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Abstract 
 

The bacterial pathogen Streptococcus pneumoniae is a major public health concern, being 

responsible for more than 1.5 million deaths annually through pneumonia, meningitis and 

septicemia. In spite of vaccination efforts, pneumococcal carriage and disease remain high, since 

available vaccines target only a subset of serotypes and vaccination is often accompanied by a rise in 

non-vaccine serotypes. Epidemiological studies suggest that such a change in serotype frequencies is 

often coupled with an increase of antibiotic resistance among non-vaccine serotypes. Building on 

previous multi-locus models for bacterial pathogen population structure, we have developed a 

theoretical framework incorporating variation in serotype and antibiotic resistance to examine how 

their associations may be affected by vaccination. Using this framework, we find that vaccination can 

result in rapid increase in frequency of pre-existing resistant variants of non-vaccine serotypes due 

to the removal of competition from vaccine serotypes.   
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Introduction   
The bacterial pathogen, Streptococcus pneumoniae (or the pneumococcus) is estimated to be 

responsible for a third of all pneumonia cases and annually causing tens of millions of severe 

infections worldwide [1]. Two major tools are available for reducing pneumococcal disease: 

antibiotic treatment, and vaccination [2]. Antibiotic drugs remain an efficient way of clearing 

pneumococcal infections, but their efficiency is often impaired by the emergence and spread of 

antibiotic resistant pneumococci [3]. Vaccination can prevent new pneumococcal infections by 

increasing host immunity against pneumococcal serotypes, and eventually substantially reduce the 

incidence of infection by creating herd immunity [4, 5]. However, available vaccines, such as the 

pneumococcal conjugate vaccine (PCV), target only a subset of circulating pneumococcal serotypes, 

hence exerting selective pressure which can shift serotype frequencies – a phenomenon termed 

Vaccine induced Serotype Replacement (VISR) [6-8]. Changes in genetic composition of pneumococci 

have also been observed after vaccination [9, 10], and it has been proposed that vaccination may  

induce a shift in metabolic profiles of non-vaccine strains (known as Vaccine Induced Metabolic Shift, 

or VIMS), as a consequence of resource competition amongst bacteria sharing the same metabolic 

alleles [11, 12]. 

The deployment of pneumococcal vaccines has also led to significant changes in antibiotic resistance 

frequencies. It is unsurprising that vaccines targeting pneumococcal serotypes that have high 

resistance frequencies would lead to the reduction of resistance at a population level [13-17]. 

However it is not easy to account for a post-vaccination increase in resistance frequencies of subsets 

of non-vaccine type (nVT) pneumococci, as has been repeatedly observed in a range of locations [18-

26]. Interestingly, resistance frequencies have not changed equally between all serotypes; and, 

within serotypes, resistance to different antibiotics has not changed uniformly [18-26]. Figure 1A 

shows changes in antibiotic resistance within the 19A serotype, an nVT of PCV7, following the 

introduction of this vaccine in 2000 within pneumococcal isolates of children ≤ 5 years collected in 

Massachusetts [10];  we observe an increase in the minimum inhibitory concentration (MIC) to 

erythromycin between 2001 and 2007, whereas resistance to penicillin and ceftriaxone remains 

unchanged  (Figure 1A). It should be noted that the increase in erythromycin resistance occurred in 

spite of a decline of antibiotic prescription in the population over the study period [27].   

 

Figure 1: Observed changes in resistance, and admixture estimation of the 19A serotype. (A) 19A increases in MIC to erythromycin 

(p-value< 2 ∙ 10−7, Spearman correlation= 0.58), but not in penicillin and ceftriaxone unchanged (p-value= 0.56, 0.57; Spearman 

correlation= −0.07;both), between 2001 and 2007 after PCV7 introduction at 2000. (B) Admixture analysis using BAPS (see 

Methods) on antibiotic resistance-associated genes on the same data as in (A). Arrows represent statistically significant admixture 

events (p-value for each event <0.001), with arrow directions defining origin and destination of admixed alleles, and numbers 

representing the fraction of alleles contributed from source to receiving serotype. 19A has the highest fraction of alleles most likely 

from other serotypes, with only 87% of alleles likely to originate from the serotype’s population. 
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A Bayesian Analysis of Population Structure (BAPS) revealed significant admixture of resistance-

associated alleles from various different serotypes (Figure 1B; see Methods for full description). This 

analysis showed that only 87% of antibiotic resistance-associated allele combinations within 

serotype 19A were found to have originated from the 19A serotype itself, with the rest much more 

likely to be found in other serotypes. This exemplifies that 19A strains, notorious for increasing in 

resistance post-vaccination  [18, 28-30] , may experience changing selective pressures leading to 

changes in their distribution post-vaccination.  The analysis was repeated for another publicly 

available UK pneumococcal data set [31] wherein the 19A serotype had the second highest value of 

antibiotic resistance alleles most likely originating from other serotypes (Supplementary Information 

Figure S1).   

Here we explore the interactive evolution of vaccination and antibiotic resistance using a multi-locus 

model of serotype and antibiotic resistance with full flexibility in associations between alleles, 

reflecting the high levels of admixture shown above. In contrast with previous multi-locus models of 

pneumococcal evolution [11, 12] which assume interference occurs between organisms carrying 

similar metabolic and virulence alleles, we assume that antibiotic resistant strains are less likely to 

co-infect individuals infected with a susceptible strain due to ecological competition. We find that a 

post-vaccination surge in antibiotic resistance frequencies can occur in nVTs under these 

circumstances and, furthermore, may be hastened by asymmetries in rates of acquisition of 

resistance to different antibiotics.  

 

Results 
 

Model structure 

We investigate the impact of vaccination within a system containing two streptococcal serotypes, a 

and b, of which the first is included in the vaccine (VT) and the second is not (nVT). We assume that 

immunity is serotype-specific, but may be incomplete, with its efficacy represented in our model by 

the parameter 0≤ ≤1, where  implies that immunity is complete and corresponds to no 

serotype-specific immunity. We denote a bacterial strain of serotype a or b as having a resistance 

profile j, where j takes values in {00,01,10}, corresponding to sensitivity to both antibiotics, 

resistance to antibiotic X, and resistance to antibiotic Y.   

The intrinsic transmissibility of a strain can be represented by its basic reproductive number [32], R0, 

which is a product of the duration of infection (D) and degree of infectivity (β), where the latter is 

effectively a combination of parameters defining the likelihood of acquisition by a susceptible 

individual of a particular strain from an infected individual.  We assume that the cost of resistance 

would typically translate into lower infectivity of resistant strains compared to sensitive strains (β00 > 

β01); however, the duration of carriage may be longer for resistant strains due to antibiotic usage 

(D01>D00). Thus, in the absence of antibiotic usage, the basic reproductive number of resistant strains, 

R01
0, will typically be lower than the than the basic reproductive number of sensitive strains, R00

0, but 

this can be reversed with antibiotic usage. We further assume that intrinsic fitness differences (such 

as in growth rates) between resistant and susceptible strains may allow an individual carrying a 

susceptible strain of pneumococci to suppress co-infection by a resistant strain to a degree 0≤  ≤1. 

Note that this is a form of ecological competition between bacterial strains and is not mediated by 

immunity:  thus individuals carrying strain a00 may not be available for co-infection by either a01 or 

b01(for example if  but will be fully susceptible to further infection by b00. 
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Vaccination can increase the frequency of antibiotic resistance among nVTs 

We start by considering a model in which the two serotypes, a and b, are either susceptible or 

resistant to a single antibiotic (Y) and there are no serotype-specific differences in R0.  The 

equilibrium frequencies of the four strains (a00, a01, b00, b01) before vaccination are determined by the 

degree of serotype-specific immunity () and inhibition of co-infection by resistant strains () within 

the system, and the basic reproductive numbers of sensitive and resistant strains (Rs
0 and Rr

0 

respectively).  High serotype-specific immunity leads to the competitive exclusion within a given 

serotype, typically of the strain with the lower R0 [33];  however, the inhibition of co-infection by 

susceptible strains () places a further cost on resistant strains such that they may be excluded 

even if they have a slightly higher R0.  Under these circumstances, the removal of serotype a (the VT) 

through vaccination may cause a reversal of the outcome of competition between b00 and b01, with 

the resistant nVT completely replacing the susceptible nVT, as shown in Fig 2A.  This is due to the 

removal of ecological competition between a00 and b01, and can be observed under circumstances 

where R01
0 is somewhat in excess of R00

0, provided  is above the following threshold (see 

Supplementary Information S2 for derivation): 

ψ >

2γ

μD00
(

1

R0
00−

1

R0
01)

(1−
1

R0
00)(1−(

1

γ
(1−

1

R0
00)))

                                                  (1) 

When serotype-specific immunity is complete (= 1), the region where a surge in frequency of the 

resistant nVT occurs is limited to the area between Rr
0> Rs

0 and the curve described by eqn (1). 

When R01
0<R00

0, there is no change in the outcome of within-serotype competition as the susceptible 

NVT will continue to dominate after the VT is removed (Figure 2C, left of the dashed line); when R01
0 

is sufficiently in excess of R00
0, b01 will have displaced b00 prior to vaccination and no change will be 

seen (Figure 2C, right of the solid black curve).   

At lower levels of serotype-specific immunity (< 1), susceptible and resistant strains may coexist 

within the same serotype within certain boundaries of difference in R0: under these circumstances,  

vaccination can cause a surge in the frequency of the resistant nVT even when R01
0<R00

0 (Figure 2 

D&E) since this does not invariably lead to the total exclusion of b01.  In this case, the resistant strain 

remains the rarer strain post-vaccination but may substantially increase in frequency, as shown in 

Figure 2B.  In the region R01
0>R00

0, eqn (1) still determines whether the resistant nVT will increase 

from being the rarer strain before vaccination to being the more common strain following 

vaccination (Supplementary Information 2). To the right of the curve, b01 is already the more 

frequent strain before vaccination but may increase in prevalence after vaccination due to the 

cessation of competition from a00 (Figure 2 D&E). 

Increasing the R0 of serotype a leads to an expansion in the parameter range within which there is a 

post-vaccination surge in b01 (Figure. 2 F-H). This is because the prevalence of a00 increases, causing 

b01  to be suppressed further;  thus b01 experiences a greater increase in frequency when a00 is 

removed by vaccination  
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Figure 2: Vaccination can increase frequency of antibiotic resistance among non-vaccine serotypes. (A) Dynamics of susceptible VT 

(dashed purple), resistant VT (dashed green), susceptible nVT (blue) and resistant nVT (orange) pre- and post-vaccination (the 

time of which is marked by the dashed vertical line) under full serotype-specific immunity (=1, =0.8; R000=2.008; R000=2) (B) 

Dynamics of the same model under intermediate serotype-specific immunity (=0.7,𝜓 =0.8; R000=1.998; R000=2). (C-E) Heat maps 

of the increase in relative frequency of the resistant nVT (b01) post-vaccination, against varying values of co-infection inhibition 

(Ψ), and the difference in reproductive number between resistant and susceptible nVTs (Rr0 -Rs0, with Rs0=2).The black curves are 

derived from eqn (1) in the main text, and mark the parameter ranges under which b01 switches from being the rare to the common 

type post vaccination. (F-H) VTs are assigned increased transmission, expanding the range of parameters whereas surge in 

resistance frequencies occurs; the curves obtained from eqn(1) have been overlaid for ease of comparison with C-E. For A,B and F-H 

the transmission of the VTs was increased to1.5 fold of the nVTs reproductive number. Other parameters: D=1/𝜎 =30 days, 𝜇 =1/5 

years-1. 

Importantly, the general principles illustrated above remain unaltered when we introduce a second 

antibiotic, X, with pre-vaccination equilibria falling into 3 categories  (i) coexistence of all strains (ii) 

competitive exclusion of both antibiotic resistant strains (b10 and b01) (iii) competitive exclusion of 

the resistant strain with the lower R0 (say b10). Following the removal of serotype a through 

vaccination, resistant strains that are already present will increase in frequency and there may be an 

emergence of strains that were excluded in the pre-vaccine era (Figure S2). 

 

Effect of asymmetries in rates of acquisition of resistance to different antibiotics  

The model can be extended to explicitly incorporate rates of acquisition of resistance to two 

antibiotics, X and Y, by introducing the parameterj to describe the probability of a sensitive strain 

acquiring a resistance profile j. We find that this has a significant impact on the outcome of 

vaccination where the less transmissible strain (in this case, b10, which is resistant to X) is associated 

with a higher rate of resistance acquisition (,). Under these circumstances, b10 may stabilise 

at higher pre-vaccination frequencies to b01, despite a significant transmissibility disadvantage (in Fig 

3A, R0
10=0.91R0

01). The removal of competition from a00 due to vaccination effectively unmasks the 

transmission advantage of b01, thereby driving a rapid increase in its frequency. A stochastic 

implementation of this model indicates that a very significant rise in frequency of b01 can occur 

within a decade or two after the removal of the VT (Figure 3B) under realistic parameter 

combinations, and that it has a strong likelihood of eventually displacing b00 as the dominant strain 

within this serotype. Moreover, the time point when b01 first becomes more common than b10 is 
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likely to be even within a decade from vaccination, but it is possible for it to occur after more than 

50 years (Figure 1C). Therefore, substantial variance in surges of antibiotic resistant nVT strains post-

vaccination is expected even between populations experiencing similar conditions. 

 

 

Figure 3: Increase in antibiotic resistance under asymmetric acquisition rates. (A) Dynamics of VT (solid curves) and nVT (dashed 

curves) pre- and post-vaccination, the time of which is marked by the dashed vertical line. We assume acquisition of resistance to X 

(b00 b10) is higher than to Y (b00 b01), but that b10 is less transmissible than b01. (B) Stochastic implementation of the post-

vaccination dynamics (corresponding dynamics in (A) marked by the blue rectangle).  Average values of 1500 simulations are given 

by solid lines, interquartile range of simulation results is given by shaded areas. (C) Histogram of the first time b01 increases in 

frequency above b10, recorded from the 1500 simulations. Approximately 12% of simulations did not have an intersection between 

yb01 and  yb10 during the simulated 50 years (marked in the histogram by the >50 bar). (D,E) Heat maps of the increase in relative 

frequency of b01 following vaccination (R010=1.88, R000= R001=2; R0(aj)= 1.5 R0(bj); and 𝜔10 = 1 − 𝜔01 = 0.99 when 

they are not varied). 

As might be expected, increasing  lowers the pre-vaccine frequency of b01, leading to a higher 

post-vaccination surge (Figure 3D). The increase in b01 is also more pronounced at higher values of 

ecological interference from a00  ) (Figure 3 D & E), in line with our previous results. The increase 

in resistance among nVTs also depends on the strength of serotype-specific immunity (), as this 

determines the extent to which b01 can realise its transmission advantage (Figure 3E).  

 

Discussion 
Understanding the population dynamics of Streptococcus Pneumoniae is an important endeavour 

from a public health perspective, and the post-vaccination surge in antibiotic resistance frequencies 

observed in some nVTS is of special concern.  

Existing models of antibiotic resistance typically aim to define the conditions minimizing resistance 

emergence or spread under different antibiotic regimes [34-37]. Fewer efforts have been made to 

study the effects of pneumococcal vaccination on the evolution of antibiotic resistance [38-40]  and 

only in one of these (Lehtinen et al [40]), as far as we are aware, has a mechanism been proposed by 

which vaccination may induce an increase in antibiotic resistance.    

A crucial difference between our model and that of Lehtinen et al, is that we include serotype-

specific immunity following natural infection, although by no means does this have to be completely 

sterilising. Indeed, stable coexistence of resistant and susceptible strains in the pre-vaccine era is 
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more likely to occur, in our model, under incomplete immunity. In the absence of serotype-specific 

immunity, coexistence becomes difficult to obtain: Lehtinen et al. show, however, that 

heterogeneity in duration of carriage can maintain coexistence. Within their framework, the removal 

of vaccine strains permits longer duration of carriage, thereby leading to an increase in antibiotic 

resistance provided the associated genes are in epistasis with genes influencing carriage duration; 

Lehtinen et al. provide evidence implying such an epistatic interaction by analysis of carriage 

duration and antibiotic resistance from observed data.  

Our model also relies on the removal of ecological interference from vaccine strains, but here this 

alters the outcome of competition between resistant and sensitive strains within an nVT, potentially 

leading to a surge in frequency of the resistant nVT. This provides a possible explanation to the surge 

in antibiotic resistance in nVTs, observed independently in various populations [18-26]. We account 

for scenarios facilitating a surge in frequency of all or only a subset of the resistant types, under 

coexistence or competitive exclusion, and for varying transmissibility of the different strains. 

Furthermore, we introduce the notion that a resistant nVT can increase even more in frequency 

following vaccination if it were masked by a low rate of acquisition of resistance to other antibiotics 

before vaccination.   

We believe that further genetic and phenotypic data of pneumococci, pre- and post-vaccination, 

would help distinguish between these hypotheses, and eventually lead to the design of interventions 

that will prevent post-vaccination increases in antibiotic resistance. 

 

Methods 

Model 
In our model, each strain genotype is defined by the tuple (𝑖, 𝑗), where 𝑖 determines serotype and 𝑗 

the antibiotic resistance allele, respectively. For the simple bi-allelic, two-locus case, let 𝑖 ∈

(𝑎, 𝑏), 𝑗 ∈ (00,01). We denote by 𝑦𝑖𝑗the proportion of individuals currently infected by strain 𝑖𝑗; 𝑧𝑖  

is the proportion of the population previously exposed to serotype 𝑖; 𝑍𝑖  is the proportion of the 

population previously or currently exposed to serotype i; 𝑌𝑖𝑗  and 𝑉𝑖𝑗  will refer to primary and 

secondary infections with strain 𝑖𝑗, respectively. For example, the proportion of individuals infected 

by susceptible bacteria of serotype a is 𝑦𝑎00; the proportion individuals previously exposed to 

serotype a is given by 𝑧𝑎. 

Let 𝑧𝑎 be the proportion of individuals who have been infected with antigenic type 𝑎, and 𝑦𝑎01 

contain all individuals currently infected with 𝑎01. Let us first assume (i) that hosts infected by a 

bacterial strain 𝑖, 𝑗 cannot be re-infected by a strain with the same serotype, 𝑖 (ii) a host infected by 

bacteria susceptible to antibiotics can only be co-infected by susceptible strains of bacteria.  

The equations of the epidemiological model are given by (full derivations are presented in 

Supplementary file S1): 

 
𝑑𝑦𝑎01

𝑑𝑡
= 𝜆𝑎01 (1 − za − 𝑦𝑏00(1 − (𝑧𝑎 − 𝑦𝑎01))) − 𝜎01𝑦𝑎01 + 𝑝𝜎00𝑦𝑎𝑠                   

𝑑𝑦𝑎00

𝑑𝑡
= 𝜆𝑎00(1 − 𝑧𝑎) − 𝜎00𝑦𝑎00                                                                                          
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𝑑𝑧𝑎

𝑑𝑡
= 𝜆𝑎00 (1 − 𝑧𝑎 − 𝑦𝑏01(1 − (𝑧𝑎 − 𝑦𝑎00))) + 𝜆𝑎01 (1 − 𝑧𝑎 − 𝑦𝑏00(1 − (𝑧𝑎 − 𝑦𝑎01))) −  𝜇𝑧𝑎   

Where 𝜎𝑖𝑗 is the rate of clearance, equivalent to the inverse of infection length 𝐷𝑖𝑗; 𝜇 is the host 

removal rate; 𝜆𝑖𝑗 is the force of infection, determined by 𝑦𝑖𝑗𝛽𝑖𝑗, where 𝛽𝑖𝑗is the transmission rate of 

strain 𝑖𝑗. An analogous set of equations is given for bacteria of serotype b. The basic reproduction 

number for strain 𝑖𝑗 is determined by 𝑅0
𝑖𝑗

=
𝛽𝑖𝑗

𝜎𝑖𝑗
. Antibiotic resistance acquisition is also possible in 

our framework and will be denoted by the parameter 𝑝, determining the fraction patients acquiring 

antibiotic resistance instead of being cleared. When more than one locus determining antibiotic 

resistance is modelled, we will denote by ω𝑙 the probability of acquiring resistance to a certain 

profile 𝑙 by the susceptible strain. When not varied, parameter values are set to 𝑅0
00 = 2,𝜎 =

1

30
 day-

1 and 𝜇 =
1

5∙365
 day-1, in accordance with paediatric pneumococcal colonization [38];  𝑝 = 0.05 for 

resistance acquisition scenarios [41]. 

To relax the two assumptions introduced above, we introduce two parameters:  

We represent serotype-specific immunity by 0 ≤ 𝛾 ≤ 1, where 𝛾 = 1 is equivalent to the 

assumption postulated above with complete specific immunity, and 𝛾 = 0 corresponds to no 

serotype-specific immunity.  

Similarly, we introduce the parameter 0 ≤ ψ ≤ 1 to represent the probability that an individual 

carrying a susceptible strain of pneumococci will suppress co-infection by a resistant strain, due to 

the fitness cost of antibiotic resistance.  

Adding these parameters yields the new set of equations: 

 
𝑑𝑦𝑎01

𝑑𝑡
= 𝜆𝑎01 (1 − 𝑦𝑎01 − 𝛾(𝑧𝑎 − 𝑦𝑎01) − ψ𝑦𝑏00(1 − (𝑧𝑎 − 𝑦𝑎01))) − 𝜎01𝑦𝑎01 + 𝑝 𝜎00𝑦𝑎00                   

𝑑𝑦𝑎00

𝑑𝑡
= 𝜆𝑎00 (1 − 𝑦

𝑎00
− 𝛾(𝑧𝑎 − 𝑦

𝑎00
)) − 𝜎00𝑦𝑎00                                                                                            

𝑑𝑧𝑎

𝑑𝑡
= 𝜆𝑎00 (1 − 𝑦

𝑎00
− 𝛾(𝑧𝑎 − 𝑦

𝑎00
)) + 𝜆𝑎01𝜆𝑎01 (1 − 𝑦𝑎01 − 𝛾(𝑧𝑎 − 𝑦𝑎01) − ψ𝑦𝑏00(1 − (𝑧𝑎 − 𝑦𝑎01))) −  𝜇𝑧𝑎   

 

 

We can extend this model to any number of antigenic alleles, and any number of bi-allelic resistance 

loci (see Supplementary file S1). Vaccination is added to the model by reducing the 𝑅0 of vaccine 

strains by 90%. 

Stochastic implementation 
We developed a semi individual-based implementation of our equations, based on the Gillespie 

stochastic simulation algorithm (SSA) [42]. Variables representing infected hosts (𝑦𝑖𝑗) are explicitly 

modelled under the SSA framework, whereas previously infected individuals are approximated via a 

deterministic approach: at each newly drawn time point 𝑡𝑛+1, the individuals previously infected 

with strain 𝑖 are given by 𝑧𝑖
𝑡𝑛+1 = (𝑡𝑛+1 − 𝑡𝑛) 𝐹𝑖(𝑦⃗𝑡𝑛 , 𝑧𝑡𝑛 , 𝜃) + 𝑧𝑖

𝑡𝑛 

Where 𝐹𝑖 marks the differential equation defined for the deterministic dynamics of patients 

previously infected with 𝑖 (
𝑑𝑧𝑖

𝑑𝑡
); 𝑦⃗𝑡𝑛 and  𝑧𝑡𝑛 represent all values of currently and previously infected 
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individuals at time 𝑡𝑛; and 𝜃 represents all parameters defined in the deterministic model. Since the 

number of previously infected patients is much greater than those currently infected, it can be 

approximated with a deterministic equation (updated by random processes). All simulations 

performed with a population size of 100,000. Finally, we constrain the number of hosts infected by 

any of the different strains to be ≥ 1, to avoid the absorbing states of strain extinction. 

Bayesian analysis of population structure (BAPS)  

Two data sets of pneumococcal genomes, collected from the USA [10] and the UK [31], were 

annotated using the BIGSdb software and assigned alleles with the Genome Comparator tool (with 

ATCC 700669 pneumococcal strain as the reference genome) [43]. We examined 34 loci associated 

with antibiotic resistance (given in Table S1) and preformed an admixture analysis on predefined 

clusters based on serotypes in the BAPS 6 software [44, 45]. Only serotypes containing 15 or more 

samples were used, leaving us with N=514 and N=391 observations for the USA and UK data 

respectively. Parameters used in the software were set according to the higher accuracy 

recommendations given in the BAPS manual: max clusters – 50; iterations – 500; reference 

individuals – 200; iterations per reference individuals – 20. Admixture inclusion threshold was set to 

p-value <0.001. 
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