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ABSTRACT  

Large collections of gene signatures play a pivotal role in interpreting results of omics data 

analysis but suffer from compositional (large overlap) and functional (redundant read-outs) 

redundancy, and many gene signatures rarely pop-up in statistical tests. Based on pan-

cancer data analysis, here we define a restricted set of 962 so called informative signatures 

and demonstrate that they have more chances to appear highly enriched in cancer biology 

studies. We show that the majority of informative signatures conserve their weights for the 

composing genes (eigengenes) from one cancer type to another. We construct InfoSigMap, 

an interactive online map showing the structure of compositional and functional 

redundancies between informative signatures and charting the territories of biological 

functions accessible through transcriptomic studies. InfoSigMap can be used to visualize in 

one insightful picture the results of comparative omics data analyses and suggests 

reconsidering existing annotations of certain reference gene set groups. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2017. ; https://doi.org/10.1101/136499doi: bioRxiv preprint 

https://doi.org/10.1101/136499
http://creativecommons.org/licenses/by/4.0/


 2 

 

KEYWORDS: gene signature, transcriptome, PCA, network 

 

INTRODUCTION 

The majority of the studies exploring gene expression data result in one or more gene signatures, i.e. 

list of genes sharing a common pattern of expression that can be employed to classify an independent 

dataset. Together with such “data-derived” signatures, “a priori knowledge-based” gene signatures 

are produced from the available gene ontologies or pathway databases. In recent years, data-derived 

and a priori-knowledge-based reference gene signatures have been widely employed to interpret the 

results of gene expression data analyses (e.g. differential expression, clustering). The number of 

available signatures is getting larger allowing users to benefit for a more exhaustive coverage of the 

existing biological processes. However, not all the signatures contained in these compendia are 

equally informative and the number of gene sets representing the same biological process is not 

equilibrated. Intrinsic redundancy and the presence of numerous signatures which have small 

chances to be selected in any analysis affects the results by heavy p-value corrections producing a 

higher number of false negative results. Conceptually, the aforementioned gene set redundancy can 

be of two types: compositional or functional (see Figure 1A). Compositionally redundant signatures 

are characterized by a large intersection in terms of the composing genes. On the opposite, two 

signatures will be here called functionally redundant when they represent two different (sometimes, 

with zero overlap) transcriptional read-outs of the same biological process. The presence of multiple 

functionally redundant signatures affects the enrichment analysis by highly scoring multiple gene sets 

belonging to analogous or related biological processes hiding other potentially relevant hits. Of note, 

any estimation of the functional redundancy is conditioned on the context (e.g., certain cancer type) 

and, therefore, depends on the data corpus which defines functional (e.g., correlation-based) relations 

between the individual genes.  

To our knowledge, few methods have been proposed to address the problem of gene signature 

redundancy 1–6. Currently, the best attempt to define a robust and not-redundant collection of 

signatures is represented by the MSigDB Hallmarks (H) collection 7. H was obtained by merging and 

re-organizing compositionally redundant signatures and then refining the genes of the resulting 

signatures based on their ability to discriminate the associated phenotype. The Hallmarks collection 
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methodology thus involves a manual curation and redefinition of signatures steps, which might create 

certain bias vis a vis an expert’s opinion leading to the loss of certain signature properties. More 

importantly, H, as all the other currently proposed procedures, takes into account only compositional 

redundancy without exploiting the problem of the functional one.  

In this paper, a new approach to prioritize and classify gene signatures is proposed. Our method is 

based on the concept of “an informative signature”, which is capable of defining a ranking of samples 

independently on their labeling. Considering the simplest case of a gene signature composed of only 

two genes X and Y, their co-variance can define three possible scenarios of samples distribution 

(ranking), as reported in Figure 1B. Whereas the ranking defined by informative signatures presents a 

distinguishable axis (anisotropy), labels are required to define a samples ranking in the non-

informative ones. As a consequence, when the dysregulation of an informative signature is tested on 

a two-conditions transcriptomics dataset, a significant enrichment score will be observed whenever 

the samples membership matches the direction of the largest variance and this is significantly greater 

than randomly expected (the gene set is “overdispersed”). In all other cases, a very specific 

distribution of sample labels is needed to obtain a significant enrichment score. Therefore, informative 

signatures, systematically defining robust and “objective” sample ranking in many datasets, are more 

valuable for data analysis.  

Starting from a vast collection of signature compendia, composed of 12096 a priori-knowledge and 

data-derived signatures, we defined a restricted collection of 962 informative signatures, which is 

made available to the users for further applications. The collection was defined by exploiting a large 

pan-cancer TCGA collection of transcriptomic profiles (32 cancer types with totally 8991 

transcriptomic profiles) and it is thus cancer biology-oriented. Of note is the fact that among the 

databases under investigation, a relatively small SPEED collection 8 proved to be the most informative 

with 55% of its signatures being highly informative. The reliability of our signature collection was then 

validated by comparing their performances with those of the starting complete collection in some 

typical data analysis scenarios. In all the considered examples, the informative gene sets were found 

much more frequently significant than the others, confirming the rationale behind the selection 

procedure here proposed.  

Each signature defines a set of weights for the composing genes (which we term eigengene 9) in each 

analyzed dataset. We introduce the notion of “conserved signatures”, i.e. those signatures whose 
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eigengenes are highly correlated across different cancer types. 73% of our informative signatures 

resulted to be also highly conserved, pointing out that they map well some universal functional blocks 

of the cellular machinery. The collection of informative gene signatures was classified by computing 

the average correlation between the sample activity profiles of all signatures across 32 cancers types. 

This metrics was used as a measure of functional redundancy in our analysis. We found that 

functional redundancy is an abundant phenomenon that does not result from a significant intersection 

size of two gene sets. Therefore the Hallmarks and the other previous works, employing only the 

overlap as a measure of redundancy, are capturing only a small portion of this phenomenon. In order 

to visually and interactively represent the structure of functional redundancies between informative 

gene signatures, we developed InfoSigMap 

(http://navicell.curie.fr/pages/maps_avcorrmodulenet.html), a user-friendly interactive Google Maps-

based tool whose nodes are constituted by our set of informative signatures and whose links 

represent the two types of redundancies (compositional and functional). InfoSigMap can be used as a 

data visualization tool to provide a quick navigation into any set of scores associated to the 

informative signatures (e.g., enrichment scores). The use of InfoSigMap is demonstrated in some 

typical data analysis scenarios showing that it is able to provide a concise and biologically meaningful 

holistic view on the pattern of differential regulation of various cellular functions.  

 

RESULTS 

 

Informative signatures represent a small fraction of the widely employed gene sets 

Defined the concept of “an informative signature” (see Methods), a large pan-cancer TCGA 

compendium of gene expression data derived from 32 solid cancer types was employed to restrict the 

input collection of gene signatures (12096) to 962 (see Supplementary Table S2) informative for 

cancer data analysis and corresponding to our compendium (for the selection procedure and inputs 

see Methods). Of the 962 identified informative signatures the majority were data-derived (231 

knowledge-based, 706 data-derived, 15 MSigDB Hallmark and 10 MSigDB C1), showing that for 

cancer-oriented applications data-derived signatures tend to be more informative than knowledge-

based ones. In order to assess which of the input compendia was more informative, the ratio between 

the number of informative gene sets and the total number of contained signatures was evaluated 
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(Table 1). As shown in Table 1, the most informative compendium resulted to be SPEED (55% of 

informative signatures). The reliability of this database is thus corroborated by our results, suggesting 

that when dealing with cancer transcriptomics data analysis it should be probably preferred to 

alternative ones. Overall, good performances were also obtained by CIT (28%), the MSigDB C4 

(31%) and the Hallmarks (H) (30%). While the best performing knowledge-based database resulted to 

be ACSN, with 13% of informative signatures. The distribution of the number of tumors in which the 

informative signatures were found to have the ROMA L1 and L1/L2 p-values significant were then 

investigated. As shown in Figure 2A and Supplementary Table S2, the majority of the informative 

signatures is cancer-specific (significant in only 2 cancer types), another peak is present around 15-20 

tumor types and only 8 signatures are pan-cancer significant (significant in more than 25 cancer 

types). Furthermore, data-driven signatures tend to be more frequently pan-cancer-wise informative 

than the knowledge-based ones.  

 

Informative gene sets tend to be much more frequently significant in some typical 

cancer data analysis  

Our hypothesis that an informative gene set has much higher chances to be enriched in a typical 

transcriptomic data analysis, is here tested according to the procedure detailed in the Methods section 

in three typical scenarios: (i) KRAS mutated vs. wild type colorectal cancer 10; (ii) metastatic vs. 

primary colon cancer 11 and (iii) tumor vs. normal in four tissues (Lung 12, Gastric 13, Colon 14, Cervix 

15). As shown in Table 2, in all three cases the number of informative signatures in the GSEA output 

was strongly enriched (average P-value 10^-79). Note that, while the selection of the informative 

signature was performed using an unsupervised approach, the validations presented in this section 

are realized using a supervised one (GSEA). Nevertheless the amount of informative signatures 

obtained in the output of the GSEA analysis is significantly higher than what could be expected at 

random.  

 

Informative signatures perform better than the MSigDB Hallmarks in some typical cancer data 

analysis  

Given that the only other attempt to prioritize the most reliable non-redundant signatures is 

represented by the MSigDB Hallmarks, its performances were compared with those of our 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2017. ; https://doi.org/10.1101/136499doi: bioRxiv preprint 

https://doi.org/10.1101/136499
http://creativecommons.org/licenses/by/4.0/


 6 

compendium in the three above test cases in terms of Fisher’s exact test P-values and P-value of the 

Kolmogorov-Smirnov (KS) test for the NES distributions, as described in the Methods section. The 

results of both Fisher’s exact test and the KS test are summarized in Table 2. As shown in the table, 

the Hallmarks signatures obtained significant Fisher P-values in all cases (average P-value 10^-05), 

confirming the reliability of the procedure employed by Liberzon A. and coauthors. However, the P-

values obtained by the Hallmark collection resulted to be always less significant than those of our 

informative signatures (10^-05 vs 10^-79). Concerning the NES distribution, as shown in 

Supplementary Figure S1, the informative signatures tend to be always associated with absolute NES 

higher than those of the Hallmarks. Indeed, the KS P-values are always lower than 0.05, except for 

the KRAS mutated vs. wild type colorectal cancer example in which the P-value is 0.098. Therefore, 

not only the informative signatures have higher chances to be significant in a GSEA analysis, but also 

in the GSEA output they tend to be among those with the highest NES score. This result indicates that 

our compendium is capturing the strongest sources of expression variation in all three transcriptomic 

datasets. As a further check, given that 15 over 50 Hallmarks signatures are also contained in our 

informative collection, the fraction of Hallmarks signatures present in the output of the GSEA analysis 

and also contained in our informative compendium is evaluated: (i) KRAS mutated vs. wild type 

colorectal cancer 67%; (ii) metastatic vs. primary colon cancer 67% and (iii) normal tissue vs. tumor in 

4 tissues (Lung 48%, Gastric 47%, Colon 44%, Cervix 60%). Such a result shows that among the 50 

signatures constituting the MSigDB Hallmarks, those that are found significant in the GSEA analysis 

are in the majority of the cases also informative. This last observation thus further confirms the 

reliability of our selection procedure taking into account that the subset of the Hallmarks that we 

selected tends to be enriched more frequently in the analyzed cancer-specific applications. 

 

The majority of the informative signatures eigengenes are conserved across cancer 

types 

To further investigate the reliability of our informative collection, we verified if the informative 

signatures were quantitatively reproduced across different cancer types, where the term quantitatively 

refers to the eigengenes (set of gene weights) resulting from the PCA decomposition. Computing the 

conservation score as described in the Methods section and employing a threshold of 10-6, 1459 over 

the 12096 starting signatures (12%) resulted to be conserved across-cancer. On the opposite 703 
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over the 962 informative signatures (73%) were found to be conserved, showing that the signatures 

selected with our approach have higher chances to maintain the same quantitative definition across 

different cancer types and thus they tend to be more robust than the starting ones. Testing then the 

much stringent threshold of 10-10, while the total number of conserved signatures substantially 

decreased (from 1459 to 408) the percentage of conserved signatures that were found to be also 

informative substantially increased (from 48% to 83%). This last result thus proves that the previously 

obtained results are not affected by the value of the chosen conservation score threshold and, more 

importantly, that the informative signatures are always among the most across-cancer conserved 

gene sets.  

 

Functional redundancy of gene sets is poorly explained by their intersection size 

Two gene sets with empty intersection can represent incomplete transcriptional read-outs of the same 

biological process (i.e., cell cycle), being thus functionally redundant. For example, when data-derived 

expression signatures are constructed, the number of genes whose expression is associated with the 

phenotype of interest is generally minimized and only the most representative are maintained in the 

signature. This procedure may lead to the reconstruction of two data-derived signatures associated to 

the same phenotype but having a poor/null intersection. This leads to a well-known problem of 

signature reproducibility 16. In order to quantify the scale of this phenomenon, the two redundancy 

measures: functional redundancy, computed as described in the Methods section, and gene content 

intersection in terms of Jaccard-index (JI) are compared in Figure 2B. As expected, high JI value 

usually results in high functional redundancy (i.e. high average correlation between meta-samples 

over all cancer types). However, as shown in the figure, high functional redundancy is distributed over 

a large range of JI values with a surprisingly higher points density in the area corresponding to poorly 

overlapping gene sets. Therefore, in order to reduce the functional redundancy between gene sets, it 

is not sufficient to simply take into account their overlap, but also their correlation of activity needs to 

be considered. A first consequence of this result is that the Hallmarks collection, based on the use of 

the JI as a measure of redundancy, is not able to completely capture analogous signatures. To better 

quantify redundancy, also the meta-samples correlation need to be considered. The intrinsic limitation 

of such approach is that it requires the wide employment of expression data and thus its output is 

data-dependent.  
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InfoSigMap a user-friendly interactive representation of the functional redundancy 

structure between informative signatures for insightful gene set score visualization 

Given the predefined collection of informative signatures, GSEA or alternative approaches can be 

employed in order to score them based on a transcriptomics dataset and a set of sample labels. The 

output of such analysis consists of a table of gene sets enrichment statistics. This tabular organization 

of the output, containing functionally connected signatures scattered throughout, frequently does not 

help the interpretation of the results and the formulation of consistent biological hypothesis. In order to 

improve this aspect, we developed InfoSigMap 

(http://navicell.curie.fr/pages/maps_avcorrmodulenet.html), according to the procedure described in 

Methods. As shown in Figure 3, the obtained network contains six main strongly connected 

components of informative signatures. The first is associated to core cellular functions (i.e. all those 

basic functions that are fundamental for the life of the cell) and it contains cell cycle, mRNA 

translation, splicing, MYC targets, protein degradation and oxidative phosphorylation. Of particular 

interest is the fact that in this component the network is able to clearly separate the signatures 

associated to the different cell cycle phases. The second connected component is instead related to 

the tumor microenvironment and it comprises: immune system, inflammation, TNF-α pathway, 

interferon and extracellular matrix/EMT. The third and fourth connected components, smaller than the 

others, correspond to transcription and neuronal system. Finally, the fifth and sixth components 

contain signatures associated to analyses performed on the same expression compendia (GNF2 17 

and GCM 18) and simply represent genes with large neighbourhood overlap. The first and the second 

large components are connected through an area associated to Experimental perturbations of 

Immune cells (EI) signatures. Indeed the informative signatures derived from EI (dark red nodes in 

Figure 3) are separated into two main areas: one, as could be expected, belongs to the tumor 

microenvironment component and it is strongly linked to the immune system/inflammation signatures; 

the second, instead, is part of the proliferation component, strongly linked to the cell cycle area. We 

considered that such unexpected configuration could be caused by the presence of gene sets, 

belonging to the EI category, but obtained from differentiation induction experiments or on 

immortalized cell lines, and thus characterized by differences in the proliferation rate. Indeed an 

alteration in the cell cycle process could justify the high correlation of activity (reflected in an high 
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density of links) present between these two sets of signatures. In order to test this hypothesis, a 

dataset obtained from the expression profiling of human CD4+ T cell during differentiation induction 

was employed 19. The informative pathways altered during the experiment (differentiated vs 

undifferentiated) were detected employing ROMA according to the procedure described in Methods 

section. As shown in Supplementary Figure S2, the two areas of experimental perturbations of 

immune cells signatures have an opposite behavior concordant with that of the signatures around 

them. Indeed the area near to the cell cycle results to be donwregulated in the differentiated cells, 

while those that are part of the immune island are upregulated. This result confirms our starting 

hypothesis that an alteration of the cell cycle process was at the origin of the observed subdivision 

and it suggests that a reshaping of the EI category would be recommended for their future use in data 

analysis. Another non-intuitive observation is that signatures coming from the same collection tend to 

co-localize in the map and data-derived signatures tend to be clearly separated from knowledge-

based ones. The discrepancy between data-derived and knowledge-based signatures can be 

explained by the fact that the transcriptional readouts of a biological process might be very different 

from the genes involved in the process itself. Yet another unexpected observation is that higher 

functional redundancy exists between signatures of the same collection rather than between 

signatures describing the same biological function, suggesting that all the analyzed signature 

collections can be prone to a common bias. The only two exceptions to this trend to some extent are 

the MSigDB Hallmark collection and the SPEED signatures (although several non-informative SPEED 

signatures are clustered together). These compendia indeed resulted to be well spread around the 

map, confirming that they are able to well capture the main biological signals encoded in the 

transcriptomic data. Nevertheless, some areas such as mRNA translation, transcription, splicing and 

protein degradation were not covered by any of the Hallmark and SPEED signatures, indicating that 

there is still the need of other signatures in order to have a complete portrait of the transcriptomic 

landscape. As introduced above, InfoSigMap was developed to simplify the navigation and 

interpretation of the gene set score distributions. In the next section, some examples of typical 

analysis scenarios where InfoSigMap can be employed to formulate consistent biological hypothesis 

are presented.     

 

InfoSigMap can be used to visualize the results of transcriptomics data analysis 
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InfoSigMap is tested to investigate the alterations affecting the transcriptome of the three 

aforementioned typical cancer problems: (i) KRAS mutated vs. wild type colorectal cancer; (ii) 

metastatic vs. primary colon cancer and (iii) tumor vs. normal tissue in lung, gastric, colon and cervix. 

In all three cases, the procedure employing ROMA and described in Methods is applied resulting in 

the output shown in Figure 4. Below the obtained results are discussed in detail: 

 

(i) KRAS mutated vs. wild type colorectal cancer 

The impact of KRAS mutation on CRC transcriptome is investigated with InfoSigMap (Figure 4A). 

KRAS mutated CRC patients are known to be resistant to standard Epidermal Growth Factor 

Receptor (EGFR) inhibitory treatments 20,21. The output of our analysis can thus give some indications 

concerning possible new processes to be targeted in KRAS mutated patients. The strongest effect 

reported in Figure 4A (bright red area) is the upregulation of a subset of the metastatic signatures. 

This result fits with previous evidences that KRAS mutation is associated to metastasis in patients 

with CRC 22,23. Moreover an alteration of the metabolism is detectable from an upregulation of the 

mitochondria and oxidative phosphorylation area. This result fits with previous experimental 

evidences. Indeed KRAS mutation has already been shown to induce mitochondrial oxidative stress, 

inducing a phenotype consistent with the so-called Warburg effect, a metabolic alteration fundamental 

for cancer cell proliferation 24–26. In CRC, KRAS mutation also causes an alteration of the 

transcriptional response and amino acid metabolism machineries, two fundamental processes for 

cancer cell proliferation and maintenance 27,28. This effect is captured in our analysis by the 

upregulation of the mRNA translation/protein metabolism area on the InfoSigMap network.  

 

(ii) Metastatic vs. primary colon cancer 

The differential module activity between metastatic and primary Colon Cancer (CC) is studied (Figure 

4B). As expected, an up-regulation of the collagen/EMT area of the network clearly appears on the 

map Figure 4B. Among the signatures found in this area, we can observe an upregulation of the miR-

21 targets whose role in EMT is well-known 29,30. Moreover, the network areas of mRNA and proteins 

metabolism and splicing resulted to be significantly upregulated. This is not surprising given that the 

aberration of the RNA processing machinery (stability, metabolism, splicing and polyadenylation) is 
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known to be associated with cancer initiation and progression. In CC, beta-catenin (CTNNB1), 

involved in the Wnt pathway, is generally the cause of the RNA processing alterations 31–33. This is 

confirmed in InfoSigMap; indeed CTNNB1 is found active as shown by the upregulation of its targets 

(node FEVR_CTNNB1_TARGETS). The study of the cancer-specific RNA metabolism is a relatively 

unexplored area of research, with potentially significant implications for the prevention and treatment 

of CC. The above results confirm the experimentally observed CTNNB1-mediated alteration of the 

RNA processing machinery. On the other side, a strong downregulation of the cells proliferative 

activity can be observed. This phenomenon has already been documented and found associated with 

poor-prognosis in colorectal cancer (CRC) 34,35. The observed slow-proliferation in metastatic CC may 

be caused by a high proportion of cancer stem-like cells. Indeed stem cells are in a quiescent state, a 

phenomenon that could explain the cell cycle downregulation detected in our analysis. The hypothesis 

of a high stem cell concentration is also confirmed by the significant downregulation of the immune 

area. Indeed the stem-like phenotype of metastasis-initiating cells is generally associated with 

immune evasive quiescence, even if this point is not well documented in CC 36.  

 

(iii) Tumor vs. normal in four tissues 

When then compare tumor vs normal tissue in cervix, colon, gastric and lung cancer (Figure 4C-F). A 

global feature present in all four tissue types is the upregulation of the connected component 

associated to the core cellular functions. This is not a surprising result, given that cancer cells 

generally inactivate tumor suppressors and hyperactivate oncogenes to promote sustained 

proliferation, alter autophagy and the various steps of the RNA transcription and translation 

processing machinery, develop metabolic imbalances and enhance resistance to mitochondrial 

apoptosis 37. The microenvironment-associated connected component instead shows a dual behavior. 

It is indeed significantly upregulated in cervical and gastric cancer and downregulated in colon and 

lung. The results thus suggest a different role of the immune system in these four tumors. A possible 

explanation for this result is that the tumors are associated to different levels of antigenicity, i.e. the 

extent to which tumor cells display HLA-restricted antigens that can be selectively or specifically 

recognized by T cells 38. Tumors with low antigenicity hide against cytotoxic attack leading to a 

passive escape from anti-cancer immune defense. This hypothesis is supported by the observation 

that the HLA signature present in our network (GNF2_HLA_C) is concordantly downregulated in lung 
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and colon and upregulated in cervix and gastric. Moreover, concerning lung cancer, its association 

with low antigenicity had already been observed 39. The tumor antigenicity is one of the aspects that 

seem to determine if a patient will respond to a given immunotherapy. In this sense, a comprehensive 

pan-cancer classification of the immune component behavior could give indications regarding those 

individuals who are most likely to respond to immune-based therapies. 

 

DISCUSSION 

Data-driven and a priori-knowledge-based gene signatures are largely employed in cancer studies to 

score clinical samples according to distinct tumor subtypes, identify important cellular responses to 

stimuli, predict clinical outcomes and quantify the activation of signaling pathways. Nowadays 

signature collections are getting larger providing the benefit of a more complete coverage of the 

existing biological processes. However, the growth of these compendia is posing two main challenges 

due to the reliability and redundancy of the collected gene sets.  

Here, we developed a new methodology for assessing the value of a gene set which is based on the 

notion of informative signature, i.e. a gene set able to systematically robustly rank tumor samples in 

many independent datasets. A restricted collection of 962 informative gene sets is suggested for 

transcriptomic data analysis in cancer biology. The robustness of the information content enclosed in 

our compendium is then proved showing that an informative gene set has much higher chances to be 

selected (enriched) in a typical scenario of transcriptomic data analyses, even in the ones using 

supervised methods, and that the eigengenes of the majority of the informative signatures tend to be 

conserved across cancer types. The redundancy of the informative collection is then investigated, 

showing that functional redundancy is a frequent phenomenon not captured by the approaches 

previously proposed for gene signatures summarization. To integrate all the obtained results we 

developed InfoSigMap, a user-friendly interface designed for insightful data visualization. InfoSigMap 

was applied in some typical scenarios of cancer data analysis. The obtained results proved that a 

global view of the concordant behavior of functionally redundant signatures leads to an insightful 

interpretation of the results in respect to what can be deduced from the lists of significant signatures 

output of gene expression data analysis tools. In all four analyzed cases, the obtained results were 

found to fit with the previous experimental knowledge, confirming the reliability of our approach. 

However, also some indications concerning new candidate mechanisms to be experimentally 
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investigated were extracted, showing how InfoSigMap can help the formulation of new biological 

hypothesis. 

 

METHODS 

 

Definition of “an informative signature” 

To explain the rationale behind the definition of informative signature, let us consider to apply 

Principal Component Analysis (PCA) to a gene expression data table whose columns correspond to 

the genes from a selected gene set and whose rows correspond to samples. If we observe that the 

variance explained by the first principal component computed for such a table is significantly larger 

than for a random set of genes of the same size then the considered gene set is called overdispersed 

40,41. Intuitively, an overdispersed gene set has a stronger contribution to the data variance than 

expected by chance. Similarly, if the ratio between the variances explained by the first and second 

principal components computed for the aforementioned table is larger than for a random set of genes 

then the given gene set is called coordinated. Intuitively, the existence of a statistically significant gap 

between the first and the second eigenvalue of the covariance matrix corresponds to an overall 

increase in the pairwise correlations between the genes of the signature compared to what can be 

observed at random. The advantage of having a coordinated gene set is that it defines an axis of 

principal variance in the multi-dimensional distribution of samples and thus it robustly ranks samples 

independently on their labeling, as discussed in the Introduction (see Figure 1). In the context of 

cancer biology, we define informative a gene set that is simultaneously overdispersed and 

coordinated in more than two cancer types.  

 

Transcriptomics data input of the analysis 

To systematically search for informative signatures, a large pan-cancer TCGA compendium of gene 

expression data derived from 32 solid cancer types (ACC, BLCA, BRCA, CESC, CHOL, COAD, 

DLBC, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, 

PCPG, PRAD, READ, SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS, UVM) was 

employed. The data were downloaded from TCGA and normalized. An overview of the samples 

available for the different tumor types is reported in Supplementary Table S1. 
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Signatures collection input of our analysis 

A vast collection composed of both data-derived and a priori-knowledge-based signatures was 

considered as input for our analysis. The signature collections: Molecular Signature Database 

(MsigDB v5.2) 42, Atlas of Cancer Signaling Network (ACSN) 43, the top-contributing genes of the 

components identified by Biton et al. (here denoted as CIT) 44 and the Signaling Pathway Enrichment 

using Experimental Data sets (SPEED) 8 have been downloaded and organized, obtaining a starting 

collection of 12096 signatures. In the following, we will consider as data-derived signatures: CIT, 

SPEED and some MSigDB categories (clusters of genes co-expressed in microarray compendia (C4), 

signatures of oncogenic pathway activation (C6), the large collection of immunological conditions (C7) 

and chemical and genetic perturbations (CGP) part of the MSigDB collection canonical pathways and 

experimental signatures curated from publications (C2)). On the other side, ACSN and the MSigDB 

categories: genes sharing cis-regulatory motifs up- or downstream of their coding sequence (C3), 

genes grouped according to Gene Ontology (GO) categories (C5) and Canonical Pathways (CP), part 

of C2 and including the well-known BIOCARTA, KEGG and REACTOME databases, will be denoted 

as knowledge-based. Finally, the MSigDB collections genes grouped by their location in the human 

genome (C1) and the Hallmarks (H) will not be associated to any of the two previous classifications. 

 

Procedure for the prioritization of those signatures that are informative in cancer biology  

To detect which of the starting 12096 signatures, detailed above, were informative, we employed the 

Representation and quantification Of Module Activity (ROMA) tool, designed for the robust detection 

of overdispersed and coordinated modules 41. The activity of each signature was thus evaluated in all 

the 32, previously described, expression datasets separately. Only those signatures having the p-

values associated to the variance explained by the first principal component (ROMA L1 score) and to 

the ratio between the variances explained by the first and second principal components (ROMA L1/L2 

score) lower than 0.05 in at least two tumor datasets were prioritized. 

 

Test if informative gene sets are more frequently enriched in typical cancer analysis scenarios 

Our hypothesis that an informative gene set has much higher chances to be enriched in a typical 

transcriptomic data analysis, is tested by using Gene Set Enrichement Analysis (GSEA), a well-known 
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and widely adopted supervised approach 42. GSEA was applied to three typical cancer-related 

problems using the entire collection of 12096 starting signatures. The set of significant signatures was 

determined selecting those with a GSEA FDR q-value lower than 0.05. Then, the enrichment of our 

set of informative signatures in the output of the GSEA analysis was evaluated through a Fisher’s 

exact test. 

 

Comparison Informative signatures vs Hallmarks in typical cancer analysis scenarios 

Given that only one other attempt to prioritize the most reliable non-redundant signatures exists and it 

is represented by the MSigDB Hallmarks, the procedure described in the previous section was 

repeated also for this database. The performances of our informative collection were then compared 

with those of the Hallmarks in terms of Fisher’s exact test P-values. Moreover, the distributions of the 

absolute GSEA Normalized Enrichment Score (NES) for the two collections were studied and the 

significance of the difference between the two distributions was evaluated through a Kolmogorov-

Smirnov (KS) test. 

 

Evaluation of the signatures eigengenes conservation across-cancers 

To further investigate the reliability of our informative collection, we verified if the informative 

signatures were quantitatively reproduced across different cancer types, where the term quantitatively 

refers to the eigengenes (set of gene weights) resulting from the PCA decomposition. For each 

informative signature, the pair-wise correlation between the eigengenes obtained in the 32 cancer 

types were computed and a conservation score was obtained as the geometric mean of the Pearson 

correlation p-values. We define a conserved gene set by having the conservation score lower than 10-

6. To then evaluate how much the results of this test were affected by the threshold used to define a 

conserved gene set, also a much stringent threshold of 10-10 was tested. 

 

Comparison between functional redundancy and intersection size of gene sets 

Two gene sets with empty intersection can represent incomplete transcriptional read-outs of the same 

biological process, being thus functionally redundant. In order to quantify the scale of this 

phenomenon, we have compared the normalized size of gene set intersection with their functional 

redundancy measure. For each couple of informative signatures, the average correlation between 
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their meta-samples was thus computed over the 32 cancer types. This approach captures all those 

couples of gene sets having a similar pan-cancer behavior and thus representing the same 

transcriptional read-out, independently on whether they have significant number of common genes or 

not. To evaluate if the functional redundancy between a couple of signatures is well explained by their 

overlap size, the intersection in terms of Jaccard-index (JI) between all couples of informative gene 

sets was computed and the two measures were compared. 

 

InfoSigMap construction procedure 

To help the quick navigation of the set of informative signatures and to improve the interpretation of 

their concordant behavior, we developed InfoSigMap 

(http://navicell.curie.fr/pages/maps_avcorrmodulenet.html), a user-friendly Google-Maps based 

visualization method. The construction of InfoSigMap involved three main steps: (i) creation of the 

signature redundancy graph; (ii) definition of its layout and (iii) representation of the graph as an 

interactive online map. In line with what has been already done in Enrichment Map, GOIorize and 

ClueGO 2,4,6, the first step is performed by organizing the 990 signatures (corresponding to the 962 

informative collection plus all Hallmarks and SPEED signatures even if they were not shown to be 

informative) into a weighted network, where each signature is a node and links represent redundancy 

between couples of gene sets. Differently from the previously mentioned Cytoscape plug-ins, the links 

of our network are weighted averaging over two measures of signatures redundancy: overlap (JI) and 

functional redundancy. The functional redundancy was computed as the average correlation 

coefficients between the metasamples defined by ROMA, for each pair of informative signatures in 

each cancer type. The signatures having average correlation above 0.7 are connected in the graph 

and the final weights of the links were obtained as the mean between the average correlation and the 

JI. The threshold 0.7 is justified by appearance of distinguishable but still connected functional 

components in the graph. For the second step of graph structure representation, a different shape is 

used to denote the gene sets that are only informative (diamond) and those that are also conserved 

(circle), while the node size denotes the number of genes in the signature. Links are also classified 

into two classes, dark gray is used for those edges that connect signatures being both functionally 

redundant and having a significant JI, while light gray denotes links only associated to functional 

redundancy. Finally, the thickness of the links is proportional to their weights, the standard Cytoscape 
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organic layout is used to spatially organize the largest connected component of the network and 

smaller components or unconnected nodes were positioned by using the structure of weaker 

correlations. The areas of the network containing signatures associated to same biological functions 

are then identified and manually annotated on the top of the map to help the navigation of the users. 

In addition, also a purely data-driven layout was computed by applying tSNE dimension reduction 

method to the matrix of average pairwise correlations between the meta-samples defined by our 

signatures in all cancer types. This view of the InfoSigMap is available at 

http://navicell.curie.fr/pages/maps_avcorrmodulenet.html (View/tSNE selection in the right-hand 

panel). Finally, the representation of the network as an interactive online map is achieved by using 

NaviCell 45, powered by Google Maps API.   

 

Using InfoSigMap to have a global view of the signatures behavior 

Gene sets can be tested for differential activity across different experimental conditions using a tool of 

choice (e.g. GSEA, ROMA). If ROMA is chosen for this test, first the activity of the informative 

signatures is evaluated by applying ROMA, then the differential module activity is evaluated by 

Student’s t-test and fold-change applied to the ROMA activity scores. Finally, the fold-changes 

associated to a significant Student’s t-test P-value (lower than 0.05) are mapped to the nodes of 

InfoSigMap as a color gradient, from red (up-regulation) to white (no significant change) to green 

(down-regulation), using the map staining approach described in 45. The map is thus colored in the 

territories around each node creating a continuous colored pattern that helps a qualitative 

appreciation of the concordant/discordant behavior of large map regions. 
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Figure1. Schematic explanation of the basic notions used in this study. 
Panel A) schematically summarizes the two possible forms of redundancy between two gene sets. 1) 

Compositional redundancy corresponds to gene set overlap. 2) Functional redundancy represents 

instead different transcriptional read-outs of the same biological process and it is possible even for the 

gene sets with no overlap. Measuring functional redundancy depends on the way a sample is scored 

based on the expression of its genes and the chosen corpus of data. Panel B) explains the difference 

between non-informative (1) and informative (2) gene sets. A signature composed of two genes X and 

Y is here considered. The circles denote biological samples and the two colors correspond to two 

different labels : class 1 and class 2 (e.g., metastatic vs. primary tumors). Scatter plots are used to 

represent the expression values of gene X (X-axes) and gene Y (Y-axes) in each sample. Three types 

of samples distributions are shown. In 1) (isotropic case) no naturally distinguished axis in the points 

distribution, labeling of samples is needed to define their ranking. In 2) instead, it exists a 

distinguishable axis in the data distribution that allows a robust ranking of the samples independently 

on their labeling. Both second and third scenario leads to overdispersion and coordination of the 

corresponding gene set and are selected in the analysis. 
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Figure 2. Behavior of the informative signatures across the different cancer transcriptomes. 
The main results regarding the pan-cancer behavior of the informative signatures are here 

summarized. In panel A) the distribution of the numbers of cancer types in which the informative 

signatures have ROMA L1 and L1/L2 p-values significant is reported. The behavior of all informative 

signatures is represented in black, that of data-driven and knowledge-based informative signatures is 

denoted in red and blue, respectively. In B) the dependence between informative gene sets overlap 

(Jaccard-index) and average correlation between the meta-samples defined by the informative gene 

sets is reported. Each point corresponds to an informative signature and their color is proportional to 

the points density : from red (high density) to blue (low density). 

 
Figure 3. InfoSigMap: user-friendly interactive representation of the informative signatures. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2017. ; https://doi.org/10.1101/136499doi: bioRxiv preprint 

https://doi.org/10.1101/136499
http://creativecommons.org/licenses/by/4.0/


 24 

The network map of the 962 informative signatures plus SPEED and Hallmarks is here reported as 

available on the website (http://navicell.curie.fr/pages/maps_avcorrmodulenet.html). The signatures 

are organized as nodes of the network. Nodes colors correspond to the different signatures 

categories, while the shape is a diamond for informative signatures and circular for those that are also 

conserved. The links correspond to redundancy between couples of gene sets (functional redundancy 

in light gray, dark gray if also the Jaccard-index intersection is significant). The names annotated on 

the top of the map denote areas of the network containing signatures associated to same biological 

function. The interactive on-line version of this map can be browsed as an instance of Google Maps, 

with the possibility of zooming in and /out, getting description of gene signatures, and visualizing data 

(various gene set scores, such as GSEA or ROMA scores) on top of the map. 

 
Figure 4. Results of InfoSigMap applied to some typical data analysis scenarios. 

Four examples showing how InfoSigMap provides a more insightful interpretation of the lists of 

significant signatures output of the classical gene expression analysis tools is here proposed. The 

significant fold-changes resulting from the differential ROMA analysis are plotted on the top of the 
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map according to a heatmap coloring highlighting up- (red) and down-regulated (green) gene 

signatures. The plots are organized as follows : (a) KRAS mutated vs. wild type colorectal cancer; (b) 

metastatic vs. primary colon cancer and (c-f) tumor vs. normal tissue in cervix, colon, gastric and lung, 

respectively. 

 

 

 

TABLES 
Table 1. Contribution of each signature collection to the informative set. Number of informative 

signature, total dimension and the fraction of the previous two fields are reported for each signature 

collection. 

Signatures 
collections 

Data-Derived  Knowledge-based   
H 
 

 
C1 

SPEED C4 BITON CGP C7 C6 ACSN CP C5 C3 

Informative 

signatures 
6 270 11 233 185 1 8 150 64 9 15 10 

Total  11 858 40 1698 2436 99 63 1330 1454 615 50 326 

Fraction 55% 31% 28% 14% 8% 1% 13% 11% 4% 1% 30% 3% 

 
Table2. Performances of the informative and Hallmark collection in respect to the full set of 

starting signatures in three test cases. The columns report for each case: the total number of 

signatures significant in the test, the Fisher P-value for the informative signatures, the Fisher P-value 

for the Hallmarks and the Kolmogorov-Smirnov P-value comparing the NES distribution of the 

informative vs Hallmarks. 

 
Test  

cases 

 
Total number 

of significant 

signatures  

Informative 

signatures 
Fisher P-

value 

Hallmarks 
signatures 
Fisher P-

value 

KS P-value 

informative vs H NES 

distribution  

(i) Colon KRAS 

mutated vs wild 

type 

896 1.1E-130 1E-07 0.098 

(ii) Colon 

metastasis vs 

primary 

396 2.5E-78 1.6E-08 0.02 

(iii) Normal vs 1845 4.3E-161 3.9E-06 0.005 
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Tumor cervix 

(iii) Normal vs 

Tumor lung 
3290 1.2E-214 9.7E-05 0.02 

(iii) Normal vs 

Tumor colon 
2159 1.9E-137 2.6E-08 0.001 

(iii) Normal vs 

Tumor gastric 
2644 4.6E-170 4.3E-10 0.005 
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Table S1. Number of samples available for each transcriptomic dataset used for the 
analysis 
 

tumor	
code	 tumor	name	extended	

number	
of	

samples	
ACC	 Adrenocortical	carcinoma	 78	
BLCA	 Bladder	Urothelial	Carcinoma	 408	
BRCA	 Breast	invasive	carcinoma	 1085	
CESC	 Cervical	squamous	cell	carcinoma	and	endocervical	adenocarcinoma	 303	
CHOL	 Cholangiocarcinoma	 36	
COAD	 Colon	adenocarcinoma	 276	
DLBC	 Lymphoid	Neoplasm	Diffuse	Large	B-cell	Lymphoma	 48	
ESCA	 Esophageal	carcinoma	 182	
GBM	 Glioblastoma	multiforme	 155	
HNSC	 Head	and	Neck	squamous	cell	carcinoma	 515	
KICH	 Kidney	Chromophobe	 65	
KIRC	 Kidney	renal	clear	cell	carcinoma	 516	
KIRP	 Kidney	renal	papillary	cell	carcinoma	 286	
LGG	 Brain	Lower	Grade	Glioma	 513	
LIHC	 Liver	hepatocellular	carcinoma	 368	
LUAD	 Lung	adenocarcinoma	 510	
LUSC	 Lung	squamous	cell	carcinoma	 488	
MESO	 Mesothelioma	 87	
OV	 Ovarian	serous	cystadenocarcinoma	 302	

PAAD	 Pancreatic	adenocarcinoma	 177	
PCPG	 Pheochromocytoma	and	Paraganglioma	 181	
PRAD	 Prostate	adenocarcinoma	 494	
READ	 Rectum	adenocarcinoma	 90	
SARC	 Sarcoma	 255	
SKCM	 Skin	Cutaneous	Melanoma	 103	
STAD	 Stomach	adenocarcinoma	 401	
TGCT	 Testicular	Germ	Cell	Tumors	 138	
THCA	 Thyroid	carcinoma	 501	
THYM	 Thymoma	 120	
UCEC	 Uterine	Corpus	Endometrial	Carcinoma	 173	
UCS	 Uterine	Carcinosarcoma	 57	
UVM	 Uveal	Melanoma	 80	

 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2017. ; https://doi.org/10.1101/136499doi: bioRxiv preprint 

https://doi.org/10.1101/136499
http://creativecommons.org/licenses/by/4.0/


Signature Compendium	of	origin
Tumors	in	
which	is	

informative

E2F4_TARGETS ACSN 15

E2F3_TARGETS ACSN 12

S_CC_PHASE ACSN 12

WEE ACSN 10

E2F6_TARGETS ACSN 8

E2F2_TARGETS ACSN 5

E2F1_TARGETS ACSN 4

MITOCH_METABOLISM ACSN 4

CIT8_UP CIT 27

CIT8_DN CIT 26

CIT7_DN CIT 25

CIT12_UP CIT 18

CIT3_UP CIT 16

CIT14_UP CIT 7

CIT4_DN CIT 4

CIT5_DN CIT 4

CIT11_DN CIT 3

CIT20_DN CIT 2

CIT6_DN CIT 2

chryq11 MSigDB	C1 24

chryp11 MSigDB	C1 18

chr5q31 MSigDB	C1 6

chr16p13 MSigDB	C1 3

chr6p22 MSigDB	C1 3

chr17q25 MSigDB	C1 2

chr19p13 MSigDB	C1 2

chr1q21 MSigDB	C1 2

chrxp11 MSigDB	C1 2

chrxq28 MSigDB	C1 2

KOBAYASHI_EGFR_SIGLING_6HR MSigDB	C2	CGP 25

FARMER_BREAST_CANCER_CLUSTER_2 MSigDB	C2	CGP 23

CHANG_CYCLING_GENES MSigDB	C2	CGP 20

WALLACE_PROSTATE_CANCER_RACE MSigDB	C2	CGP 20

ZHOU_CELL_CYCLE_GENES_IN_IR_RESPONSE_6HR MSigDB	C2	CGP 20

KONG_E2F1_TARGETS MSigDB	C2	CGP 19

MCLACHLAN_DENTAL_CARIES MSigDB	C2	CGP 19

TURASHVILI_BREAST_CARCINOMA_DUCTAL_VS_LOBULAR MSigDB	C2	CGP 19

ZHANG_TLX_TARGETS_60HR MSigDB	C2	CGP 19

CROONQUIST_IL6_DEPRIVATION MSigDB	C2	CGP 18

GUTIERREZ_WALDENSTROEMS_MACROGLOBULINEMIA_2 MSigDB	C2	CGP 18

HOFMANN_MYELODYSPLASTIC_SYNDROM_RISK MSigDB	C2	CGP 18

LEE_DIFFERENTIATING_T_LYMPHOCYTE MSigDB	C2	CGP 17

SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE MSigDB	C2	CGP 17

TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_LOBULAR_NORMAL MSigDB	C2	CGP 16

BOSCO_TH1_CYTOTOXIC_MODULE MSigDB	C2	CGP 15

RPS14_DN.V1 MSigDB	C2	CGP 15

SHIPP_DLBCL_CURED_VS_FATAL MSigDB	C2	CGP 15

CHUNG_BLISTER_CYTOTOXICITY MSigDB	C2	CGP 14

GRAHAM_NORMAL_QUIESCENT_VS_NORMAL_DIVIDING MSigDB	C2	CGP 14

POMEROY_MEDULLOBLASTOMA_DESMOPLASIC_VS_CLASSIC MSigDB	C2	CGP 14

PUJA_BREAST_CANCER_LIT_INT_NETWORK MSigDB	C2	CGP 14

SMID_BREAST_CANCER_NORMAL_LIKE MSigDB	C2	CGP 14

VILIMAS_NOTCH1_TARGETS MSigDB	C2	CGP 14

JISON_SICKLE_CELL_DISEASE MSigDB	C2	CGP 13

WONG_MITOCHONDRIA_GENE_MODULE MSigDB	C2	CGP 13

JAATINEN_HEMATOPOIETIC_STEM_CELL MSigDB	C2	CGP 12

KOBAYASHI_EGFR_SIGLING_24HR MSigDB	C2	CGP 12

UROSEVIC_RESPONSE_TO_IMIQUIMOD MSigDB	C2	CGP 12

BILANGES_SERUM_AND_RAPAMYCIN_SENSITIVE_GENES MSigDB	C2	CGP 11

CHOI_ATL_CHRONIC_VS_ACUTE MSigDB	C2	CGP 11

FIK_BREAST_CANCER_SDPP_SIGTURE MSigDB	C2	CGP 11

GAURNIER_PSMD4_TARGETS MSigDB	C2	CGP 11

HOFFMAN_CLOCK_TARGETS MSigDB	C2	CGP 11

SA_RESPONSE_TO_IFNG MSigDB	C2	CGP 11

TURASHVILI_BREAST_NORMAL_DUCTAL_VS_LOBULAR MSigDB	C2	CGP 11

ZHAN_MULTIPLE_MYELOMA MSigDB	C2	CGP 11

HOLLEMAN_ASPARAGISE_RESISTANCE_ALL MSigDB	C2	CGP 10

ICHIBA_GRAFT_VERSUS_HOST_DISEASE_D7 MSigDB	C2	CGP 10

JIANG_HYPOXIA_VIA_VHL MSigDB	C2	CGP 10

KAUFFMANN_MELANOMA_RELAPSE MSigDB	C2	CGP 10

PIEPOLI_LGI1_TARGETS MSigDB	C2	CGP 10

RUTELLA_RESPONSE_TO_HGF MSigDB	C2	CGP 10

RUTELLA_RESPONSE_TO_HGF_VS_CSF2RB_AND_IL4 MSigDB	C2	CGP 10

BENPORATH_PROLIFERATION MSigDB	C2	CGP 9

BOWIE_RESPONSE_TO_EXTRACELLULAR_MATRIX MSigDB	C2	CGP 9

CROONQUIST_NRAS_SIGLING MSigDB	C2	CGP 9

HORTON_SREBF_TARGETS MSigDB	C2	CGP 9

HSIAO_HOUSEKEEPING_GENES MSigDB	C2	CGP 9

MARSON_FOXP3_TARGETS MSigDB	C2	CGP 9

QI_PLASMACYTOMA MSigDB	C2	CGP 9

RUTELLA_RESPONSE_TO_CSF2RB_AND_IL4 MSigDB	C2	CGP 9

BROWNE_INTERFERON_RESPONSIVE_GENES MSigDB	C2	CGP 8

GRAHAM_CML_DIVIDING_VS_NORMAL_DIVIDING MSigDB	C2	CGP 8

LI_WILMS_TUMOR_APLASTIC MSigDB	C2	CGP 8

PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA MSigDB	C2	CGP 8

RODWELL_AGING_KIDNEY MSigDB	C2	CGP 8

RORIE_TARGETS_OF_EWSR1_FLI1_FUSION MSigDB	C2	CGP 8

WEBER_METHYLATED_LCP_IN_SPERM MSigDB	C2	CGP 8

YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_12 MSigDB	C2	CGP 8

FUJII_YBX1_TARGETS MSigDB	C2	CGP 7

FULCHER_INFLAMMATORY_RESPONSE_LECTIN_VS_LPS MSigDB	C2	CGP 7

GABRIELY_MIR21_TARGETS MSigDB	C2	CGP 7

GRADE_METASTASIS MSigDB	C2	CGP 7

MATTIOLI_MULTIPLE_MYELOMA_WITH_14Q32_TRANSLOCATIONS MSigDB	C2	CGP 7

MOLEAR_TARGETS_OF_CCND1_AND_CDK4 MSigDB	C2	CGP 7

MORI_IMMATURE_B_LYMPHOCYTE MSigDB	C2	CGP 7

ONO_AML1_TARGETS MSigDB	C2	CGP 7

AMUNDSON_GAMMA_RADIATION_RESISTANCE MSigDB	C2	CGP 6

ASTASSIOU_CANCER_MESENCHYMAL_TRANSITION_SIGTURE MSigDB	C2	CGP 6

BOYLAN_MULTIPLE_MYELOMA_PCA3 MSigDB	C2	CGP 6

BROWN_MYELOID_CELL_DEVELOPMENT MSigDB	C2	CGP 6

DIAZ_CHRONIC_MEYLOGENOUS_LEUKEMIA MSigDB	C2	CGP 6

DISTECHE_ESCAPED_FROM_X_ICTIVATION MSigDB	C2	CGP 6

FERREIRA_EWINGS_SARCOMA_UNSTABLE_VS_STABLE MSigDB	C2	CGP 6

GOLDRATH_ANTIGEN_RESPONSE MSigDB	C2	CGP 6

HOFFMANN_PRE_BI_TO_LARGE_PRE_BII_LYMPHOCYTE MSigDB	C2	CGP 6

HONMA_DOCETAXEL_RESISTANCE MSigDB	C2	CGP 6

LINDGREN_BLADDER_CANCER_CLUSTER_2B MSigDB	C2	CGP 6

Table S2. List of informative signatures and number of cancer types in which they were found significant
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MALO_HYPOXIA MSigDB	C2	CGP 6
MOOTHA_HUMAN_MITODB_6_2002 MSigDB	C2	CGP 6

STARK_PREFRONTAL_CORTEX_22Q11_DELETION MSigDB	C2	CGP 6
TSUTSUMI_FBXW8_TARGETS MSigDB	C2	CGP 6

CLASPER_LYMPHATIC_VESSELS_DURING_METASTASIS MSigDB	C2	CGP 5
DAVICIONI_MOLECULAR_ARMS_VS_ERMS MSigDB	C2	CGP 5

GRATIAS_RETINOBLASTOMA_16Q24 MSigDB	C2	CGP 5
KIM_RESPONSE_TO_TSA_AND_DECITABINE MSigDB	C2	CGP 5
LEOUR_DENDRITIC_CELL_MATURATION MSigDB	C2	CGP 5

TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_8D MSigDB	C2	CGP 5
VERHAAK_GLIOBLASTOMA_MESENCHYMAL MSigDB	C2	CGP 5
ASTON_MAJOR_DEPRESSIVE_DISORDER MSigDB	C2	CGP 4
CAIRO_HEPATOBLASTOMA_CLASSES MSigDB	C2	CGP 4

CHEMELLO_SOLEUS_VS_EDL_MYOFIBERS MSigDB	C2	CGP 4
DACOSTA_UV_RESPONSE_VIA_ERCC3_COMMON MSigDB	C2	CGP 4
FAELT_B_CLL_WITH_VH_REARRANGEMENTS MSigDB	C2	CGP 4

GASHIMA_NRG1_SIGLING MSigDB	C2	CGP 4
GRADE_COLON_VS_RECTAL_CANCER MSigDB	C2	CGP 4

HALMOS_CEBPA_TARGETS MSigDB	C2	CGP 4
JACKSONMT1_TARGETS MSigDB	C2	CGP 4
LIU_PROSTATE_CANCER MSigDB	C2	CGP 4

MORI_LARGE_PRE_BII_LYMPHOCYTE MSigDB	C2	CGP 4
NIKOLSKY_BREAST_CANCER_19P13_AMPLICON MSigDB	C2	CGP 4

PENG_RAPAMYCIN_RESPONSE MSigDB	C2	CGP 4
SENGUPTA_SOPHARYNGEAL_CARCINOMA MSigDB	C2	CGP 4
STAMBOLSKY_RESPONSE_TO_VITAMIN_D3 MSigDB	C2	CGP 4

VALK_AML_CLUSTER_4 MSigDB	C2	CGP 4
WHITFIELD_CELL_CYCLE_S MSigDB	C2	CGP 4

BOYLAN_MULTIPLE_MYELOMA_C_D MSigDB	C2	CGP 3
BURTON_ADIPOGENESIS_7 MSigDB	C2	CGP 3

CHNG_MULTIPLE_MYELOMA_HYPERPLOID MSigDB	C2	CGP 3
DING_LUNG_CANCER_MUTATED_FREQUENTLY MSigDB	C2	CGP 3

FEVR_CTNNB1_TARGETS MSigDB	C2	CGP 3
FURUKAWA_DUSP6_TARGETS_PCI35 MSigDB	C2	CGP 3

GINESTIER_BREAST_CANCER_ZNF217_AMPLIFIED MSigDB	C2	CGP 3
GRAHAM_CML_DIVIDING_VS_NORMAL_QUIESCENT MSigDB	C2	CGP 3

GUO_HEX_TARGETS MSigDB	C2	CGP 3
HELLER_SILENCED_BY_METHYLATION MSigDB	C2	CGP 3

HISTONE_ACETYLTRANSFERASE_ACTIVITY MSigDB	C2	CGP 3
JAEGER_METASTASIS MSigDB	C2	CGP 3

JECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION MSigDB	C2	CGP 3
KAYAMA_SOFT_TISSUE_TUMORS_PCA1 MSigDB	C2	CGP 3

KIM_ALL_DISORDERS_OLIGODENDROCYTE_NUMBER_CORR MSigDB	C2	CGP 3
LEE_BMP2_TARGETS MSigDB	C2	CGP 3

LI_INDUCED_T_TO_TURAL_KILLER MSigDB	C2	CGP 3
LUI_THYROID_CANCER_PAX8_PPARG MSigDB	C2	CGP 3
MITSIADES_RESPONSE_TO_APLIDIN MSigDB	C2	CGP 3

MONTERO_THYROID_CANCER_POOR_SURVIVAL MSigDB	C2	CGP 3
MORI_PRE_BI_LYMPHOCYTE MSigDB	C2	CGP 3
OSMAN_BLADDER_CANCER MSigDB	C2	CGP 3

PUJA_BRCA_CENTERED_NETWORK MSigDB	C2	CGP 3
REN_ALVEOLAR_RHABDOMYOSARCOMA MSigDB	C2	CGP 3
RHEIN_ALL_GLUCOCORTICOID_THERAPY MSigDB	C2	CGP 3

RICKMAN_TUMOR_DIFFERENTIATED_WELL_VS_POORLY MSigDB	C2	CGP 3
ROETH_TERT_TARGETS MSigDB	C2	CGP 3

ROSS_AML_OF_FAB_M7_TYPE MSigDB	C2	CGP 3
SCHLOSSER_MYC_AND_SERUM_RESPONSE_SYNERGY MSigDB	C2	CGP 3
TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_10D MSigDB	C2	CGP 3

TAYLOR_METHYLATED_IN_ACUTE_LYMPHOBLASTIC_LEUKEMIA MSigDB	C2	CGP 3
TIEN_INTESTINE_PROBIOTICS_24HR MSigDB	C2	CGP 3

TONKS_TARGETS_OF_RUNX1_RUNX1T1_FUSION_HSC MSigDB	C2	CGP 3
VECCHI_GASTRIC_CANCER_ADVANCED_VS_EARLY MSigDB	C2	CGP 3

VERHAAK_AML_WITH_NPM1_MUTATED MSigDB	C2	CGP 3
WANG_CLIM2_TARGETS MSigDB	C2	CGP 3

WANG_RESPONSE_TO_GSK3_INHIBITOR_SB216763 MSigDB	C2	CGP 3
WANG_SMARCE1_TARGETS MSigDB	C2	CGP 3

WUNDER_INFLAMMATORY_RESPONSE_AND_CHOLESTEROL MSigDB	C2	CGP 3
AIGNER_ZEB1_TARGETS MSigDB	C2	CGP 2

AMIT_SERUM_RESPONSE_480_MCF10A MSigDB	C2	CGP 2
BALDWIN_PRKCI_TARGETS MSigDB	C2	CGP 2

BLUM_RESPONSE_TO_SALIRASIB MSigDB	C2	CGP 2
BOQUEST_STEM_CELL MSigDB	C2	CGP 2

BOYAULT_LIVER_CANCER_SUBCLASS_G3 MSigDB	C2	CGP 2
CAHOY_NEURONAL MSigDB	C2	CGP 2

CAIRO_HEPATOBLASTOMA MSigDB	C2	CGP 2
CASORELLI_ACUTE_PROMYELOCYTIC_LEUKEMIA MSigDB	C2	CGP 2

CHARAFE_BREAST_CANCER_BASAL_VS_MESENCHYMAL MSigDB	C2	CGP 2
CHIANG_LIVER_CANCER_SUBCLASS_CTNNB1 MSigDB	C2	CGP 2

CHIANG_LIVER_CANCER_SUBCLASS_PROLIFERATION MSigDB	C2	CGP 2
CHIANG_LIVER_CANCER_SUBCLASS_UNNOTATED MSigDB	C2	CGP 2

CHIBA_RESPONSE_TO_TSA MSigDB	C2	CGP 2
COLDREN_GEFITINIB_RESISTANCE MSigDB	C2	CGP 2

CREIGHTON_AKT1_SIGLING_VIA_MTOR MSigDB	C2	CGP 2
CUI_TCF21_TARGETS MSigDB	C2	CGP 2

DAIRKEE_CANCER_PRONE_RESPONSE_E2 MSigDB	C2	CGP 2
DAUER_STAT3_TARGETS MSigDB	C2	CGP 2
DELASER_MYOD_TARGETS MSigDB	C2	CGP 2
DELYS_THYROID_CANCER MSigDB	C2	CGP 2

DUTERTRE_ESTRADIOL_RESPONSE_24HR MSigDB	C2	CGP 2
EBAUER_MYOGENIC_TARGETS_OF_PAX3_FOXO1_FUSION MSigDB	C2	CGP 2

FAELT_B_CLL_WITH_VH3_21 MSigDB	C2	CGP 2
FARMER_BREAST_CANCER_CLUSTER_4 MSigDB	C2	CGP 2
FOURNIER_ACIR_DEVELOPMENT_LATE_2 MSigDB	C2	CGP 2

FRASOR_RESPONSE_TO_SERM_OR_FULVESTRANT MSigDB	C2	CGP 2
GAUSSMANN_MLL_AF4_FUSION_TARGETS_E MSigDB	C2	CGP 2

GAVIN_FOXP3_TARGETS_CLUSTER_P4 MSigDB	C2	CGP 2
GENTILE_UV_HIGH_DOSE MSigDB	C2	CGP 2

GENTILE_UV_RESPONSE_CLUSTER_D4 MSigDB	C2	CGP 2
GRAHAM_CML_QUIESCENT_VS_NORMAL_QUIESCENT MSigDB	C2	CGP 2
HADDAD_T_LYMPHOCYTE_AND_NK_PROGENITOR MSigDB	C2	CGP 2

HOEGERKORP_CD44_TARGETS_DIRECT MSigDB	C2	CGP 2
HOEGERKORP_CD44_TARGETS_TEMPORAL MSigDB	C2	CGP 2

HOLLEMAN_VINCRISTINE_RESISTANCE_B_ALL MSigDB	C2	CGP 2
HORIUCHI_WTAP_TARGETS MSigDB	C2	CGP 2

HOXA9_DN.V1 MSigDB	C2	CGP 2
ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D MSigDB	C2	CGP 2

KAUFFMANN_D_REPLICATION_GENES MSigDB	C2	CGP 2
KIM_ALL_DISORDERS_DURATION_CORR MSigDB	C2	CGP 2

KIM_GLIS2_TARGETS MSigDB	C2	CGP 2
LEE_LIVER_CANCER MSigDB	C2	CGP 2

LEE_LIVER_CANCER_SURVIVAL MSigDB	C2	CGP 2
LIEN_BREAST_CARCINOMA_METAPLASTIC MSigDB	C2	CGP 2

LIM_MAMMARY_LUMIL_MATURE MSigDB	C2	CGP 2
LIN_APC_TARGETS MSigDB	C2	CGP 2

LINDGREN_BLADDER_CANCER_CLUSTER_1 MSigDB	C2	CGP 2
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LINDGREN_BLADDER_CANCER_CLUSTER_3 MSigDB	C2	CGP 2
LINDSTEDT_DENDRITIC_CELL_MATURATION_D MSigDB	C2	CGP 2

LIU_VAV3_PROSTATE_CARCINOGENESIS MSigDB	C2	CGP 2
LUI_THYROID_CANCER_CLUSTER_3 MSigDB	C2	CGP 2
MA_MYELOID_DIFFERENTIATION MSigDB	C2	CGP 2

MARSON_FOXP3_TARGETS_STIMULATED MSigDB	C2	CGP 2
MORI_MATURE_B_LYMPHOCYTE MSigDB	C2	CGP 2
MULLIGHAN_MLL_SIGTURE_1 MSigDB	C2	CGP 2

NIELSEN_MALIGT_FIBROUS_HISTIOCYTOMA MSigDB	C2	CGP 2
NIKOLSKY_BREAST_CANCER_15Q26_AMPLICON MSigDB	C2	CGP 2

ONDER_CDH1_TARGETS_2 MSigDB	C2	CGP 2
OXFORD_RALA_OR_RALB_TARGETS MSigDB	C2	CGP 2

PARK_APL_PATHOGENESIS MSigDB	C2	CGP 2
PARK_TRETINOIN_RESPONSE_AND_PML_RARA_FUSION MSigDB	C2	CGP 2

PATIL_LIVER_CANCER MSigDB	C2	CGP 2
PELLICCIOTTA_HDAC_IN_ANTIGEN_PRESENTATION MSigDB	C2	CGP 2

PENG_LEUCINE_DEPRIVATION MSigDB	C2	CGP 2
PHONG_TNF_TARGETS MSigDB	C2	CGP 2

PLASARI_TGFB1_TARGETS_10HR MSigDB	C2	CGP 2
POMEROY_MEDULLOBLASTOMA_PROGNOSIS MSigDB	C2	CGP 2

PYEON_HPV_POSITIVE_TUMORS MSigDB	C2	CGP 2
RADAEVA_RESPONSE_TO_IF1 MSigDB	C2	CGP 2
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