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Abstract:	
Bruton	tyrosine	kinase	(BTK)	is	a	key	enzyme	in	B-cell	development	whose	improper	regulation	
causes	severe	 immunodeficiency	diseases.	Design	of	selective	BTK	therapeutics	would	benefit	
from	 improved,	 in-silico	structural	modeling	of	 the	kinase’s	 solution	ensemble.	However,	 this	
remains	challenging	due	to	the	 immense	computational	cost	of	sampling	events	on	biological	
timescales.	 In	 this	work,	we	 combine	multi-millisecond	molecular	 dynamics	 (MD)	 simulations	
with	Markov	state	models	 (MSMs)	 to	 report	on	 the	 thermodynamics,	kinetics,	and	accessible	
states	of	BTK’s	kinase	domain.	Our	conformational	 landscape	 links	 the	active	 state	 to	 several	
inactive	 states,	 connected	 via	 a	 structurally	 diverse	 intermediate.	 Our	 calculations	 predict	 a	
kinome-wide	 conformational	 plasticity,	 and	 indicate	 the	 presence	 of	 several	 new	 potentially	
druggable	BTK	states.	 	We	further	find	that	the	population	of	these	states	and	the	kinetics	of	
their	 inter-conversion	are	modulated	by	protonation	of	an	aspartate	residue,	establishing	the	
power	of	MD	&	MSMs	in	predicting	effects	of	chemical	perturbations.		
	
Introduction:	
Protein	 kinases	 are	 regulators	 of	 biochemical	 pathways	 in	 eukaryotic	 cells1–3	 responsible	 for	
initializing	 and	 controlling	 signaling	 cascades3,4	 by	 catalyzing	 the	 transfer	 of	 ATP’s	 gamma	
phosphate	 group	 to	 target	 residues	 on	 other	 enzymes.	 Given	 their	 critical	 involvement	 in	
cellular	processes,	their	 functionality	 is	tightly	controlled	through	a	combination	of	regulatory	
domains2,5,6	and	post-translational	modificiations3	that	modulate	their	multi-state	behavior1,6–9.	
Sequence	 mutations,	 truncations,	 and	 over-expression	 of	 various	 kinases	 have	 been	
phenotypically	linked	to	various	cancers3,4,10	and	other	diseases11.		
	
Bruton	tyrosine	kinase	(BTK)12–15,	part	of	the	TEC	family	of	kinases,	 is	 involved	in	T-cell	and	B-
cell	 development.	 In	 humans,	 poor	 B-cell	 maturation	 leads	 to	 severe	 immune	 deficiencies,	
including	increased	susceptibility	to	bacterial	infections16.	Therefore,	BTK’s	catalytic	domain	is	a	
pharmaceutical	target	with	several	inhibitors,	including	FDA-approved	drugs17.	Similar	to	other	
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kinases,	 BTK’s	 catalytic	 domain	 (Figure	 1a)	 is	 bi-lobal	 with	 a	𝛽-sheet	 heavy	 N-lobe	 and	 a	𝛼-
helical	C-lobe.	ATP	and	magnesium	ions	bind	in	the	active	site	between	the	two	lobes	(Figure	
1a).	 The	 activation	 loop	 (A-loop,	 Figure	 1a,	 red)	 connects	 the	 two	 lobes	 and	 modulates	
substrate	 binding.	 Phosphorylation	 of	 Tyr551	 at	 the	 C-terminal	 end	 of	 the	 A-loop	 increases	
BTK’s	 activity	 by	 ten	 fold15.	 	 The	N-terminal	 end	of	 the	A-loop	 contains	 the	highly	 conserved	
aspartate-phenylalanine-glycine	 motif	 (DFG,	 Figure	 1b,	 blue)	 which	 samples	 several	
pharmacologically	relevant	states18.	The	aspartate	of	the	DFG	can	be	protonated9,	modulating	
drug	binding19.	 	 	 In	the	N-lobe,	the	glycine	rich	phosphate-positioning	 loop	(P-loop,	Figure	1a,	
green)	helps	to	position	ATP’s	gamma	phosphate	group.	One	𝛽-sheet	over,	the	N-lobe	contains	
a	conserved	Lysine	(Lys430,	Figure	1b)	that	hydrogen	bonds	with	ATP’s	𝛼-phosphate	group.	The	
N-lobe	 also	 has	 the	 catalytic	 helix	 (C-helix,	 Figure	 1b,	 orange)	 which	 contains	 a	 conserved	
Glutamate	 residue	 (Glu445,	 Figure	 1b)	 that	 forms	 critical	 salt	 bridges	 to	 Lys430	 in	 the	 active	
state	and	Arg544	in	the	inactive	form.		
	
Crystallographic	 and	 biochemical	 studies	 on	 BTK13–15	 and	 other	 kinases3,20	 have	 already	
provided	a	considerable	amount	of	 insight	 into	 their	 thermodynamically	accessible	enzymatic	
states.	 BTK	 can	 exist	 in	 active14,	 inactive21,	 and	DFG	out21	 states.	 In	 the	putative	 active	 state	
(Figure	1b),	 the	DFG-aspartate	residue	moves	 towards	 the	ATP	binding	site	 (DFGin)	 to	chelate	
magnesium;	 the	C-helix	 rotates	 into	 the	protein	 core	 (C-helixin)14;	 and	 the	A-loop	 is	 unfolded	
and	transiently	samples	a	𝛽-sheet	secondary	structure.	 In	the	DFGin	 inactive	state,	the	C-helix	
rotates	outwards	(C-helixout),	and	the	A-loop	folds	into	a	double	helix	(Figure	1c)14.	We	refer	to	
this	double	helical	 inactive	 state	as	 Src-like	due	 to	 it	 topological	 similarity	 to	 the	Src	 kinase’s	
inactive	state22.	In	the	DFGout	state,	the	DFG-Asp	rotates	towards	the	core	of	the	protein	(Figure	
1d,	Supporting	Table	1).	
	
While	the	crystallographic	coordinates	for	BTK	provide	us	with	structural	insights,	these	models	
do	not	provide	information	about	unrealized	thermodynamically	stable	states	or	the	pathways	
connecting	 them.	Molecular	 dynamics	 (MD)	 is	 a	 computational	 modeling	 technique	 used	 to	
complement	 experimental	work	 in	 biophysical	 systems.	MD7,9	 provides	 atomistic	 insight	 into	
complex	 processes,	 and	 has	 led	 to	 the	 proposal	 of	 several	 new	 kinase	 structural	
intermediates7,23–25	and	allosteric	pathways8.		
	
In	 this	paper,	we	performed	an	aggregate	of	1.7	milliseconds	of	MD	simulations	on	 the	DFG-
deprotonated	(BTK-ASP)	and	DFG-protonated	(BTK-ASH)	forms	of	the	unliganded	BTK	catalytic	
domain	 on	 the	 massively	 distributed	 Folding@home26	 computing	 platform(see	 Methods	 for	
details	 regarding	 the	 homology	 modeling).	 The	 aggregate	 simulation	 times	 make	 this	 study	
three	 times	 longer	 than	 the	 largest	 reported	 MD	 results	 on	 kinases7	 and	 three	 orders	 of	
magnitude	 larger	 than	 any	 computational	 investigation	 into	 BTK’s	 dynamics12,27.	 We	
characterized	kinome-wide	structural	plasticity	within	the	C-helix	and	DFG	motifs,	identifying	a	
number	of	conformations	as	viable	pharmaceutical	targets.		We	used	Markov	state	models28,29	
(MSMs)	to	gain	atomistic	insight	into	the	thermodynamics	and	kinetics	of	BTK’s	conformational	
ensemble,	identifying	a	structurally	diverse	intermediate	state	that	links	the	active,	Src-like,	and	
DFGout	states.		
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Figure	1:	BTK	exists	in	several	thermodynamically	stable	states.	Within	the	MD	ensemble,	BTK	catalytic	domain	samples	several	
states,	 including	(a)	active	(DFGin/C-helixin)	(b),	Src-like	(A-loop	folded/DFGin/C-helixout)	(c)	and	DFGout	(d)	within	our	simulation	
ensemble.	The	transition	from	active	(a)	to	Src	like	(b)	is	defined	by	the	outward	rotation	of	the	C-helix	(orange)	and	folding	of	
the	 A-	 loop	 (red).	 The	 C-helix	 rotation	 breaks	 a	 critical	 salt	 bridge	 between	 Glu445-Lys430	 and	 forms	 salt	 bridges	 between	
Glu439-Arg468	(yellow)	and	Glu445-Arg544(orange).	 In	the	DFGout	state,	Phe540(purple),	part	of	 the	DFG	motif	 (blue)	rotates	
away	 from	 the	 core	 of	 the	 protein	 towards	 the	 ATP	 binding	 site.	 The	 R-spine	 (purple	 surface)	 forms	 continous	 hydorphobic	
contacts	in	the	active	state	but	is	broken	in	the	other	states.			

	
BTK	kinase	domain	samples	kinome-wide	conformational	space	
We	began	our	analysis	by	comparing	the	structural	heterogeneity	in	the	MD	BTK-ASP	dataset	to	
the	 kinome-wide	 PDB	 classification	 of	 Möbitz	 et	 al18	 (Figure	 2).	 In	 that	 paper,	 the	 authors	
classified	kinase	structures	along	variations	of	the	conserved	DFG	motif,	the	C-helix,	and	the	A-
loop.	 Starting	 from	 several	 publically	 available	 BTK	 protein	 coordinates	 (Supporting	 Table	 2),	
our	simulations	capture	kinome-wide	crystallographically	observed	states	that	were	previously	
stabilized	via	a	combination	of	sequence,	drugs,	small	peptides,	and	crystallographic	conditions.			
For	 example,	 our	 simulations	 predict	 several	 configurations	 that	 Möbitz	 classified	 as	 the	
Imatinib,	a	leukemia	drug,	binding	mode	(Supporting	Figure	3)	for	Abl	kinase19,30,31	.	In	this	pose,	
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the	DFG-Phe540	residue	(Figure	1d)	rotates	towards	the	ATP	binding	site	(Figure	1a),	creating	a	
back	pocket	capable	of	accepting	an	aromatic	moiety.	 It	 is	worth	emphasizing	that	the	A-loop	
(including	 DFG-Phe540)	 was	 not	 resolved	 in	 similar	 BTK21	 structures,	 creating	 difficulties	 for	
structure-based	drug	discovery.	This	result	indicates	the	increasing	ability	of	MD	simulations	to	
predict	physiologically	 and	pharmacologically	 relevant	positioning	of	 critical	 structural	motifs.	
Intriguingly,	BTK’s	plasticity	supports	the	model	that	all	kinases	sample	a	single	conformational	
landscape	whose	topology	is	modulated	by	their	sequence	and/or	chemical	environment.				
	
	

	
Figure	2:	BTK’s	apo	domain	contains	kinome-wide	conformational	plasticity.		Comparison	of	9%	of	MD	generated	structures	(a)	
against	publically	available	kinase	domain	structures	(b)	projected	along	three	key	degrees	of	freedom	as	outlined	in	Möbitz	et	
al18.	We	used	the	data	and	classification	scheme	provided	in	ref.	18	to	generate	(b).	The	top	y-coordinate	tracks	the	C-helixin	to	
C-helixout	 transition	 while	 the	 bottom	 y-coordinate	 tracks	 the	 DFGin	 to	 DFGout	 transition.	 The	 common	 x-axis	 subdivides	 the	
conformations	 into	 pharmacologically	 relevant	 states	 of	 the	 DFG	 motif.	 The	 white	 circles	 in	 (a)	 correspond	 to	 the	 starting	
configurations	for	the	MD	simulations.	The	points	are	colored	according	to	their	Möbitz	classification	and	detailed	in	Supporting	
Figure	16.	For	BTK’s	free	energies	along	these	coordinates,	see	Supporting	Figure	9.		

	
BTK’s	apo	domain	is	primarily	inactive		
To	gain	insight	into	the	thermodynamics	and	kinetics	of	BTK,	we	built	a	statistically	robust	MSM	
for	 the	 hundreds	 of	 collected	 MD	 trajectories	 (Supporting	 Figure	 1-2).	 Markov	 modeling28	
involves	 Voronoi	 partitioning	 of	 the	 accessible	 phase	 space	 into	 states	 and	 counting	 the	
transitions	between	 the	 states.	The	metastable	 states	are	defined	using	a	kinetically	 relevant	
distance	 metric	 (see	 Methods)	 that	 is	 learnt	 via	 sparse	 time	 structure-based	 independent	
component	analysis	(sparse-tICA)32–35.	tICA	finds	linear	combinations	of	input	MD	features	that	
de-correlate	the	slowest	within	the	given	dataset.	The	dominant	components	–	tICs	–	relate	the	
slow	 structural	 changes	 to	 long	 timescale	 protein	 dynamics.	 After	 performing	 this	
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dimensionality	 reduction,	 we	 built	 an	 optimized36,37	 MSM	 (see	 Methods)	 whose	 transition	
matrix	reflects	the	ensemble	equilibrium	populations	and	long	timescale	processes.	
	
We	projected	the	BTK-ASP	and	BTK-ASH	MD	ensembles	onto	the	dominant	tICs	(Figure	3a)	and	
several	structural	order	parameters	(Supporting	Figure	9-11).	These	structural	projections	help	
us	 to	 understand	 the	 relative	 thermodynamic	 stability	 of	 various	 states	 as	 a	 function	 of	 the	
chosen	order	parameter.	Our	analysis	indicates	that	the	two	principal	tICs	correspond	to	(1)	the	
flipping	of	the	DFG	motif	(Supporting	Figure	6)	and	(2)	the	unfolding	of	the	A-loop	coupled	with	
the	 rotation	 of	 the	 C-helix	 to	 the	 protein	 core,	 respectively	 (Supporting	 Figure	 7).	 The	 free	
energy	surface	(Figure	3a)	lets	us	define	a	four-state	model	(Figure	3b,	Supporting	Figure	8)	in	
which	a	structurally	heterogeneous	 intermediate	hub	(I1,	Supporting	Figure	5)	controls	access	
to	active,	Src-like,	and	DFGout	states.	This	intermediate	contains	a	partially	or	fully	unfolded	A-
loop,	DFGin,	and	C-helixout.	Our	simulations	predict	the	Src-like	state	to	be	the	most	stable	state	
of	 BTK-ASP	 (Figure	 3a)	with	 the	 active	 and	 DFGout	 states	 both	 being	 1-2	 kcal/mol	 above	 the	
minimum	energy	observed.	Within	the	BTK-ASP	model,	these	states	(Supporting	Figure	8,	10	&	
12)	have	populations	of	52%&%'%,	7).%+.%%,	and	1-..&.)%	respectively.	The	sub-script	and	super-script	
indicate	the	95%	confidence	interval.	See	Supporting	Figure	2	for	the	complete	distribution.	The	
rest	of	the	population	exists	in	the	intermediate	state.	The	low	active	state	population	lines	up	
with	 the	 large	 number	 of	 inactive	 crystal	 structures	 (Figure	 2a,	 dark	 magenta	 region),	 and	
biochemical	 studies	 showing	 that	 BTK’s	 Tyr551’s	 phosphorylation15	 is	 required	 for	 full	
activation.	 The	 number	 of	minor	 and	major	 populated	 states,	 and	 their	micro	 to	millisecond	
exchange	timescales,	are	also	consistent	with	NMR	studies	on	other	kinases.	For	example,	the	
DFG-Phe	 in	 apo-p38α38	 is	 unobserved	 in	NMR	due	 to	 line	 broadening,	 attributed	 to	DFG-flip	
conformational	exchange.	Similarly,	dual	phosphorylation	on	ERK239	shifts	the	equilibrium	to	its	
active	state	by	about	3kcal/mol	while	ligand	binding	to	protein	kinase	A38		 induces	slow	inter-
domain	motion.	This	suggests	that	the	solvated	kinase	catalytic	domain	samples	a	diffuse	free	
energy	landscape	whose	topology	can	be	modulated	by	a	number	of	factors.	MSMs	present	a	
natural	 framework	to	handle	these	perturbations,	and	we	next	 focus	on	the	effects	of	one	of	
them	namely	protonation	of	the	DFG-Asp539.	
	
Based	upon	pKa	calculations40(Supporting	Note	2),	and		past	MD	studies	on	EGFR,	Src,	and	Abl	
kinases9,19,41,	we	next	 selectively	protonated	DFG-Asp539	 (BTK-ASH)	 to	quantify	 its	effects	on	
thermodynamics	 and	 kinetics.	 Our	 models	 predict	 that	 the	 DFGout	 state	 is	 stabilized	 by	
approximately	1	kcal/mol	(relative	to	BTK-ASP’s	DFGout)	upon	protonating	the	aspartate	(Figure	
3a).	 Compared	 to	 BTK-ASP,	 the	 increase	 in	 DFGout	 population	 comes	 from	 the	 reduced	 free	
energy	 cost19	 of	 putting	 a	 neutral	 protonated	 DFG-Asp539	 in	 a	 hydrophobic	 environment	
(Figure	1d,	Supporting	Figure	19).	Within	the	BTK-ASH	simulation	set,	we	find	that	the	Src-like,	
active,	 and	 DFGout	 states	 have	 populations	 of	 470)01%, 6%..).)%, and	9+.%&- %		respectively.	
Furthermore,	we	observed	that	protonation	accelerates	the	DFG	flip.	To	quantify	this	effect,	we	
calculated	 the	median	 value	 for	 the	mean	 first	 passage	 time	 (MFPT)42,43	 between	 DFGin	 and	
DFGout	states	(Supporting	Figure	2e	and	Supporting	Figure	8).	Starting	from	the	DFGin	states,	the	
median	value	for	the	MFPT	to	the	DFGout	state	reduces	from	~1.2-.+&.1ms	in	BTK-ASP	ensemble	to	
~300&1-0--𝜇𝑠	 in	 the	protonated	BTK-ASH	ensemble.	The	reverse	value	remains	 relatively	similar	
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(~20&-0-𝜇𝑠-30>-0-𝜇𝑠).	See	SI	Figure	2e	and	2f	 for	the	full	distribution	of	macro	state	populations	
and	median	DFG	MPFTs	across	several	hundred	rounds	of	bootstrapping.		
	
To	 understand	 BTK-ASP’s	 kinetics,	 we	 sampled	 multiple	 long	 trajectories	 from	 the	 BTK-ASP	
microstate	Markovian	 transition	matrix	using	a	kinetic	Monte	Carlo	algorithm	 (see	Methods).	
The	stochastic	algorithm	allows	us	to	stitch	the	shorter	trajectories	(hundreds	of	nanoseconds)	
into	a	longer	“mock”	trajectory	that	would	be	otherwise	inaccessible	by	traditional	sampling.		A	
representative	 800	𝜇𝑠	trajectory	 projected	 along	 several	 of	 the	 dynamical	 regions	within	 the	
kinase	domain	 is	 illustrated	 in	Figure	3c.	The	model	predicts	 that	 the	A-loop	 is	quite	 flexible,	
sampling	conformations	spanning	RMSDs	on	the	order	of	10s	of	angstroms	(Supporting	Figure	
17).	Such	structural	heterogeneity	within	the	A-loop	has	been	widely	reported	in	kinase	crystal	
structures6	and	MD	models	of	apo9	and	ATP7	bound	kinases.	We	find	that	these	transitions	are	
coupled	 to	 the	 outward	 rotation	 of	 the	 C-helix	 and	 flipping	 of	 the	 DFG	motif.	 The	 outward	
transition	of	the	C-helix	also	breaks	the	regulatory	spine	(R-spine)1,44,	which	consists	of	the	four	
conserved	residues	Met449	(part	of	the	C-helix),	Leu460,	Phe540	(part	of	conserved	DFG	motif)	
and	His519	(part	of	the	conserved	HRD	motif).	Over	the	course	of	the	simulation,	the	R-spine	
samples	three	distinct	macrostates	(Figure	3c	purple	trace)	corresponding	to	the	Src-like,	active,	
and	DFGout	states.	In	the	active	state,	the	R-spine	forms	a	rigid,	continuous	hydrophobic	surface	
stabilized	via	multiple	Van	der	Walls	interactions.		These	interactions	are	broken	in	the	inactive	
states	(Supporting	Table	1)	where	the	Met449	moves	out	of	the	core	of	the	protein	and	Phe540	
adopts	a	range	of	configurations	(Figure	1).			
	
Interestingly,	our	model	predicts	that	the	kinase	deactivation	to	a	Src-like	state	(A-loop	folded,	
DFGin,	&	C-helixout	,	Figure	3c	between	the	350-450𝜇𝑠	mark)	quenches	motions	in	the	dynamic	
glycine-rich	 phosphate	 positioning	 loop	 (P-loop,	 Figure	 3c	 green	 trace).	 The	 P-loop	 samples	
open	 and	 closed	 configurations	 in	 the	 active	 and	 DFGout	 states.	 However,	 the	 P-loop	 closes	
when	the	A-loop	folds.	Our	model	indicates	this	rigidity	is	due	to	both	the	formation	of	a	new	
backbone	hydrogen	bond	(Supporting	Figure	14)	between	Lys433	and	Phe413	and	favorable	π-
stacking	(Supporting	Figure	14)	between	Leu542	and	Phe413.		
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Figure	3:	MSMs	predict	a	multistate	ensemble	whose	populations	are	modulated	via	DFG	protonation.	Thermodynamics	of	the	
BTK-ASP	and	BTK-ASH	ensembles	projected	along	 the	 two	dominant	 tICs	 (a)	 show	a	 stable	Src-like	 state.	 For	 standard	errors	
along	each	coordinate,	see	Supporting	Figure	12.	Simple	four	state	cartoon	model	(b)	of	the	kinase	dynamics.		Kinetics	of	several	
molecular	switches	as	a	function	of	time	along	a	MSM	trajectory	for	BTK-ASP	(c).	The	MSM	trajectory	was	generated	using	a	
Monte	 Carlo	 algorithm	 to	 simulate	 a	 trajectory	 of	 800	𝜇𝑠	 from	 the	Markovian	 transition	matrix.	 At	 each	 step,	we	 randomly	
selected	a	simulation	structure	assigned	to	that	state	to	report	the	instantaneous	observables.	The	root	mean	squared	deviation	
(RMSD)	of	the	A-loop	is	calculated	using	the	heavy	atoms	of	residue	Asp539-Phe559.	For	A-loop	RMSD	to	the	extended	state,	see	
Supporting	Figure	17.	We	used	the	delta	carbon	of	the	Glu439	and	zeta	carbon	of	Arg468,	and	the	delta	carbon	of	Glu445	and	
zeta	nitrogen	of	catalytic	Lys430	to	calculate	 the	distances	 in	 the	next	 two	panels	 to	quantify	C-helix	 in	 to	out	 transition.	We	
used	Thr410-Val415,	and	Phe540,	Met449,	His519,	and	Leu460	heavy	atoms	to	quantify	the	P-loop,	and	R-spine	RMSD.	The	R-
spine	 is	only	completely	 formed	when	 the	C-helix	 (orange	 trace)	 is	 rotated	 inwards.	The	DFG	RMSD	 is	 calculated	using	heavy	
atoms	from	Asp539-Gly541.	For	all	RMSD	calculations,	we	used	a	double	helical	inactive	state	as	the	reference	state.	The	lighter	
color	traces	give	the	instantaneous	value	for	the	observable	and	the	dark	traces	provide	moving	averages	across	10	frames.	The	
color	corresponds	to	the	color	scheme	used	in	Figure	1	to	highlight	structural	motifs	in	BTK.		

	
Deactivation	proceeds	through	an	intermediate	state	
We	 now	 turn	 to	 the	 structural	 changes	 involved	 in	 the	 two	 dominant	 apo	 BTK	 transitions,	
namely	active	(C-helixin/	DFGin)	to	Src-like	(A-loop	folded/C-helixout/	DFGin)	and	DFGout	to	DFGin.	
Like	most	kinases44–46,	BTK’s	active	state	 features	 the	C-helix	 rotated	towards	 the	core	of	 the	
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protein,	 enabling	 the	 formation	 of	 a	 critical7,47	 salt	 bridge	 between	 the	 Glu445	 and	 Lys430	
(Figure	4a).	The	A-loop	is	extended	and	transiently	forms	a	beta-sheet.		
	
Deactivation	to	a	Src-like	state	exposes	an	allosteric	binding	pocket.	 In	both	the	BTK-ASP	and	
BTK-ASH	ensembles,	deactivation	to	a	Src-like	state	follows	a	two-step7,9,19,24,25	process.	In	the	
first	 step,	 the	 C-helix	 rotates	 out	 of	 the	 core	 of	 the	 protein	 (Supporting	 Figure	 13)	 to	 a	
metastable	 intermediate	 conformation	 (Figure	 4b).	 In	 several	 of	 our	 trajectories	 the	 C-helix	
rotation	 was	 preceded	 by	 a	 backbone	 shift	 at	 the	 N-terminus	 region	 of	 the	 A-loop.	 This	
intermediate	 is	 stabilized	 by	 a	 salt	 bridge	 between	 Arg468	 and	 Glu439.	 The	 A-loop	 is	 still	
relatively	unstructured	but	transiently	samples	partially	helical	states	(Supporting	Figure	5).	The	
outward	 rotation	 of	 the	 C-helix	 to	 the	 catalytically	 inactive	 intermediate	 state	 opens	 an	
allosteric	pocket	(Supporting	Figure	4)7,	which	can	potentially	be	used	to	design	selective	BTK	
inhibitors.	 Supporting	Movie	 1	 contains	 an	 example	 of	 one	 of	 our	 BTK-ASP	 trajectories	 that	
spontaneously	goes	from	the	active	to	the	intermediate.		
	
Starting	 from	 the	 intermediate	 state,	 the	A-loop	 folds	 into	 a	double	helix.	 This	 state	 forms	a	
deep	 free	 energy	 basin	 in	 our	 MSM	 (Figures	 4c-d).	 The	 inactive	 state	 is	 stabilized	 by	 the	
presence	of	two	complementary	salt	bridges	(Glu439-Arg468	and	Glu445-Arg5445,7,8,	Figure	4c).	
Within	 several	 milliseconds	 of	 aggregate	 sampling,	 we	 do	 not	 observe	 a	 deactivation	 event	
where	 the	 A-loop	 folds	 prior	 to	 the	 outward	 rotation	 of	 the	 C-helix,	 suggesting	 that	 this	
pathway	is	thermodynamically	inaccessible.	
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Figure	4:	BTK’s	deactivation	proceeds	via	an	intermediate	state.	Starting	from	the	active	state	(a),	the	C-helix	swings	out	to	form	
an	intermediate	(b)	characterized	by	a	disordered	A-loop	and	a	stable	Arg468-Glu439	salt	bridge.	The	activation	loop	then	folds	
into	 a	 Src-like	 double	 helical	 inactive	 state	 (c).	 The	 double	 helical	 state	 is	 stabilized	 by	 a	 secondary	 salt	 bridge	 between	 the	
catalytic	Glu445	and	Arg544.	The	P-loop	has	been	omitted	in	all	three	panels	for	the	sake	of	clarity.	The	heat	map	(d)	shows	the	
projection	 of	 the	 centroids	 of	 these	 states	 unto	 our	 free	 energy	 landscape.	 Panel	 (d)	 has	 been	 reproduced	 from	Figure	 3	 for	
clarity.			

DFG	flip	occurs	via	the	C-lobe		
We	 observed	 several	 partial	 and	 complete	 DFG	 transitions	 for	 the	 BTK-ASP	 and	 BTK-ASH	
ensembles	 in	 trajectories	 that	 lasted	 hundreds	 of	 nanoseconds	 to	 a	 few	 microseconds	
(Supporting	Movies	2-4).	For	both	ensembles,	our	MSMs	inferred	the	equilibrium	populations	
and	kinetics	using	all	of	the	trajectories,	regardless	of	whether	they	contained	a	crossover	event	
(Figure	3	and	Figure	5d).		
	
Figure	 5	 shows	 the	 details	 of	 one	 of	 the	 transition	 trajectories	 from	 the	 BTK-ASH	 ensemble	
starting	from	the	3OCT	crystal	structure	with	an	unfolded	A-loop	and	DFGout	state	(Supporting	
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Movie	2).	Within	the	trajectory,	the	A-loop	first	folds	into	the	ATP	binding	site,	forming	a	helical	
intermediate	(Figure	5c,	Supporting	Figure	18).	In	this	intermediate,	residues	Leu542	to	Leu547	
form	 a	 helical	 turn	 that	 folds	 into	 the	 kinase’s	 core	 though	 the	 rest	 of	 the	 A-loop	 remains	
mobile.	This	 intermediate	has	been	previously	 reported9,19	 for	 the	EGFR	kinase.	Furthermore,	
Kuglstatter	et	al21	reported	a	DFGin	crystal	structure	for	BTK	where	the	the	A-loop	folds	into	the	
ATP	 binding	 site,	 demonstrating	 its	 [meta]stability.	 Within	 our	 simulation,	 the	 BTK-ASH	
molecule	samples	this	intermediate	until	the	DFG-Phe	rotates	towards	the	core	of	the	protein	
(Figure	5b,	white)	 coming	on	 to	 the	 same	side	as	 the	DFG-Asp.	 In	 the	 last	 step,	 the	DFG-Asp	
moves	into	the	ATP	binding	site,	completing	the	crossover	transition.		
	
While	no	unbiased	MD	simulation	results	exist	for	the	DFG	flip	for	either	BTK-ASP	or	BTK-ASH	
molecule,	 the	pathway	presented	here	diverges	 from	EGFR	kinase’s	DFG-flip	pathway9	 in	 two	
aspects.	In	the	previous	simulations,	the	DFG-Phe	residue	flips	by	moving	across	the	N-lobe	of	
the	kinase.	Within	our	model,	the	phenylalanine	residue	exclusively	moves	via	the	C-lobe	of	the	
kinase	 while	 the	 aspartate	 moves	 via	 the	 N-lobe	 (Supporting	 Figure	 15).	 This	 sequence	 is	
conserved	in	both	the	full	and	partial	trajectories	(Supporting	Movies	2-4)	that	transition	from	
the	DFGin	state	to	the	DFGout	state	and	vice	versa.	To	our	knowledge,	this	mechanism	has	never	
been	proposed,	though	that	is	likely	due	to	the	computational	difficulties	of	simulating	the	DFG	
flip	 transition.	 It	 is	 worth	 noting	 that	 our	 distributed	 computing	 approach26	 allowed	 us	 to	
sample	the	DFG	flip	in	an	unbiased	fashion	using	commodity	GPUs,	and	our	MSM	was	able	to	
capture	the	DFG	transition	as	the	slowest	mode	within	our	tICA	model.	Secondly,	while	we	do	
observe	 the	 presence	 of	 a	 helical	 intermediate	 state	 in	 several	 of	 the	 transitions,	 we	 also	
observed	 a	DFGout	 to	DFGin	 transition	 for	 the	BTK-ASP	molecule	 in	which	 the	A-loop	 remains	
unstructured	 (Supporting	Movie	3).	The	 litany	of	 flipping	pathways	 follows	 from	the	 inherent	
stochasticity	 of	 molecular	 conformational	 change	 and	 emphasizes	 the	 need	 for	 extensive	
sampling	and	robust	statistical	modeling.		
	
Three	 residues	 sterically	 and	 chemically	 hinder	 the	 DFG	 transition.	 The	 conserved	 catalytic	
Lys430	hydrogen	bonds	with	the	DFG-Asp539	while	the	conserved	Met449	sterically	prevents	
rotation	of	the	DFG-Asp539	towards	the	ATP	binding	site.	On	the	other	side,	Phe517	(Figure	5b-
c)	hinders	the	rotation	of	the	DFG-Phe540	towards	the	protein	core.	Previous	MD	studies9,19	of	
the	DFG	flip	observed	spontaneous	DFG	transitions	upon	 in-silico	mutations	of	Met449,	or	 its	
equivalent	residue,	and	protonation	of	the	DFG-Asp.	As	previously	proposed,	our	data	supports	
that	 protonation	 of	 the	 DFG-Asp	 can	 increase	 the	 likelihood	 of	 a	 spontaneous	 DFG	 flip.	 Our	
comparison	of	BTK-ASH	to	BTK-ASP	showed	that	the	DFGout	state	is	stabilized	by	1kcal/mol	upon	
DFG-Asp539	protonation.	However,	the	combined	effect	of	both	DFG	protonation	and	Met449	
mutation	remains	to	be	observed.	Lastly,	while	our	simulations	showed	that	the	collapse	of	the	
folded	A-loop	 into	 the	 kinase	 core	 predominantly	 precedes	 the	DFG	 flip,	 it	 is	 not	 necessarily	
required,	highlighting	the	ensemble	nature	of	the	pathway.		
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Figure	5:	BTK	DFG	flips	via	the	C-lobe,	and	proceeds	after	the	formation	of	a	helical	intermediate	state	(a).	Snapshots	(b)	going	
from	red	to	white	to	blue,	from	the	DFGout	to	DFGin	trajectory	showing	the	transient	outward	rotation	of	Met449	and	Phe517	for	
the	DFG	flip.	The	DFGout	 to	DFGin	cross-over	 (c,	panel	1)	 is	preceded	by	the	folding	of	residues	Ser543-Leu547	(c,	panel	2)	and	
transient	outward	rotation	of	both	Met449	and	Phe517	(c,	panel	3).	Projection	of	the	3	selected	frames	from	(b)	onto	the	top	
two	tICs	(d)	gives	us	the	approximate	free	energies	of	the	DFGout,	intermediate	and	DFGin	states.		

To	summarize,	the	present	results	offer	a	detailed	atomistic	description	of	the	thermodynamics	
and	kinetics	of	 the	protonated	and	deprotonated	forms	of	the	apo	BTK	catalytic	domain.	Our	
model	predicts	that	the	apo	kinase	domain	samples	a	range	of	conformational	states	that	are	
yet	to	be	crystallized	but	for	which	equivalent	structures	from	other	kinase	domains	exist.	We	
complete	 structural	modeling	 of	 a	DFGout	 binding	 pocket	 for	 BTK,	which	 could	 potentially	 be	
used	 to	 design	 a	 new	 class	 of	 BTK	 inhibitors.	 Furthermore,	 our	 model	 indicates	 that	 a	
structurally	diverse	intermediate	state	connects	the	active,	Src-like,	and	DFGout	states.		For	the	
first	 time,	our	results	provide	estimates	for	the	equilibrium	populations	of	all	 three	dominant	
kinase	states	within	a	single	model.		
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While	 we	 have	 chosen	 to	 separately	 analyze	 the	 BTK-ASP	 and	 BTK-ASH	 ensembles,	 the	 BTK	
ensemble	 in	solution	 is	a	combination	of	both	modulated	by	the	DFG-Aspartate’s	pKa	 in	each	
microstate.	 Modeling	 this	 ensemble	 coupling	 would	 ideally	 require	 the	 use	 of	 constant	 pH	
simulations	but	can	also	be	done	post-hoc	by	analytical	mixing	of	the	parameterized	transition	
matrices.	This	would	entail	running	short	constant	pH(	or	QM/MM48,49)	simulations	to	link	the	
microstates,	and	is	the	subject	of	future	research.	Perhaps	more	interestingly,	our	BTK-ASP	and	
BTK-ASH	MSMs	use	a	single	set	of	state	definitions,	allowing	us	 to	explicitly	compare	relative	
free	 energies	 of	 differing	 kinase	 states.	 This	 can	 be	 extended	 to	 understanding	 the	
thermodynamic	and	kinetic	effects	of	small	molecule	binding,	mutations,	 regulatory	domains,	
and	post-transitional	modifications.	Given	enough	 computational	 resources,	 it	 is	 theoretically	
possible	 to	 model	 all	 602	 known	 BTK	 mutations	 in	 the	 X-linked	 agammaglobulinemia	
database16.	 Such	 detailed	 atomistic	 characterization	 could	 be	 used	 to	 design	 the	 next	
generation	of	personalized	and	specific	kinase	inhibitors	while	increasing	our	understanding	of	
the	fundamental	interplay	between	sequence	and	function.		
	
	
Methods:	
Simulation	setup:	
The	Supporting	information	contains	a	more	detailed	methods	section.	Briefly,	we	downloaded	
23	publically	available	BTK	pdbs	from	the	protein	databank50,	and	used	Modeller51	with	default	
parameters	to	mutate	out	all	the	sequences	to	the	human	sequence	for	both	BTK-ASP	and	BTK-
ASH	ensembles.	We	only	 kept	 the	protein	 coordinates	and	 removed	all	 ligands	 (21	of	 the	23	
structures	 had	 a	 co-crystal	 ligand).	 In	 cases,	 where	 the	 P-loop,	 C-helix	 or	 A-loop	 was	 un-
resolved,	we	modeled	them	in	as	an	extended	chain.	Amber	tools	suite52–54	was	used	to	solvate	
the	protein	 structures	 in	a	water	box	and	add	counter	 ions.	The	Amber99sb-ildn55	 force	 field	
was	 used	 to	 model	 protein	 dynamics	 in	 conjunction	 with	 	 the	 TIP3P56	 water	 model.	 The	
structures	were	minimized	in	two	steps	using	Amber	and	then	loaded	into	OpenMM57	for	NPT	
production	 runs	on	Folding@home26.	Overall	we	generated	1.7ms	of	aggregate	data	 for	both	
ensembles.		
	
Markov	state	model:	
Building	a	MSM	requires	 identification	of	metastable	kinetically	similar	states.	This	splitting	of	
the	phase	space	is	followed	by	counting	the	transitions	between	those	states	as	observed	in	our	
trajectories	at	a	Markovian	(memory	free)	 lag	time.	This	transition	model	can	be	summarized	
using	the	following	equation:	

𝑝 𝑡 + 𝜏 = 	𝑝 𝑡 𝑇 𝜏 	
	
where	𝑝 𝑡 	 is	 the	 probability	 distribution	 at	 time	 “t”	 while	 𝑝 𝑡 + 𝜏 	 is	 the	 probability	
distribution	after	a	Markovian	lagtime	𝜏.	Spectral	decomposition	of	the	MSM	transition	matrix	
was	used	 to	estimate	 the	equilibrium	populations	and	dynamical	processes	 connecting	 those	
Markov	 states.	 The	 relaxation	 timescales	 for	 these	 dynamical	 processes	 can	 be	 obtained	 by	
using	the	following	transformation	on	the	associated	eigenvalue	𝜇		

𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒	 = 	−	
𝜏

ln	(𝜇)	
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After	 sampling	 the	 MD	 trajectories	 using	 Folding@home,	 a	 total	 of	 2,140	 trajectories	 were	
vectorized	using	the	protein	dihedrals	and	selective	closest	heavy	atom	distances.	This	feature	
selection	 led	 to	 each	 frame	 being	 represented	 as	 a	 feature	 vector	 of	 length	 5,532.	 We	
normalized	 the	 data	 and	 reduced	 its	 dimensionality	 using	 time	 structure	 independent	
component	analysis	 (tICA)32,35.	 tICA	seeks	to	find	a	set	of	 linear	combinations	of	 features	that	
de-correlate	the	slowest	(at	a	certain	lag	time)	while	minimizing	their	correlation.	This	is	done	
by	solving	the	following	generalized	eigenvalue	problem:		

𝐶 𝜏 𝜈 = 	𝜆𝛴𝜈	
where	𝛴	is	the	covariance	matrix		

𝛴WX = 	Ε[X\ 𝑡 𝑋X 𝑡 ]	
	
and	𝐶 𝜏 	is	the	time	lagged	correlation	matrix	whose	ij	element	is	defined	as		

𝐶 𝜏 WX = 	Ε[X\ 𝑡 𝑋X 𝑡 + 𝜏 ]	
	
Here,	𝜏	is	the	tICA	lagtime	and	can	be	different	from	Markovian	lagtime.	The	tICA-transformed	
dataset	was	clustered	using	the	K-means	algorithm.	We	then	used	the	cluster	labeled	dataset	to	
build	a	MSM.		For	all	projections,	the	deprotonated	(BTKASP)	ensemble’s	highest	populated	state	
was	assigned	an	absolute	free	energy	of	0	kcal/mol	and	all	other	free	energies	were	reported	
relative	 to	 that	 state.	 Based	 upon	 previous	 work7,58	 and	 the	 convergence	 of	 the	 implied	
timescales	plot	(Supporting	figure	1)	for	50-500	state	models,	we	chose	a	Markovian	lag	time	of	
80	ns.	For	all	the	other	hyper-parameters,	including	the	tICA	lagtime,	choice	of	kinetic	mapping,	
number	 of	 tICA	 components,	 and	 number	 of	 cluster	 states,	 within	 the	model,	 we	 turned	 to	
cross	validation36,37.	The	parameters	for	the	best	model	are	given	below:	

Hyper	parameter	 Value	in	best	model		
tICA	lagtime	 208	ns	
tICA	number	of	components	 3	
tICA	kinetic	mapping			 True	
Number	of	clusters		 190	

	
After	we	determined	 the	optimal	model	given	 the	current	amount	of	 sampling,	we	 retrained	
the	model	 on	 the	 entire	 set	 of	 trajectories.	 For	 the	 reported	 tICA	model,	 we	 used	 a	 sparse	
variant	 of	 tICA34	 for	 increased	 interpretability	 (Supporting	 Figure	 6-7).	 The	Markov	 transition	
matrix	 was	 fit	 via	 maximum	 likelihood	 estimation	 (MLE)	 with	 reversibility	 and	 ergodicity	
constraints.	To	obtain	error	bars	for	the	equilibrium	populations,	200	rounds	of	bootstrapping	
were	performed	over	the	original	set	of	trajectories.	The	models	were	primarily	analyzed	using	
techniques	laid	out	in	previous	papers35,59.	To	further	query	the	model,	we	sampled	an	800	µs	
long	kinetic	Monte	Carlo	trajectory	(10,000	frames	at	a	 lagtime	of	80	ns)	from	the	Markovian	
transition	matrix.		
	
The	 trajectories	 were	 featurized	 and	 analyzed	 using	 the	 MDTraj60	 package	 while	 tICA	
dimensionality	reduction	and	Markov	modeling	were	performed	using	MSMBuilder61.	Most	of	
the	analysis	was	performed	within	the	IPython/Jupyter	scientific	environment62	with	extensive	
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use	 of	 the	 matplotlib63,	 and	 scikit-learn	 libraries64.	 All	 protein	 images	 were	 generated	 using	
visual	 molecular	 dynamics	 (VMD)65,	 all	 protein	 surfaces	 were	 rendered	 using	 SURF66,and	
secondary	structure	was	assigned	using	STRIDE67	as	implemented	in	VMD.		
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