambiguous 

genomic origin. For more detailed information, see Supp. Table S1. 

We also adopted the approach of the TCGA working groups and carried out NMF clustering of the 

datasets in each of the 32 cancer types using tRF profiles instead of miRNA profiles (see Methods). Supp. 

Figure S1 summarizes the results of the 288 NMF runs (SKCM samples were split into two types whereas 

GBM was excluded – see Methods). 

 

Nuclear and MT tRFs exhibit distinct and cancer-dependent profiles 

In previous work, we showed differences in the length and abundance profiles of nucleus-encoded vs. 

MT-encoded tRFs in healthy individuals from the 1,000 Genomes Project (1KG)4, breast4 as well as pros-

tate cancer8 and  liver cancer patients22 that were not part of the TCGA initiative. These results suggest 

that different cancer types exhibit different distributions of nucleus-encoded and MT-encoded, respective-

ly, tRFs. Thus, we sought to examine these profiles across all TCGA cancer types. 

Figure 1A shows characteristic examples of the length distributions for nucleus- and MT-encoded 

tRFs and for 10 of the 32 cancer types: AAC, HNSC, LAML, OV, SKCM, THCA, TGCT, UCS, UCEC, 

and UVM. For a detailed distribution of the different tRF categories in each of the 32 cancer types see 

Supp. Figure S2 and Supp. Table S2. All distributions show abundances normalized in reads-per-million 

(RPM). There are evident differences in the tRFs’ structural type, lengths, nuclear vs. MT origin, and 

relative abundances. For example, in ACC and UVM, MT tRNAs are sources of comparatively more 

abundant 5´-tRFs with lengths 20, 23, and 26 nt. Analogously, 30-mer proxies from nuclear tRNAs are 
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the most abundant species in almost all 10 cancers. Also, in SKCM and OV, nuclear tRNAs are much 

stronger contributors of 3´-tRFs with length 18 nt, when compared to the other eight cancer types. Figure 

1B provides a global view of the structural categories (5´-tRFs, i-tRFs, and 3´-tRFs) and abundances of 

the populations of tRFs arising from nucleus-encoded (blue palette) and MT-encoded (red palette) tRNAs 

across cancer types. The Figure makes the considerable diversity of these molecules clear. Figure 1C is a 

Principal Component Analysis (PCA) plot based on the same data and shows clear clusters for various 

combinations of tRF type, length, and genome of origin, corroborating the results of Figure 1B. Note that 

the clusters are explained by tRF length and tRF origin. Specifically, shorter molecules (usually ≤ 23 nt) 

are clustered together, separately from longer ones (usually ≥ 24 nt); additionally, there is clear distinction 

between tRFs originating in the nucleus from those originating in the MT. These findings indicate that the 

nuclear and MT tRNAs produce distinctly different populations of tRFs that depend on cancer type. 

 

Isoacceptors produce tRFs in a cancer-dependent manner 

Having established that both nuclear and MT tRNAs are prolific producers of tRFs, we sought to investi-

gate how different tRNA isoacceptors contribute to the abundance profiles of tRFs. We hypothesized that 

the production of tRFs per isoacceptor is cancer-dependent. To investigate this, we computed the expres-

sion of each isoacceptor as the sum of expression (in RPM) of the tRFs that it produces. We did so sepa-

rately for each of the 32 cancer types and for each of the 61 nuclear and 20 MT anticodons. This allowed 

us to tag each isoacceptor with the level of expression of its tRFs on a per cancer basis. We then carried 

out hierarchical clustering and generated the heatmap of Figure 2A. Three isoacceptor groups are imme-

diately evident in this Figure (indicated by the red lines). The top group comprises 21 isoacceptors pro-

ducing tRFs that have lower expression on average and depend strongly on cancer type. The middle group 

comprises 22 isoacceptors that show moderate expression that is cancer-type-specific. The bottom group 

consists of 21 isoacceptors (four are from the MT) whose tRFs have high levels of normalized expression 

across all 32 cancer types. Three isoacceptors from this cluster, the mitochondrial tRNAValTAC and the nu-

clear tRNAHisGTG and tRNAGlyGCC, stand out as producing highly abundant tRFs in all 32 cancer types. 

From a cancer standpoint, we note that ACC, LAML, SKCM and UVM form a distinct branch of the 

dendrogram (Figure 2A).  All four of these cancers produce abundant tRFs from nearly all of the shown 

isoacceptors (see Figure 1 for comparison), albeit with significant expression variation. We highlight an-

other example of this variation with the help of BRCA and UCEC in the boxplots of Figure 2B. In BRCA, 

four isoacceptors, tRNAGlyGCC(n), tRNAValTAC(mt), tRNAHisGTG(n), and tRNAGlnTTG(n) produce most of the 

tRFs. On the other hand, in UCEC, it is tRFs from tRNAValTAC(mt), tRNAArgTCG(n), tRNAGlyGCC(n), and 

tRNAHisGTG(n) that are expressed abundantly. These findings indicate that the production of tRFs is cancer-

type-specific. 
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The patterning of tRFs depends on tRF category, isoacceptor, and cancer type 

In light of the results of the previous section and the dependencies of tRF abundance on cancer type and 

isoacceptor, we sought to identify cancer-type specific tRNA cleavage patterns. Towards this end, we an-

alyzed “where” tRFs are located with respect to the mature tRNA’s origin. We studied all tRFs with 

above-threshold abundances and lengths between 16 and 27 nt inclusive. As we explain in Methods, im-

posing a length limit at 27 nt is unavoidable: as a result, 5´-tRHs and 3´-tRHs are not included in this 

analysis. To avoid contributions from tRFs of ambiguous origin, which may arise from different biogene-

sis processes, we focused on only the 3,136 tRFs that are exclusive to tRNA space (see Methods). In the 

Discussion, we discuss our findings in the context of known modifications across the span of mature 

tRNAs. 

We tracked multiple tRF attributes and did so separately for each of the 32 cancers (see Methods). 

We show a holistic view of the results in Figure 3 – for the complete set of the histograms for all of the 

attributes see Supp. Figure S3. Note that we use a white circle to indicate the position of known modifica-

tions (m1G9, m3C32, m1G37, and m1A58) in the shown tRNA backbones23. We stress that we highlight 

these positions for reference purposes only. Indeed, it is unknown currently whether these modifications 

occur in the tissues and tissue states that are represented by the TCGA samples. 

In Figure 3A we see that the more abundant 5´-tRFs have only moderate preference for the location of 

their 3  ́termini, which span virtually all positions from the middle of the D-loop through the beginning of 

the anticodon loop. Analogously, for the 3´-tRFs, which can terminate at any of the three nucleotides of 

the non-templated “CCA” addition, their 5  ́termini begin just before or within the T-loop. We note that 

the observed preferences across human cancers for the 3´ termini of 5´-tRFs, and for the 5´ termini of 3´-

tRFs respectively, match the preferences that were recently reported for tRFs in the plant A. thaliana24.  

Among the various fragment categories, i-tRFs are the most diverse in both their 5  ́ and 3  ́ termini 

choices, as we reported recently4. In theory, i-tRFs can begin and end at every nucleotide of the mature 

tRNA, except for its 5  ́end or the CCA tail. However, our detailed analysis revealed that i-tRFs exhibit 

distinct cleavage patterns in individual cancers. As seen in Figure 3A, i-tRFs start either close to the 5´ 

end of the tRNA, at the D or the most 5  ́half of the anticodon loop or between the variable and the T 

loop.  The 3´ ends of the i-tRFs also favor specific positions. 

We highlight the i-tRF endpoint preferences by examining in more detail the i-tRFs in LUAD and OV 

(Figure 3B). In LUAD, comparatively more i-tRFs begin inside the yellow region (D-loop) than do in 

OV. On the other hand, more i-tRFs begin in the brown region (region C) in OV than do in LUAD. Anal-

ogous comments can be made about the i-tRFs’ ending positions in LUAD and OV. See also Supp. Figure 

S3 for more details. 
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These findings indicate that the manner in which tRFs are cleaved from the respective tRNA depends 

on the cancer type, on the isodecoder, and on the structural type of the tRF. The findings also argue 

strongly against the tRFs being random products of tRNA degradation. 

 

Uridylated His(-1) tRFs are abundant in human tissues and exhibit a unique property that is not 

affected by tissue or tissue state 

In eukaryotes, before the mature tRNAHisGTG can be recognized by its cognate aminoacyl tRNA 

synthetase, guanylation of its 5´-terminus by the enzyme THG1 (THG1L in human) is required25-27. This 

post-transcriptionally added nucleotide is referred to as the “-1” position and denoted “His(-1).” In recent 

work with a cell line (the breast cancer model BT-474), it was shown that full-length mature tRNAs and 

5´-tRHs from tRNAHisGTG also contain a uracil at the His(-1) position28. To the best of our knowledge, this 

possibility has not been examined before in human tissues. We therefore sought to profile the His 5´-tRFs 

and the identity of their -1 nucleotide across all 32 TCGA cancer types. 

Our analyses reveal that, in human tissues and across all 32 cancer types, the largest portion of 5´-

tRFs from tRNAHisGTG contains a uracil at the His(-1) position – we will refer to them as “-1U 5´-tRFs.” A 

smaller fraction of 5´-tRFs contain an adenine at the His(-1) position, whereas 5´-tRFs with a guanine or 

cytosine are even fewer. The -1U 5´-tRFs are exclusive to tRNA space and thus can only be produced by 

isodecoders of tRNAHisGTG. However, it cannot be stated with certainty whether these -1U 5´-tRFs arise 

from cleavage of the precursor or from post-transcriptional modification of the mature tRNA: four of the 

12 isodecoders (the one from MT and the three nuclear tRNA-His-GTG-1-6, tRNA-His-GTG-3-1, tRNA-

His-GTG-1-5) contain a T at that location of the DNA template. 

Even though the biogenesis of these -1U 5´-tRFs remains elusive, we found their presence in the nu-

merous TCGA RNA-seq datasets and in a cell line28 intriguing and set out to study their profiles. Exami-

nation of -1U 5´-tRFs from tRNAHisGTG across all 32 TCGA cancer types uncovered a striking property 

for those -1U 5´-tRFs that differ by a single nucleotide in their 3  ́ termini and have lengths between 16 

and 24 nt inclusive. In particular, we discovered that as the length of these -1U 5´-tRFs increases, their 

abundance alternates from low to high to low to high, etc. Specifically, we discovered that the ratio of 

abundances of these increasingly longer fragments remains constant in all 32 TCGA cancers. Curiously, 

the pattern of relative abundances was the same for both the normal and the cancer state. Moreover, we 

found that the pattern is not exhibited by unmodified 5´-tRFs, i.e. by 5t´-RFs that begin at position +1 of 

the mature tRNAHisGTG, to which we refer as +1G 5´-tRFs. Figure 4 shows the log10 of the mean ratio of 

(abundance of -1U 5´-tRF ending at position i) / (abundance of -1U 5´-tRF ending at position i+1), for 

BLCA, ESCA, PAAD, BRCA, LUAD, and SKCM. For comparison purposes, the Figure also shows the 

ratio for the +1G 5´-tRFs that end at consecutive positions: as can be seen, +1G 5´-tRFs do not exhibit the 
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pattern. If normal samples are available, we report values for both the tumor (red) and normal (green) 

samples. For the +1G 5´-tRFs the curves are colored gray (normal) and black (tumor). The points of the 

green (red, respectively) curve are shifted slightly to right (left, respectively) along the X-axis in order to 

make the details of both curves visible simultaneously. Similarly, the gray and black curves are shifted as 

well.  

This finding suggests that the biogenesis of uridylated His(-1) 5´-tRFs is under exquisite control and 

that the specifics of this process are conserved in both health and disease, and across tissues. This con-

served relationship suggests that these -1U 5´-tRFs, whether instigators or effectors, participate in cellular 

process that are common to all cancer types, and, thus, of essential nature. The complete collection of the-

se plots for all 32 cancers can be found in Supp. Figure S4. 

 

System-level Networks: tRFs are positively- and negatively-correlated with one another in a selec-

tive manner 

As part of the above analyses, we compiled the profiles of tRFs for all 32 cancer types. In our previous 

work, we found that tRFs from the same anticodon can be clustered in groups that are explained by the 

position with respect to the mature tRNA and by their lengths (see Figure 3 of Telonis et al4). Here, we 

expand the analysis to systematically study the correlation patterns among tRFs. For each cancer type, we 

computed pair-wise correlations (Spearman) between tRFs. We only kept tRF-tRF pairs whose correla-

tion value was ≥ 0.333 or ≤ -0.333 and the associated false discovery rate (FDR) was ≤ 0.01. Multiple 

tRFs satisfied these criteria in each of the 32 cancer types.  

Analysis of the resulting correlations revealed that the correlated tRFs exhibit notable properties that 

pertain to the organelle in which the tRFs are produced, the source isoacceptor, the length of the tRF, and 

the structural type of the tRF (Supp. Table S3, see Methods for details on how the probability values in 

the table were calculated). Specifically, we found the following: 

- the expressed tRFs remains essentially the same across the 32 analyzed cancer types (Supp. Figure 

S5A);  

- the expressed tRFs that participate in tRF-tRF pairs are characteristically cancer-specific (Supp. Fig-

ure S5B);  

- tRFs that are positively correlated with one another originate almost exclusively in the same cellular 

compartment (either both pair members are nuclear tRFs, or, both are MT tRFs); 

- tRFs that are negatively correlated with one another originate in different compartments (i.e., one of 

the tRFs comes from the nucleus and the other from the MT);  

- positively-correlated nuclear tRFs frequently arise from distinct isoacceptors; 

- positively-correlated MT tRFs frequently arise from the same isoacceptor; 
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- negatively-correlated tRFs frequently arise from distinct isoacceptors, irrespective of whether they 

originate in the nucleus or the MT;  

- positively-correlated tRFs frequently have similar lengths (length difference < 5 nt) and belong to the 

same structural category; 

- negatively-correlated tRFs frequently have different lengths (length difference ≥ 5 nt) and belong to 

different structural categories. 

The complete list of tRF-tRF pairs (both positively- and negatively-correlated) and their corresponding 

correlation values and statistical significance can be found in can be found in the Supp. Table S4.  

These results indicate that tRFs are a considerably heterogeneous group of molecules. tRF character-

istics, such as isoacceptor of origin, organelle of origin, length and structural type are important determi-

nants of the types of correlations in which they participate. We stress that, despite these commonalities, 

the choice of which expressed tRFs participate in positively- or negatively-correlated pairs depends on 

cancer-type. 

 

System-level Networks: tRFs are positively- and negatively-correlated with mRNAs and pathways 

in a selective manner 

From a functional standpoint, others10 and we4 have shown that tRFs can be loaded on Argonaute, just 

like miRNAs. In fact, such loading was demonstrated to affect the abundance levels of mRNAs29. To 

compare and contrast the potential impact of miRNAs and tRFs in the cancer context, we leveraged the 

available long RNA-seq data of the TCGA repository. As a positive control case, we included miRNAs in 

these analyses. Specifically, we computed all correlated tRF-mRNA and miRNA-mRNA pairs, and exam-

ined their properties across and within cancer types. These analyses were carried out with the understand-

ing that, for both miRNAs and tRFs, these anti-correlations capture both direct interactions and indirect 

relationships. The complete list of tRF-mRNA pairs (both positively- and negatively-correlated) and their 

corresponding correlation values and statistical significance can be found in the Supp. Table S4.  

First, we examined whether tRF-mRNA and miRNA-mRNA anti-correlations persist across cancer 

types. As we computed abundance correlations, we were strict when filtering tRFs to minimize the inclu-

sion of noise in our data. We found that the expressed tRFs, miRNAs, and mRNAs are essentially the 

same across cancers (Supp. Figures S5A, S6A, and S6B). However, what changes dramatically from one 

cancer type to the next is the specific manner in which miRNAs and tRFs “partner” with mRNAs to form 

negatively-correlated pairs. This point is evidenced by the very low off-diagonal support in Supp. Figures 

S5B, S6C and S6D. Within a cancer, tRFs and miRNAs are frequently negatively correlated with the 

same mRNAs, as evidenced by the 2x2 mini-matrices across the diagonal in Supp. Figure S6E. This sug-

gests possible synergistic activities by miRNAs and tRFs. 
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Next, we examined whether the cancer-specificity of the negatively-correlated tRF-mRNA and 

miRNA-mRNA pairs translate into differences in the underlying pathways. To investigate this possibility, 

we performed DAVID analysis for each collection of mRNAs in tRF-mRNA pairs in search of enriched 

Gene Ontology (GO) terms and also KEGG pathways. We observed that the distribution of GO Biologi-

cal Process (BP) terms as well as of KEGG pathways resembles a power-law distribution with many 

pathways found uniquely in one cancer-type and relatively fewer pathways appearing in several types 

(Supp. Figure S7A-B). For example, “renal cell carcinoma” was found enriched among the mRNAs that 

are negatively correlated with tRFs in KIRC. However, other enriched KEGG pathways, such as “path-

ways in cancer” and “proteoglycans in cancer,” are universal. Overall, we observed that any two cancers 

have a smaller overlap in terms of enriched mRNAs (Supp. Figure 7C) compared to enriched pathways 

(Supp. Figure S7D). This suggests that, although the tRF-mRNA or miRNA-mRNA correlations are can-

cer-type-specific, the processes that are negatively correlated with tRFs and miRNAs are more general.  

We then focused on the GO terms for Biological Processes (BP) that we found to be common to mul-

tiple cancer types (Supp. Figures S7A and S7B), grouped them into non-redundant clusters (Supp. Figure 

S7D), and identified four main pathways: (a) Transcription, (b) Development and morphogenesis (abbre-

viated as “Development”), (c) Chromatin organization, and, (d) Cell adhesion and extracellular matrix 

organization (abbreviated as “Cell adhesion”). Notably, mRNAs from the “Transcription” and “Chroma-

tin organization” pathways were negatively correlated predominantly with tRFs and exhibited these corre-

lations across the vast majority of cancer types. On the other hand, mRNAs from the other two pathways 

(“Development” and “Cell adhesion”) were negatively correlated with miRNAs, with tRFs or both (Supp. 

Figure S7D). 

Having established the conserved relationship between these four pathways and the associated tRFs, 

we examined how often tRFs overlapping isodecoders of a specific isoacceptor are associated with 

mRNAs from the respective GO term. Fig. 5A shows in heatmap form the fraction of cancer types in 

which tRFs overlapping a shown isoacceptor are negatively correlated with mRNAs belonging to each 

pathway.  

We see that most tRNA isoacceptors are linked with the same GO terms in many cancer types. The 

frequency of those correlations does not depend on the tRNA’s genome of origin (mitochondrial vs. nu-

clear) or the encoded amino acid. We also observe that tRFs from several mitochondrial and nuclear 

isoacceptors are very often negatively correlated with almost all examined GO terms. The mitochondrial 

ValTAC, LeuTAA and ProTGG isoacceptors are negatively correlated with mRNAs from all shown GO 

categories (Fig. 5A) in nearly all cancer types: this is true even for pathways whose mRNAs do not have a 

previously reported mitochondrial link, e.g. “cell adhesion.” 
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Collectively, the above results provide further support to the view that the tRF-mRNA anti-

correlations are an integral component of the molecular physiology of cancer, and not random. In fact, the 

analysis shows that tRF-mRNA anti-correlations parallel miRNA-mRNA anti-correlations (Fig. 5A). It is 

important to note that the tRF-mRNA anti-correlations comprise tRFs from both the nucleus and the mi-

tochondrion, which in turn indicates that the nuclear and MT genomes marshal the corresponding path-

ways in a cooperative manner. 

 

System-level Networks: tRFs are linked to the cellular destinations of proteins encoded by negative-

ly-correlated mRNAs 

Spurred by the numerous statistically significant links between tRFs and miRNAs and pathways, we 

sought to examine one more facet of these associations, namely the cellular localization of the protein 

products of the corresponding mRNAs. For this analysis, we treated nuclear tRFs separately from mito-

chondrial tRFs. We used information from the UniProt database to distinguish among the following six 

“compartments:” nucleus, cytoplasm, endoplasmic reticulum or Golgi, mitochondrion, cell membrane, 

secreted, and “other organelle” (e.g., vesicles and endosomes). To evaluate the non-randomness of the 

localization distributions of the encoded proteins, we performed Monte-Carlo simulations to investigate 

the possibility of enrichments or depletions in the observed values as compared to values expected by 

chance. 

First, we examined tRFs. The left-most and middle panels of Fig. 5B show the sub-cellular localiza-

tion and distribution of the protein products of mRNAs that are negatively correlated with nuclear and 

MT tRFs, respectively. Several observations can be made readily. Perhaps most prominent is the finding 

that for several cancer types, many mitochondrial tRFs are negatively correlated with mRNAs whose pro-

tein products localize primarily to the nucleus, the cytoplasm, or the cell membrane (more than 50% in 

almost all cancers). On the other hand, the nuclear tRFs are negatively correlated with many mRNAs 

whose protein products localize to the mitochondrion (adjusted p-val < 10-3). COAD and SARC represent 

two extreme cases in this analysis. In COAD, anti-correlations involving nuclear tRFs are essentially ab-

sent. In SARC, we observed the opposite: almost no anti-correlations involved mitochondrial tRFs. One 

additional observation is that although in absolute numbers many proteins localize to the nucleus, cyto-

plasm and cell membrane, there is considerable cancer specificity as to whether this localization differs 

from chance, and whether the difference corresponds to enrichment or depletion. For example, in cancer 

types KIRC, MESO, UVM, ESCA and BLCA the nuclear tRFs are correlated with the same number of 

mRNAs that produce the nuclearly-localized proteins. However, in MESO and BLCA, this number is sig-

nificantly lower than expected, in KIRC the number is higher, and, in UVM it is not significant. There are 

also cancer types in which the nuclear and mitochondrial tRFs have markedly different behavior: in 
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SKCM and PAAD, the nuclear tRFs are negatively correlated with mRNAs coding for cell membrane 

proteins. For both cancer types, this number is significantly lower than expected (purple). On the other 

hand, in SKCM and PAAD, mitochondrial tRFs exhibit the opposite trend: they are negatively correlated 

with significantly more mRNAs that code for cell membrane proteins than is expected by chance.  These 

data further highlights the cancer-specific nature of tRF profiles, their associated roles and their diversity. 

We repeated the same analysis for miRNAs and show the results in the right-most panel of Fig. 5B. 

Similarly to tRFs, the miRNAs are negatively correlated with mRNAs whose protein products are des-

tined for all cell compartments but, notably, and similarly to tRFs, more than 50% of these proteins are 

localized in the nucleus, the cytoplasm, and the cell membrane. However, miRNAs do not show the pro-

nounced dependence on cancer type of tRFs (left and middle panels of Fig. 5B) as in most cases the cell 

membrane and secreted proteins are enriched, while nuclear proteins are usually, but not always, depleted 

in the respective gene sets. 

These results provide strong support to the view that the observed tRF-mRNA pairs are not acci-

dental. In fact, they resemble the results we obtain when we analyze miRNA-mRNA pairs. Thus, it is rea-

sonable to posit a possible cooperation between miRNA and tRFs, with the miRNAs capturing the ‘base-

layer’ and the tRFs overlaying a ‘cancer-dependent’ component on it. Equally importantly, the findings 

suggest strong associations between nuclear and mitochondrial tRFs with proteins that operate beyond the 

nucleus and the MT compartments. 

 

System-level Networks: the genomic span of mRNAs that are positively- or negatively-correlated 

with tRFs are selectively enriched/depleted in specific repeat elements 

In light of our earlier work30-32 and the more recent findings in mouse that connect fragments from 

tRNAGlyGCC with the MERVL repeat and mRNAs15, we hypothesized that a link between tRFs and repeat 

elements exists in human cancers. 

We focused on all of the mRNAs that we found to be statistically significantly correlated with tRFs. 

We analyzed these mRNAs separately for each cancer type. For each cancer type, and for each of 

RepeatMasker’s33 categories of repeat elements, we determined the fraction of these tRF-correlated 

mRNAs that corresponded to fragments from the repeat category at hand. In each case, we evaluated 

whether the observed fraction of embedded fragments was expected by chance. We achieved this by run-

ning 10,000 iterations of a Monte-Carlo simulation that allowed us to assign a z-score to the fraction (see 

Methods). Compared to chance, positive z-scores represented enrichment in this repeat category’s se-

quence fragments. Analogously, negative z-scores represented depletion. We analyzed sense instances of 

repeat element fragments separately from antisense ones. Also, we analyzed positively-correlated mRNAs 

separately from negatively-correlated ones. 
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Figure 5C shows a heatmap of the generated z-scores, for all 32 cancer types, for sense and antisense 

instances of all repeat categories, and, separately for mRNAs that are positively correlated or negatively 

correlated with tRFs. The very high or very low z-scores strongly argue that these findings are not ran-

dom. As Figure 5C makes apparent, in all 32 cancer types, the genomic spans of mRNAs that are either 

positively or negatively correlated with tRFs exhibit significant enrichment or depletion in repeat ele-

ments or their reverse complements.  

From an mRNA standpoint, we observe that the genomic spans of mRNAs that are negatively corre-

lated with tRFs are enriched in multiple categories of repeat elements, in both sense and antisense orien-

tation. Conversely, we observe that the genomic spans of mRNAs that are positively correlated with tRFs 

are depleted in repeat elements. For example, in READ, SKCM, KIRP, TGCT, and PCPG, those mRNAs 

that are positively correlated with tRFs are depleted in L1, L2, and ALU elements. In the same five cancer 

types, those mRNAs that are negatively correlated with tRFs are enriched in L1, L2, and ALU elements. 

A handful of the 32 cancers are notable exceptions to this observation: STAD, HNSC, LAML, BRCA, 

and MESO (indicated by arrows in Figure 5C). 

Considering that many tRFs have repeated genomic instances, it is possible that the correlations we 

observe are the result of ambiguous tRFs whose multiple genomic instances outside of tRNA space over-

lap with mRNAs. We examined all possible genomic origins of such tRFs and could not find support for 

this hypothesis (Methods and Supp. Figure S9). 

These results provide additional independent support to our earlier findings that the distribution of re-

peating sequences in the human genome is not arbitrary30-32,34. Moreover, the uncovered associations be-

tween tRFs and repeat elements strongly implicate the latter in the layer of tRF-mediated regulation of 

expression in nearly all 32 cancer types. 

 

System-level Networks: Intra-cancer networks of tRFs can be modulated by a patient’s sex or a pa-

tient’s race 

We hypothesized that tRF profiles differ across sex or race boundaries and investigated the matter in two 

cancer types for which sex-dependent and race-dependent disparities of genetic origin, respectively, have 

been documented in the literature. Spurring this hypothesis is the above finding that tRFs are strongly 

associated with tRFs, mRNAs, and proteins that localize to specific cellular compartments.  

Before proceeding further, we mention that in the below analysis we limit ourselves to only two of 

the 32 cancers types contained in TCGA. Additional in-depth studies that escape the scope of this presen-

tation will be necessary in order to examine whether the analysis of RNA-seq datasets from other TCGA 

cancer types supports similar findings. We stress here that mining RNA-seq data is distinctly unlike the 
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task of detecting, e.g., race-based somatic mutations, for which TCGA is well known to be under-

powered35. 

The first of the two cancer types is LUAD. In lung cancer, both sex and race disparities are known to 

exist. A portion of these disparities can be attributed to differences in the stage and degree of adoption of 

tobacco smoking36-41. However, age-adjusted lung cancer incidence rate is higher among black men com-

pared to white. Also, it is roughly equal between black and white women, even though black men and 

black women have a lower overall exposure to cigarette smoke. These observations suggest that sex and 

race contribute to these differences42. Below, we examine only the sex-dependence aspect of LUAD.  

The second cancer type is the subtype of BRCA known as “triple negative” (TNBC). TNBC repre-

sents approximately 15-20% of the BRCA cases43 and is the most aggressive BRCA subtype, character-

ized by poor prognosis. In the absence of an expressed hormone receptor, chemotherapy continues to re-

main the only systemic option for TNBC patients44. TNBC is twice as frequent among B/Aa premenopau-

sal women compared to Wh women44-49.  

In each case, we formed networks of tRFs whose expression values were statistically significantly 

correlated: we only kept relationships with a Spearman correlation ≥ 0.33 or ≤ -0.33 and a matching false 

discovery rate (FDR) ≤ 0.05. Then, we examined whether and how these networks changed between 

males and females in LUAD and between White and Black/African American patients with TNBC. 

Case: LUAD. We analyzed the lung adenocarcinoma samples from TCGA separately for male and 

for female patients. The top row of Figure 6 show the network of negatively correlated tRF pairs that sat-

isfy the correlation value and FDR thresholds mentioned above and are supported by the LUAD samples 

in TCGA. The next two rows show the subset of edges and vertices that correspond to tRF-tRF correla-

tions that are exclusive to male (2nd row) or female (3rd row) LUAD patients. The 4th row shows those 

tRF-tRF correlations that are present in both male and female LUAD patients. The networks are colored 

based on which mature isoacceptor produces the tRFs (1st column), the tRFs’ structural category (2nd col-

umn), the tRFs’ lengths (3rd column), and whether the tRF originates in a mature tRNA from the nucleus 

or the MT (4th column). As can be seen, female LUAD patients exhibit more and more-widespread anti-

correlations compared to male patients. 

Case: TNBC. We analyzed the TNBC samples from TCGA and created analogous networks. Here, it 

is the networks of positively-correlated tRF pairs that show characteristic differences between White (Wh) 

and Black/African American (B/Aa) patients with TNBC (see “Nomenclature/Notation” in Methods). 

Supp. Figure S8 shows the network of tRF-tRF pairs for all TNBC patients, the subset of the network that 

is present only in Wh TNBC patients, only in B/Aa TNBC patients, and, in both Wh and B/Aa patients. 

As in the case of LUAD, there are evident differences in the networks of correlations that are present in 

the Wh and B/Aa TNBC patients, respectively. 
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The discovered TCGA tRFs can be studied using a newly-added MINTbase module 

We recently reported the development of MINTbase, a framework for storing and studying tRNA frag-

ments22. MINTbase is both a web-based content repository and a tool for the interactive study of tRFs. 

Originally, we populated MINTbase with 7,129 unique and statistically significant tRFs that resulted from 

our analyses of 832 public datasets4,8,9,22.  

We have now extended MINTbase (version 2.0) to include the tRFs that we generated in our analyses 

of TCGA. With the addition of the tRFs from 32 TCGA cancer types, MINTbase now comprises infor-

mation about the location, normalized abundances, and expression patterns of 26,531 distinct tRFs com-

piled by mining a total of 11,719 public datasets from TCGA and elsewhere. 

 To extend the utility of the repository, we augmented its search capabilities. Specifically, we now al-

low the user to search using a TCGA cancer abbreviation (e.g. BRCA, PRAD, PAAD, etc.), a descriptive 

phrase (e.g. breast cancer), one or more structural categories, one or more isoacceptors, a sequence (e.g. 

GGCTCCGTGGCGCAATGGA), a tRNA name, or a tRNA label, and to combine these choices with a 

“minimum abundance” criterion. As an example, the following complex Boolean request can be executed 

by pointing-and-clicking: “retrieve all 5´-tRFs and all i-tRFs that overlap with either the mitochondrial 

isodecoder of tRNAAspGTC or any of the nuclear isodecoders of tRNAHisGTG and are present in any of the 

breast cancer samples of MINTbase with abundance ≥ 25 RPM.”  

Each of MINTbase’s 26,531 tRFs has its own exclusive record that lists all publicly known identifiers 

for it, information about the isodecoder(s) that contain it, a multiple sequence alignment in the case of 

multiple tRNA origins, whether the tRF is exclusive to tRNA space4,8,9, and how many of the MINTbase 

datasets contain the tRF with an abundance of ≥ 1.0 RPM.  

To enable intra-TCGA comparisons as well as comparisons between TCGA and non-TCGA datasets, 

each tRF record includes four histograms that show: the fraction of datasets containing the tRF in each 

TCGA cancer type and outside TCGA; the tRF’s distribution of abundances in each TCGA cancer type 

and in non-TCGA datasets; and, two more histograms showing box-plots of the distribution of abundanc-

es of the tRF within each TCGA dataset using a linear and a log2 Y-axis, respectively. All four histograms 

are interactive and allow the user to select which dataset(s) to display. In Figure 7, we show three of the 

four histograms from the record of the -1U 5´-tRF from tRNAHisGTG with sequence 

TGCCGTGATCGTATAGTGGTT. The top histogram shows that the tRF is present in at least 75% of the 

samples that are available for 31 of the 32 TCGA cancer types. The only exception is LAML where the 

fragment appears in only 29 of the 191 datasets. Of the 521 non-TCGA datasets currently contained in 

MINTbase, the fragment is present in only 8 of them. Across the TCGA datasets in which it is present, 

this -1U 5´-tRF exhibits a wide range of abundances that reach as high as 1,394.78 RPM in LIHC (not 
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shown). To demonstrate the comparative differences of the fragment’s distribution of abundances, we 

selected and show the histogram bars for COAD, LUSC, PAAD, PRAD, SKCM, UCEC and UVM (mid-

dle panel). For the same set of cancer types, in the Figure’s bottom panel, we also show the box-plot of 

their abundance distributions (note that this panel uses a log2 Y-axis). To facilitate inclusion in user re-

ports, all these diagrams can be saved in PNG, JPG, PDF or SVG format (Figure 7, middle panel). 

 

Discussion 

We carried out a comprehensive mining of 11,198 datasets from TCGA in search of statistically signifi-

cant tRNA fragments. 10,274 of these datasets representing 32 human cancer types had associated records 

that are devoid of any special annotations (“whitelisted”) and entered our downstream analyses. We found 

that nearly all tRNAs exhibit cancer-specific cleavage patterns. Additionally, we found that nucleus-

encoded and MT-encoded tRNAs exhibit distinctly different behavior vis-à-vis to patterning and the 

abundance of the tRFs they generate. tRNAHisGTG represents an exception in that it gives rise to a specific 

collection of 5´-tRFs that contain a uracil in their -1 position (instead of the expected guanosine). The rel-

ative abundances of these -1U 5´-tRFs exhibit ratios that are maintained constant across all examined 

cancer types and in both health and disease. The analyses also revealed wide-ranging associations be-

tween tRFs on one hand, and mRNAs and proteins on the other. Many of the (positive and negative) as-

sociations involve partners that cross organelle boundaries: for example, they involve tRFs that arise from 

nucleus-encoded tRNAs and mRNAs whose proteins localize in the MT; or, tRFs that arise from MT-

encoded tRNAs and mRNAs whose proteins localize in the nucleus. These associations provide new in-

sights to understanding the layer of post-transcriptional regulation. Moreover, in the short term, these re-

lationships suggest intriguing novel viewpoints from which to study inter-organelle communication. In 

the longer term, there is great potential in leveraging these relationships to develop novel diagnostics and 

novel therapeutics that are tuned to individual cancers. 

We note that we carried out our study with full understanding that the presence of documented modi-

fications across the span of tRNAs50-56 has the potential to pause or stop reverse transcription. Such modi-

fications would result in some, perhaps many, tRFs to not be represented among the sequenced reads57,58. 

Two recently reported methods57,58 introduced a demethylation step that was shown to improve the enu-

meration of tRFs for certain isoacceptors. It is thus highly probable that the 20,722 tRFs we have identi-

fied are but a subset of a larger class of tRFs that are active in cancer tissues. By studying the TCGA da-

tasets, we work with the best and most comprehensive datasets that are available for the time being. Even 

though these datasets are arguably incomplete, they remain invaluable in helping us shed a first light on 

important characteristics of tRFs across tissues. 
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A key finding of the analysis is the diversity of the identified tRFs. We mined a total of 20,722 tRFs 

that range widely in terms of abundance, length, structural type, and the location of their 5´ and 3´ termi-

ni. The tRFs also depend on the identity of the corresponding template isodecoder/isoacceptor10,59 and the 

identity of the genome (nuclear vs. mitochondrial) hosting the tRNAs from which the tRFs arise22. The 

type of the cancer that is analyzed each time further modulates these tRF attributes; we will return to this 

point below. Given that our computational pipeline complements other available methods by exhibiting 

superior sensitivity and specificity60, our results significantly enrich the publicly available data with new 

information that can be readily exploited in future studies. 

Approximately one third of all identified tRFs are of ambiguous origin. In other words, if one exam-

ines the entirety of the human genome, the sequences of these tRFs can be found within annotated tRNAs 

as well as at loci that contain only partial instances (e.g., one half or one third) of mature tRNA sequenc-

es4,9,22. Some of these loci resemble full-length tRNAs4,61 whereas other loci correspond to partial tRNAs, 

repeat elements or mRNAs4, and, possibly, non-transcribing sequences. Recognizing this complication, in 

parallel work, we designed and implemented MINTmap60, a freely-available tool that facilitates the iden-

tification of tRFs of ambiguous genomic provenance. Strictly speaking, ambiguous tRFs require special 

attention, particularly when experimental work is being considered, as they cannot be linked unequivocal-

ly to transcription from a tRNA template. We provided examples of non-exclusive tRFs that are correlated 

with mRNAs containing an embedded instance of the corresponding tRF. Even though there were few 

such examples in TCGA, they warrant caution because their biogenesis may not be linked to tRNA tran-

scripts. 

The 22 mitochondrial tRNAs were found to be very strong contributors to the pool of distinct tRFs, 

when compared to the 610 nucleus-encoded tRNAs. In fact, 30% of all discovered tRFs derive from the 

22 MT tRNAs (Supp. Table S1). This finding mirrors our previous results4,8,9,22 and extends them to the 

numerous human tissues that are part of TCGA. Moreover, MT-tRNA-derived tRFs show marked differ-

ences when compared with the nuclear-tRNA-derived tRFs. Indeed, for a given cancer type, the mito-

chondrial tRFs differ from their nuclear counterparts in length, relative abundances, dominant structural 

category, etc. 

Even when we confine ourselves to a specific genome, i.e., nuclear or MT, we find a strong depend-

ence of the tRF populations on the identity of the parental isoacceptor. These populations change across 

cancer types and are characterized by differences in the structural type of the produced tRFs (Figure 1), 

the identity of the isoacceptor that produces most distinct tRFs (Figure 2), and the relative abundances of 

the tRFs (Supp. Table S3). Of the 32 cancers, SKCM, UVM, ACC and LAML rank highest in their rich-

ness in distinct and abundant tRF populations. 
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 Moreover, the tRF populations show cancer-dependent differences with regard to the specific end-

points that are favored by tRFs of a given structural type (Supp. Table S3). Even if we ignore this cancer-

dependence and look at the structural types holistically, it is evident that the 3  ́termini of 5´-tRFs and the 

5  ́termini of 3´-tRFs span a large number of choices (Figure 3). Notably, these preferences are very simi-

lar to what was reported recently for the plant A. thaliana24, which suggests common underlying biogenet-

ic mechanisms and, possibly, functions. Furthermore, the cancer-dependence of the observed fragments 

suggests a tissue-specific dimension in the biogenesis of tRFs. This notion is supported, at least in part, by 

recent results showing that the channeling of tRNAs into the miRNA Dicer-Ago pathway depends on the 

structure of the RNA molecule62. Given that RNA folding is a dynamic process63, we posit that the ob-

served differences in tRF cleavage patterns among tissues are caused by differences in each tissue’s mo-

lecular physiology. 

The i-tRFs, a novel structural type that we discovered recently4, exhibit the largest diversity in 

TCGA. i-tRFs represent more than 75% of the 20,722 identified tRFs. As Figure 3 shows, i-tRFs have a 

multitude of preferred starting and ending positions. The choice of these endpoints strongly depends on 

cancer type (Supp. Table S3). 

Despite the pronounced dependence of tRF profiles on cancer type, some isoacceptors stand out by 

producing tRFs with profiles that remain exceptionally consistent in healthy and diseased tissues, and 

across all cancer types. Of note here is the nuclear tRNAHisGTG that produces -1U 5´-tRFs with lengths that 

range between 16 and 22 nt and have abundances that are characterized by a unique property. Specifical-

ly, the abundances of -1U 5´-tRFs with 3´ termini that differ by a single nt (all these tRFs share the same 

5  ́ terminus) alternate between high and low, whereas their ratios remain constant across all analyzed 

normal and cancer samples, and all 32 cancer types. The resulting ‘see-saw’ pattern spans a limited and 

persistent range of ratios that can be seen in Figure 4 and Supp. Figure S3. It should be stressed, however, 

that even though the ratios of these -1U tRFs remains constant, their absolute abundances do change 

from cancer type to cancer type. We did not find any other isoacceptors whose tRFs exhibited this unusu-

al behavior. The exquisite stability of these ratios across tissues, and the uniqueness of tRNAHisGTG in this 

regard among tRNAs, leads us to conjecture that these -1U 5´-tRFs participate in fundamental cellular 

processes that are currently unknown. 

Of equal importance is the finding that across all human tissues that we examined, the 5´-tRFs from 

tRNAHisGTG contain primarily a uracil at the His(-1) position. This is a new and unexpected finding, be-

cause the mature tRNAHisGTG requires guanylation of its 5´-terminus before it can be recognized by its 

cognate aminoacyl tRNA synthetase. By comparison, the levels of 5´-tRFs from tRNAHisGTG with G, A, or 

C at the -1 position were low. Recent work with the human breast cancer cell line BT-474 suggests that 

-1U 5´-tRFs from the tRNAHisGTG locus arise from the mature tRNA28. However, it is not clear for the 
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time being whether the -1U 5´-tRFs that we discovered in the multitude of human tissues that we ana-

lyzed above arise from the processing of the mature tRNAHisGTG or its precursor. Further complicating this 

determination is the fact that the DNA template at four of the 12 genomic loci encoding isodecoders of 

tRNAHisGTG contains a T at the -1 position. 

Given the nascent nature of this field and the apparent diversity and context-specific nature of the 

tRFs, it is not surprising that very little is known currently about their functional roles. With that in mind, 

we placed particular emphasis on leveraging the TCGA datasets to shed as much light as possible on this 

question. First, we found pairs of tRFs that are correlated across samples. Within a given cancer type, the 

same tRFs were found correlated across all available samples. However, different groups of tRFs were 

correlated across cancers (Supp. Figure S5B). We then extended this analysis to protein-coding transcripts 

and found a very rich repertoire of negative correlations involving tRFs and specific mRNAs. These tRF-

mRNA anti-correlations depended strongly on cancer type (Supp. Figure S6E). Earlier reports by others 

and us provided evidence of tRFs acting like miRNAs via Argonaute loading4,10,29. In light of this, we also 

identified the group of mRNAs that are negatively correlated with miRNAs. The miRNA-mRNA anti-

correlations depended strongly on cancer type as well (Supp. Figure S6E). 

We wish to stress one point here. It is entirely possible that direct molecular coupling drives some of 

the uncovered correlations. However, in the absence of any additional information, it will be prudent to 

treat these relationships as associations. For example, these associations could result from a common up-

stream regulator, from belonging to the same pathway, or because some tRFs arise from the same precur-

sor transcript. Considering the apparent diversity across cancer types, it appears that it will be necessary 

to unravel the mechanisms underlying the correlation patterns separately for each cancer. Moreover, the 

presented analysis makes it evident that tRFs have tissue-specific roles that are also more diverse than 

those of miRNAs (see below). Regarding the diversity in function, Ago-loaded tRFs are but one of multi-

ple facets of tRF biology. Indeed, one should also recognize the interaction of tRFs with other RNA bind-

ing proteins and with the translation machinery1,5,64. 

Even though the specific mRNAs that are found associated with tRFs differ between cancer types, the 

pathways to which these mRNAs belong show striking similarities across cancers. This observation is 

supported through a DAVID analysis of gene ontology terms that reveal four super-groups: cell adhesion, 

chromatin organization, and developmental processes (Supp. Figure S7D). Additionally, our analysis 

generated several observations that were reported recently in the literature. For example, we found several 

correlations involving tRFs from isoacceptors of Gly, Asp, Glu, and Tyr with the mRNAs of HMGA1, 

CD151, CD97 and TIMP3: these mRNAs were recently reported to be controlled by tRFs from these 

tRNAs in a YBX1-dependent manner64. Additionally, we enumerated more than 3,000 correlations of 

tRFs with ribosomal proteins, either mitochondrial or cytoplasmic, as well as more than 100 correlations 
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of tRFs with aminoacyl tRNA synthetases, particularly IARS and MARS, which is in agreement with 

previous work in the field5,65. 

We examined at the isoacceptor level the correlations of the above-mentioned four super-groups of 

mRNAs with tRFs. We split the mRNAs into those that are negatively correlated with tRFs only and 

those that are negatively correlated with both tRFs and miRNAs in the same cancer type. In each case, we 

computed the fraction of the 32 cancer types supporting a specific “tRF isoacceptor - GO term” or a spe-

cific “miRNA+tRF isoacceptor - GO term” relationship. This revealed a tight coupling of specific 

isoacceptors with specific GO categories that persists across multiple cancer types (Figure 5A), but is 

manifested by different tRF-mRNA pairings in each cancer (Supp. Figure S6E). A notable result of this 

analysis was that three of the 22 mitochondrial tRNAs (tRNALeuTAA, tRNAValTAC, tRNAProTGG) were found 

to be negatively correlated with nuclear mRNAs in all four super-groups and in virtually all 32 cancers. 

This suggests the existence of a previously unrecognized tight coupling between MT and nuclear process-

es. 

The seeming diversity of negatively-correlated tRFs and mRNAs in the face of persistent relation-

ships between tRFs and pathways made us examine the cellular localization of proteins whose mRNAs 

are negatively correlated exclusively with either miRNAs or tRFs. When we looked across all cancers, we 

found a striking dichotomy (Figure 5B). Specifically, the proteins whose mRNAs are negatively correlat-

ed with miRNAs localized equally frequently in all of the considered destinations, and in virtually all 

cancers. On the other hand, the proteins whose mRNAs were negatively correlated with tRFs showed a 

preference for localization to the nucleus, cytoplasm, or cell membrane as well as a strong dependence on 

cancer type.  

It is important to note here that, by comparison to miRNAs, the mechanisms of biogenesis and func-

tion of tRFs remain poorly understood for the most part. Nonetheless, as we mentioned above, it is known 

that short tRFs are loaded on Argonaute and act like miRNAs. With that in mind, let us assume for the 

moment that the uncovered anti-correlations imply tRF-mediated regulatory events that mirror the action 

of miRNAs on mRNAs. Then, our findings (Figure 5A) suggest an intriguing “division of labor” where 

some mRNAs are associated, and presumably regulated, solely by miRNAs, some solely by tRFs, and 

some by both miRNAs and tRFs. This synergistic hypothesis is further supported by the findings that are 

summarized by Figure 5B and indicate that tRFs are likely involved in cell-type-dependent interactions, 

analogously to what we reported previously for miRNAs66. An instance of this dynamic and context-

dependent network of interactions was shown for tRFs from tRNAGln that interact with YBX1 in breast 

cancer cell lines64 but not in cervical cancer cell lines65.  

Earlier30-32 and more recent work15 on the non-random placement of repeat elements on the genome as 

well as the finding that repeat elements become demethylated as stem cell differentiation progresses67, led 
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us to examine one more possibility. Specifically, we examined possible associations between tRFs and 

the sequence composition of the genomic loci for mRNAs participating in these identified positive and 

negative correlations. Our analysis revealed intriguing associations between mRNAs that were negatively 

correlated with tRFs, and the “repeat-element content” of their respective genomic regions. In particular, 

we found that in many cancers, the genomic span of mRNAs that are positively correlated with tRFs are 

depleted in many categories of repeat elements. Analogously, in many cancers, the genomic spans of 

mRNAs that are negatively correlated with tRFs are enriched in many categories of repeat elements. In 

both cases, the observation holds true for instances of these repeats that are sense as well as antisense to 

these regions. The fact that the observed enrichment/depletion is highly statistically significant (p-val ≤ 

0.001) and holds true for most of the 32 cancers suggests that these wide-ranging sequence relationships 

are likely being leveraged by a cancer cell’s post-transcriptional regulation layer68.  

We note that several of the GO terms that are part of the four general pathways we described above 

(cell adhesion, chromatin organization, and developmental processes) are significantly over-represented 

in the group of genes that overlap with Alu elements32. Our results on the link of tRFs with repeat ele-

ments come on the heels of two recent and related publications. First, tRFs from the tRNAGlyGCC 

isoacceptor were shown to repress expression of genes associated with the retroelement MERVL in 

mice15. Second, tRFs were shown to increase in Arabidopsis pollen in a Dicer-dependent manner and to 

specifically target transposable elements69. It is unclear currently whether the tRFs in human cancers act 

in a way similar to what is suggested in plants, i.e. to suppress transposon activity. Notably, the fact that 

tRFs have different correlations with repeat elements in different cancer types suggests a complex system-

wide interaction network and a compendium of associated molecular events that differ from cancer type 

to cancer type. These correlations and data could start shedding light on the peculiar roles of repeat ele-

ments in human diseases and cancers70. 

Previously, we demonstrated for miRNA isoforms that their abundance profiles in human tissues de-

pend on a person’s sex, population origin, and race71, as well as on tissue, tissue state and disease sub-

type72. We also demonstrated that miRNAs are not unique in this regard and that tRNA fragments have 

the exact same dependency on sex, population origin, race, tissue, tissue state and disease subtype4,9. 

Working with the TCGA samples we had the opportunity to evaluate the possibility that similar depend-

encies might exist across all samples of a disease (independently of subtype) or across all samples of a 

fixed subtype. In this regard, we provided two characteristic examples. In the case of LUAD, we high-

lighted a dependency of tRF profiles on sex (Figure 6). In the case of the triple negative subtype of 

BRCA, we highlighted a dependency of tRF profiles on the patient’s race (Supp. Figure S8). Considering 

the emergence of tRFs as regulatory molecules in their own right, such dependencies are expected to 
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modulate the regulatory events underlying a given disease in ways that have not been previously consid-

ered.  

Considering the multitude and diversity of the uncovered tRFs, and the multiplicity of associations 

between tRNA fragments and various cancers, it is reasonable to assume that a lot more work will be re-

quired before the community can improve its understanding of the roles of tRFs in the cancer context. To 

facilitate investigations, we enhanced our MINTbase repository22 with a module that is specific to TCGA. 

The module provides access to all of the tRFs that we mined from TCGA. Importantly, the module per-

mits very involved interactions with the contents of MINTbase by allowing elaborate search requests that 

require only minimal effort on the part of the user. We stress that although the TCGA portion of 

MINTbase is static, its non-TCGA portion is dynamic and growing steadily through the contributions of 

tRF profiles by different research teams. We designed the TCGA module in a way that permits users to 

compare TCGA findings with the ever-growing non-TCGA data. 

In summary, analysis of the entirety of the TCGA repository revealed a very rich population of tRNA 

fragments. The identities and relative abundances of these fragments depend on cancer type. They also 

depend on the identity of the parental isoacceptor. Yet, tRF profiles remain essentially constant within 

samples of the same cancer type, underscoring the constitutive nature of these fragments. These tRFs ex-

hibit strong associations with one another and with other molecular types such as mRNAs (and, by exten-

sion, miRNAs) suggesting the existence of numerous regulatory interactions that await discovery and 

characterization. 
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METHODS 

Datasets 

11,198 short RNA datasets were downloaded on October 16, 2015 from TCGA’s Cancer Genomic Hub 

(CGHub). We used datasets from both normal and tumor samples, which are identified by their TCGA 

barcode tag (01A, 01B and 01C for tumor; 11A, 11B and 11C for normal). These datasets already had 

adaptors trimmed and were converted back to FASTQ format using BamUtil’s bam2FastQ tool 

(http://genome.sph.umich.edu/wiki/BamUtil - version 1.0.10). For each of these datasets, tRF profiles 

were generated using MINTmap60 and default settings. These profiles have been incorporated in 

MINTbase22.  

Our analyses focused exclusively on whitelisted datasets. Generally, non-whitelisted samples are 

marked for withdrawal by the various TCGA projects for reasons that range from incorrect pathologic 

diagnosis to exclusion on the basis of patient medication history. Clinical metadata were downloaded 

from TCGA’s data portal on October 28, 2015. To help eliminate problematic and outlier samples that 

were identified by the various TCGA working groups, only datasets that did not have any special annota-

tion notes within the clinical metadata were included (n=10,274).  

 

The various categories of tRFs  

In terms of structural type, the tRFs overlapping a mature tRNA sequence fall in one of five possible cat-

egories1,60: a) 5´-tRNA halves or ‘5´-tRHs’5,6,73,74; b) 3´-tRNA halves or ‘3´-tRHs’2,75,76; c) 5´-tRFs2,75,76; d) 

3´-tRFs2,75,76; and, e) the “internal tRFs” or “i-tRFs” that we discovered and reported recently4.  

In terms of genomic origin, we characterize tRFs as “exclusive” or “ambiguous.” The sequences of 

exclusive tRFs are encountered only within the span of mature CCA-containing tRNAs, and appear no-

where else on the genome. Ambiguous tRFs on the other hand have sequences that can be found both in 

mature tRNAs (the “tRNA space”) and elsewhere on the genome. We recently published a methodology 

and standalone tool that automates the mining of tRFs from human RNA-seq datasets and automatically 

tags them as exclusive or ambiguous60. Our analyses were based on both exclusive and ambiguous tRFs. 

In terms of length, we generated tRFs with lengths between 16 and 30 nt inclusive. It is important to 

note here that the short RNA-seq profiles for the samples of the TCGA repository were generated by run-

ning deep-sequencing PCR for 30 cycles. Although adequate for miRNAs, 30 PCR cycles will generate 

inaccurate profiles for those tRFs that are longer than 30 nt. In the various TCGA datasets, these longer 

tRFs appear truncated and, thus, are represented in the TCGA as “30-mers.” Our parallel work7 as well as 

our previous analyses of TCGA from BRCA subtypes4, and of non-TCGA datasets from prostate cancer8 

and liver cancer22 show that there exist many distinct tRFs with length > 30 nt that are very abundant. 

Moreover, in the case of TCGA BRCA, we found that the “30-mer” tRFs are differentially abundant be-
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tween normal breast and BRCA4, suggesting an association with disease states. We note that the adapter 

cutting step may have shortened artificially long tRFs into “30-mers”, a problem that does not arise when 

analyzing shorter molecules such as miRNAs77. Most of the analyses described below were based on tRFs 

with lengths 16-27 nt. Lest we miss potential important associations, we included tRFs with length 28-30 

nt in those instances where doing so was warranted. 

 

Nomenclature and Notation  

“Race” refers to a taxonomic rank below the species level, a collection of genetically differentiated hu-

man populations defined by phenotype. We adhere to the following NIH/TCGA designations: White 

(Wh) refers to person with origins in any of the original peoples of the far Europe, the Middle East, or 

North Africa; and Black or African American (B/Aa) refers to persons with origins in any of the black 

racial groups of Africa. Based on the provided information, the majority of TCGA samples are from ei-

ther Wh or B/Aa donors. Smaller groups of samples were obtained from donors who are: a) American 

Indian or Alaska Native (i.e., persons having origins in any of the original peoples of North and South 

America, including Central America, and who maintain tribal affiliation or community attachment), 

b) Asian (i.e. persons having origins in any of the original peoples of the Far East, Southeast Asia, or the 

Indian subcontinent including, e.g., Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Phil-

ippine Islands, Thailand, and Vietnam); and, c) Native Hawaiian or other Pacific Islander (i.e., persons 

having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands). We 

named the tRFs using the scheme we introduced in our previous work4. Briefly it has two components 

separated by the @ sign, the first one being the mother tRNA and the second describing the coordinates 

within the mother tRNA (see Supp. Text for a more detailed description). As now we work with tRFs that 

are not exclusive to tRNA space, we append the string “Out” at the end of the name to indicate that the 

sequence of the tRF is also found outside of tRNA space. 

 

tRNA cleavage patterns 

For each of the 32 cancer types, we examined the following attributes: 

- location within the mature tRNA of the tRFs’ 5´ termini; 

- nucleotide composition within a rolling dinucleotide window that surrounds the 5´ termini (positions -

2/-1, -1/5´terminus, 5´-terminus/+1, +1/+2); 

- location within the mature tRNA of the tRFs’ 3´ termini;  

- nucleotide composition within a rolling-dinucleotide window surrounding the 3´ termini, as 

above; and, 
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- location of the tRFs’ 5´ and 3  ́termini with respect to the mature tRNA endpoints and upstream-stem 

or downstream-stem of the nearest loop (D, anticodon, or T), as applicable. 

Support for each of the attributes was calculated using tRFs above threshold. For each attribute, and 

for the cancer being studied, we calculated its normalized support in two ways: a) by considering only 

distinct tRF sequences ignoring their abundance; and, b) by repeating the analysis taking into account the 

abundance of the tRFs. 

Supp. Figure S3 lists the complete set of histograms for all of the attributes that we tracked and all 

tRF categories. In addition to showing the results for each of the 32 cancers, we also provided histograms 

that combine the findings from all 32 cancer types. 

 

NMF analyses 

The TCGA working groups have been making great use of non-negative matrix factorization78, or NMF, 

to cluster in an unsupervised manner the microRNAs (miRNAs) in the generated RNA-seq datasets. For 

this study, we replicated the NMF approach pioneered by the TCGA working groups leveraging tRF pro-

files (instead of miRNA profiles). We ran NMF (with R’s NMF module, version 0.20.6) in an unsuper-

vised manner using the top 30% most variable tRFs that passed Threshold-seq and had mean RPM >=1. 

Only tRFs with lengths 16-27 nt inclusive were used in these analyses. For each cancer type, the input 

used during clustering was a matrix comprising the RPM-normalized tRF profiles of the whitelisted da-

tasets (see above) for the cancer type. Only the tumor datasets of each cancer type were used. For SKCM, 

NMF clustering was carried out separately on the primary tumor and the metastatic samples. Silhouette 

widths were generated from the final NMF consensus membership matrix (n=500 iterations per run). 

NMF79 was run using values of k ranging from 2 through 10 inclusive. For GBM, NMF clustering was not 

carried out because of the small number (5) of available datasets.  

 

Correlation analyses 

For each cancer type separately, we first filtered the tRFs and the genes based on their abundance. For this 

step, we considered all tRFs and all miRNAs with a median expression ≥ 1 RPM and the genes (TCGA’ s 

rsem_genes.normalized_results files) with an average expression of ≥ 1 RSEM. We applied an additional 

filter for mRNAs, keeping only the top 50% most expressed entities. Then, we computed all pairwise 

tRF-tRF Spearman correlation coefficients, as well as all tRF-mRNA and all miRNA-mRNA Spearman 

correlation coefficients for all expressed genes. We corrected the P-values to FDR scores, using the 

p.adjust function in the R base package with the method argument ‘FDR.’ We only kept correlation coef-

ficients that had an FDR ≤ 0.01 and an absolute value larger than 0.333. For the sex- and race-specific 

networks, we relaxed the FDR threshold to 0.05. In those instances where several thousands of coeffi-
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cients survived these thresholds, we kept only the top (for positive correlations) or bottom (for negative 

correlations) 5,000 correlations. Computations were done using python and the numpy (version 1.11.1) 

and scipy (version 0.18.1) packages. 

Probabilities for the tRF-tRF networks were computed as the number of nodes that satisfy the respec-

tive criteria divided by the total number of nodes in each network. 

 Pathway analysis was run separately for the collection of genes that were negatively correlated with 

a) tRFs, or b) miRNAs. Specifically, DAVID (version 6.8)80 was run with these two collections of genes 

and the overlap with GOTERM_BPFAT, GOTERM_MFFAT, GOTERM_CCFAT, and, 

KEGG_PATHWAY terms was calculated and filtered at an FDR threshold of 5%. The genes that were 

used in the correlation analysis in each cancer served as the background gene list for the DAVID tool. 

 

Protein localization 

Information on protein localization was downloaded from UniProt81 and only the manually reviewed hu-

man proteome (queried on November 27, 2016) was used. For each cancer type and correlation group 

(positive or negative), the distribution of the localization of gene products was computed as a percentage 

in each of the following cellular compartments: Nucleus, Cell membrane, Mitochondrion, Endoplasmic 

Reticulum and Golgi apparatus (ER/Golgi), Cytosol, Organelles (peroxisomes, endosomes, lysosomes) 

and extracellular proteins (marked as “Secreted”). Gene products that are not part of any of these catego-

ries, have an unknown localization, or do not have a matching UniProt entry were assigned to the “Other” 

category: this category comprised, on average, 17% of the gene products across cancers. To estimate the 

statistical enrichment or depletion, we performed Monte-Carlo simulations with 10,000 iterations and 

built the expected distribution for the mRNA’s product localizations by randomly selecting the same 

number of mRNAs in each iteration. We performed the simulation separately for each cancer type and for 

each nuclear tRFs, mitochondrial tRFs and miRNAs. The results are presented as enrichment (yellow col-

or) or depletion (purple color) for each compartment, calculated as a Z-score of lower than -2 or greater 

then +2 with respect to the expected distributions. 

 

Overlap with RepeatMasker entries 

To calculate the overlap with RepeatMasker (http://www.repeatmasker.org; hg19 version 4.0.5) elements, 

the union of genomic regions of all splice variants of a gene was taken in order to capture repeat elements 

that are specifically localized downstream of the transcription start site15,32. Then, we counted how many 

of these genomic regions overlapped on the sense or antisense strand with each one of the repeat families 

of Repeat-Masker. In order to evaluate whether this ‘observed’ overlap corresponded to enrichment or 

depletion of repeat elements, we ran Monte-Carlo simulations to create an ‘expected’ distribution of over-
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lap with RepeatMasker elements. In more detail, in each of 10,000 iterations we randomly selected from 

the total pool of genes included in the correlation analysis (all the expressed genes that passed the expres-

sion filtering) the same number of genes as the number of unique genes that were correlated with tRFs. 

For each cancer type, positive and negative correlations were analyzed separately (a total of 64 simula-

tions each with 10,000 iterations). After each iteration, we calculated the overlap with RepeatMasker ele-

ments as described above and used it to create the ‘expected’ distribution. Based on this distribution 

(normal distribution), we calculated the z-score of the observed enrichment for each repeat family. 

 

Disambiguation of the genomic origin of tRFs 

To investigate whether non-exclusive tRFs as well as nuclear tRFs are enriched or depleted in our correla-

tion analyses, we performed Monte-Carlo simulations analogously to the way we calculated overlap with 

repeat elements. Specifically, we performed 10,000 iterations and in each one we calculated the ratio of 

non-exclusive tRF and of nuclear tRF based on a randomly chosen set of tRFs equal in size to the set of 

tRFs participating in the tRF-mRNA correlations. This was carried out separately for each cancer type. 

We then built a distribution of these ratios and calculated the enrichment or depletion for non-exclusive 

tRFs and for nuclear tRFs, independently per cancer type. 

 

Multivariate statistical analysis and data visualization 

Hierarchical Clustering and Principal Component Analysis, as well as network visualizations were run 

and plotted in R, as we previously described4,66,72. 
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FIGURE CAPTIONS 

Figure 1 | tRF distributions by category, length, and abundance. (A) Length distributions of tRFs bro-

ken down by type and organelle in 10 of the 32 analyzed cancer types (for each length the mean across 

samples and the standard error are shown). Each category has a unique and cancer-type-specific distribu-

tion. (B) Heatmap and hierarchical clustering (metric: Kendall’s tau coefficient) of the expression profiles 

of the structural categories per origin as the sum of tRF expression that fall in each category. Short tRFs 

(< 24nt) are clustered together in the top half of the heatmap, and separated based on their genomic origin 

(nucleus or MT). Longer tRFs from either nuclear or MT tRNAs are clustered together in the bottom half 

of the heatmap. This heatmap highlights the observation that tRFs are diverse. (C) A PCA plot showing 

the clustering for various combinations of tRF type, length, and genome origin, similar to the clustering 

shown in (B). The color-coding scheme is the same for both panels (B) and (C). 

 

Figure 2 | Isoacceptor representation among the tRFs. (A) Heatmap and hierarchical clustering (met-

ric: Euclidean distance) of the abundance profile of each isoacceptor, calculated as the sum of the expres-

sion of tRFs it produces, in all 32 cancers. Nucleus-encoded isoacceptors are marked on the side color bar 

in blue, MT ones in orange. (B) Box-plots showing the percentage expression of tRFs from specific 

isoacceptors across BRCA and UCEC samples. As can be seen, the top tRF-producing isoacceptors differ 

in the two cancers. The highest-expressed isoacceptor in BRCA is the nuclear tRNAGlyGCC whereas in 

UCEC it is the MT tRNAValTAC isoacceptor. 

 

Figure 3 | Cleavage points across the tRFs. (A) A schematic that shows the preferences of the 5´ termini 

(white pentagon arrows) and 3´ termini (gray chevrons) for 5´-tRFs, 3´-tRFs, and i-tRFs. For clarity pur-

poses, separate schematics show the preferences of the 5´ termini and the 3  ́ termini for i´-tRFs. The 

thickness of the arrow or chevron indicates the preference for the corresponding position in a qualitative 

manner. Groups of arrows are tagged with black-on-gray labels whereas groups of chevrons are tagged 

with black-on-white labels. The red X of each label indicates the terminal nucleotide, either 5´ or 3´: the 

X is preceded (followed, respectively) by the three most frequent dinucleotides found immediately up-

stream (downstream, respectively) in the mature tRNA for the most abundant tRFs that begin or end at the 

position. Square with white circles indicate positions with known modifications. We stress that these 

modifications are shown for reference purposes only as it is unclear whether they occur in the tissues and 

tissue states that are represented by the TCGA datasets we analyzed. (B) Box plots showing the prefer-

ences for the starting (left) and ending (right) positions for i-tRFs in LUAD and OV. 
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Figure 4 | His(-1U) fragments. Abundance ratios of uridylated His(-1) 5´-tRFs from nuclear tRNAHisGTG 

that end at consecutive positions within the mature tRNA. The shown ratios for normal (green) and cancer 

(red) samples represent 2,635 tumor and samples from six TCGA cancers: BLCA, ESCA, PAAD, BRCA, 

LUAD, and SKCM. Values are shown only for statistically significant tRFs. Y-axis: log10. At X=I, we plot 

the ratio “log10 (mean [(RPM of 5´-tRF ending at position i) / (RPM of 5´-tRF ending at position i+1)]).” 

 

Figure 5 | Correlations, Compartments and Repeats. (A) Heatmap and hierarchical clustering (metric: 

Euclidean distance) depicting the fraction of the 32 cancer types in which the shown 58 isoacceptors 

(rows) are anti-correlated with the listed GO terms (columns). The descriptions for the shown terms ap-

pear in Supp. Table S6. The same isoacceptors correlated negatively with the same pathways, but not at 

the gene or tRF level across cancers (Supp. Figure S3). Thin red lines have been added to facilitate the 

elucidation of the various groupings. (B) The localization of the protein products whose mRNAs are sta-

tistically significantly anti-correlated with tRFs, and mRNAs. The size of the block corresponds to the 

number of protein products that localize in the shown compartment. The color of the block represents en-

richment (yellow) or depletion (purple) compared to the expected distribution (p-val < 0.01). A gray col-

ored block indicates no deviation from the expected distribution. Red rectangles highlight cancers show-

ing distinct differences in the nuclear and MT heatmaps. (C) Heatmap and hierarchical clustering (metric: 

Pearson correlation) showing the statistical significance (z-score) of the enrichment or depletion of frag-

ments from repeat categories in the genomic loci of mRNAs that are anti-correlated with tRFs. 

 

Figure 6 | tRF correlations in patients of different sex. Example showing the dependence of the tRF 

profiles on the sex of patients with lung adenocarcinoma. Shown are the networks of tRF-tRF correlations 

that are supported by all LUAD samples from TCGA, the sub-network of correlations that are present 

exclusively in samples from male LUAD patients, the sub-network of correlations that are present exclu-

sively in samples from female LUAD patients, and, finally, the sub-network of correlations that are pre-

sent in LUAD patients of both sexes. From left to right, the networks are color-coded by source tRNA, 

structural category, length, and nuclear/MT origin. Edges between nodes correspond to a Spearman corre-

lation ≤ -0.5 (negative correlations) and have an associated FDR ≤ 0.01. See also text. 

 

Figure 7 | v2.0 of MINTbase. We have augmented the interface of MINTbase to enable interactive and 

detailed exploration of the tRFs contained in it. Here we show three of the four histograms and other in-

formation that is available in the record of the His(-1) 5´-tRF TGCCGTGATCGTATAGTGGTT from 

tRNAHisGTG (note the starting “T”). See text for more details. 
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