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Summary: 
 
Identifying genetic variants associated with circulating protein concentrations (pQTLs) 

and integrating them with variants from genome-wide association studies (GWAS) may 

illuminate the proteome’s causal role in disease and bridge a GWAS knowledge gap for 

hitherto unexplained SNP-disease associations. We conducted GWAS of 71 high-value 

proteins for cardiovascular disease in 6,861 Framingham Heart Study participants 

followed by external replication. We comprehensively mapped thousands of pQTLs, 

including functional annotations and clinical-trait associations, and created an integrated 

plasma-protein-QTL searchable database. We next identified 15 proteins with pQTLs 

coinciding with coronary heart disease (CHD)-related variants from GWAS or tested 

causal for CHD by Mendelian randomization; most of these proteins were associated with 

new-onset cardiovascular disease events in Framingham participants with long-term 

follow-up. Identifying pQTLs and integrating them with GWAS results yields insights 

into genes, proteins, and pathways that may be causally associated with disease and can 

serve as therapeutic targets for treatment and prevention. 
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Introduction 

Considerable progress has been made in identifying genetic underpinnings of coronary 

heart disease (CHD),1-4 which remains the leading cause of death worldwide.5 Proteins 

are the functional products of the genome and serve as critical factors for biological 

processes involved in health and disease as well as primary drug targets. Numerous 

proteins have been reported to be associated with CHD; it is often difficult, however, to 

establish with certainty whether CHD-associated proteins are causally related to risk or 

simply represent downstream markers of disease-related processes. Identifying genetic 

variants associated with protein levels (protein quantitative trait loci; pQTLs), 

characterizing pQTLs that also are associated with CHD from genome-wide association 

studies (GWAS), and inferring causality may provide novel insights into the roles of 

genetic variants, genes, and the proteins they code in the pathogenesis of CHD. To date, 

most pQTL studies6-15 have been based on small sample sizes or did not conduct 

prospective testing of associations between protein levels and clinical disease.  

To address a GWAS knowledge gap for genetic variants of unknown relevance to 

CHD, we conducted a multistage study (Figure 1) consisting of GWAS of high-value 

cardiovascular disease (CVD) plasma proteins that were measured in Framingham Heart 

Study (FHS) participants, followed by external replication in participants from the 

Cooperative Health Research in the Region of Augsburg (KORA) F4 study12 and from 

other protein GWAS. We integrated pQTLs with genetic variants from CHD GWAS 

databases1-4 and employed Mendelian randomization (MR)16 to reveal proteins with 

potentially causal effects on CHD. Last, we tested proteins for association with new-onset 

CHD events in FHS participants with long-term follow-up. We hypothesized that a 
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strategy of protein GWAS followed by causal testing and prospective association with 

CHD outcomes would identify putatively causal genes, proteins, and pathways for CHD 

and highlight novel targets for its prevention and treatment.  

 

Findings 

Discovery Set: Seventy-one proteins, selected a priori based on prior evidence of 

association with CVD, were measured in 7,333 FHS participants (Table S1). The sample 

size available for GWAS was up to 6,861 participants (mean age 50 years, 53% women); 

clinical characteristics of the discovery sample are summarized in Table S2. 

pQTL Mapping: With a GWAS sample size of ~6,800 participants and a significance 

threshold of p<5x10-8, our study had 80% power to detect a pQTL that explained ≥0.6% 

of variance in protein levels (Table S3). We identified 1,793 insertion/deletion 

polymorphisms for 57 proteins (Table S4) and 20,495 pQTLs with Reference SNP cluster 

IDs for 60 proteins (Table S5), including 11,974 cis-pQTLs representing 39 sentinel cis-

pQTL loci for 39 proteins (Figure 2a; Table S6) and 8,521 trans-pQTLs representing 91 

sentinel trans-pQTL loci for 48 proteins (Figure 2b; Table S6). Pruning the 1000 

Genomes Project (1000G) reference panel17 GWAS pQTLs (linkage disequilibrium 

r2<0.2) yielded 4,588 non-redundant variants (Table S7). Thirty-four pQTLs were rare 

variants (minor allele frequency<1%) associated with 18 proteins (Table S8).  

The effect sizes and the proportion of inter-individual variation explained by 

some pQTLs were large. For example, cis-pQTL rs941590, is a missense variant that 

explained 32% of inter-individual variation in SERPINA10 levels (Figure S1) and was 

previously reported to be associated with family history of venous thrombosis.18 Three 
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proteins (PON1, GRN, and LPA) had pQTLs that explained 10-30% of variation in 

protein levels. Minor allele frequency was inversely correlated with effect size, but not 

with proportion of variance explained. In general, cis-pQTLs and missense variants had 

larger effect sizes and explained a greater proportion of the variation in protein levels 

than did trans-pQTLs and non-coding variants, respectively (Figure 3). 

External Replication: Among our 60 proteins linked to 130 sentinel pQTLs, 46 proteins 

(associated with 105 sentinel pQTLs) were measured in the KORA F4 study12 or in prior 

GWAS. For each pQTL locus identified in the FHS, the pQTL with the lowest protein-

association p-value was selected as the sentinel pQTL for external replication. Thirty-six 

proteins, encompassing 82 sentinel pQTLs, were measured in KORA (21 cis-pQTLs and 

61 trans-pQTLs); 23 additional loci were evaluated for replication in other GWAS. 

Based on 1,000 re-samplings of 1,000 unrelated FHS participants in the discovery 

sample, 34 pQTL-protein associations yielded p<4.8x10-4 (alpha level of 0.05 after 

Bonferroni correction for 105 tests; 0.05/105) in ≥80% of samplings and thus were 

considered likely to replicate in a GWAS sample size of 1,000 (Table S9). Of the 21 

qualifying sentinel cis-pQTLs from FHS, 10 replicated in KORA (p<4.8x10-4; Table 

S10). Of the 61 sentinel trans-pQTLs (31 proteins) from FHS, 17 (14 proteins) replicated 

in KORA (p<4.8x10-4; Table S10). Next, replication from other external protein GWAS 

was conducted. Overall, among sentinel pQTLs from FHS for which replication was 

possible, all of the ten most significant sentinel cis-pQTLs and seven of the ten most 

significant sentinel trans-pQTLs replicated. In total, 19 of 31 (61%) cis-pQTL loci and 

22 of 74 (30%) trans-pQTL loci replicated at p<4.8x10-4 (Table S10).  
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pQTL Functional, Regulatory, and Clinical Annotation: Among the entire set of pQTLs, 

334 are missense variants associated with 43 proteins and 8,217 are intronic variants 

(Table S11; Figure S2).19 Pathway enrichment analysis of all pQTLs using DEPICT20 

identified 728 interrelated gene sets (false discovery rate [FDR]<0.05, p<0.0034); many 

are associated with lipids, metabolic processes, or inflammatory response (Table S12). 

Tissue enrichment analysis revealed that pQTL-mapped genes are highly expressed in 

monocytes (p=2.38x10-4) and hepatocytes (p=4.55x10-5). We employed Functional 

Mapping and Annotation21 of GWAS (FUMA; http://fuma.ctglab.nl) to generate detailed 

annotations of pQTLs for each protein (regional plot of each pQTL locus, functional 

categorization of pQTL SNPs, gene mapping, and pathway enrichment analyses) that are 

provided in Figure S3. These annotations revealed that pQTLs often reside in active 

regulatory regions and are frequently located in intergenic and intronic regions. Protein-

specific Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the 

corresponding pQTLs revealed a preponderance of pathways concordant with the 

function of the studied protein.  

Enrichment of pQTLs with eQTLs: More than 90% pQTLs were annotated with 

chromatin marks or DNase hypersensitive sites by HaploReg22 (Table S13), suggesting 

that they play an important role in gene regulation. From the 1000G GWAS, we 

identified 8,542 pQTLs (46% of total discovery) for 20 proteins that also are whole blood 

eQTLs (genetic variants associated with gene expression levels in 5,257 FHS participants 

at FDR<0.05),23 including 8,532 cis-eQTLs and 596 trans-eQTLs (Fisher’s exact test for 

enrichment p<1x10-8; Table S14). Among the 130 sentinel pQTLs, 72 (55%) are eQTLs. 

Moreover, we identified pQTLs associated with expression of the corresponding protein-
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coding genes for 15 proteins, suggesting that many pQTLs affect circulating protein 

levels by regulating blood cell gene expression (Table S15). 

Clinical Annotation: We found that 58 missense pQTLs (from the Exome Chip) 

were linked to clinical disorders in the NCBI ClinVar24 database (Table S16). We 

identified examples where the missense pQTL and its associated protein are both linked 

to CHD-related traits. For example, rs2228671, a missense variant in the LDL-receptor 

gene (LDLR), was associated in our pQTL analysis with circulating APOB levels, the 

major lipoprotein of LDL particles, and was previously reported to be pathogenic for 

familial hypercholesterolemia (FH), a monogenic disorder of LDL cholesterol.25 

Additionally, for several variants reported to be benign in ClinVar, we demonstrated 

associations with the disease-relevant protein, suggesting that they have clinical 

consequences.  

Integrating pQTLs with CHD-associated SNPs: We integrated our pQTLs with 2,738 

CHD-related SNPs from the CARDIoGRAMplusC4D Consortium1 and other CHD 

GWAS.2-4 A total of 201 pQTLs (19 independent pQTLs with linkage disequilibrium 

r2<0.2, representing 14 proteins) matched SNPs associated with CHD in GWAS (p<5x10-

8; Table S17). Table 1 displays the sentinel pQTL, based on lowest protein-association p-

value that coincided with a CHD-related GWAS SNP, and the corresponding protein at 

each genetic locus. The proteins identified by this approach included GRN, APOB, 

ANGTL3, CRP, B2M, GMP140, sICAM1, REG1A, MCAM, LPA, sGP130, BCHE, 

sRAGE, and CXCL16.  

We found the ABO locus to have links to CHD through five circulating proteins 

(MCAM, sICAM1, GMP140, sGP130, REG1A). ABO blood type has long been linked 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/136523doi: bioRxiv preprint 

https://doi.org/10.1101/136523


8 

 

to CVD risk, including in the FHS,26 additional reports have linked the ABO locus to 

CVD via coagulation pathways.27,28 ABO locus-related proteins, identified in our study, 

are involved in inflammatory pathways, including interleukin and interferon signaling 

(Figure 2). The multi-protein association of this locus may be driven by the general 

function of ABO as a glycosyltransferase.  

Some of the genes coding for CHD-related proteins have been linked to known 

CHD risk pathways in previous GWAS of lipids (APOB, LPA, ANGPTL3), coagulation 

(GMP140), and systemic inflammation (sGP130, sICAM1) (Figure 2). Many of the 

proteins that share genetic underpinnings with CHD are known drug targets (per the 

DrugBank database),29 or currently under development as such (e.g. ANGPTL3, LPA, 

sICAM1, GMP140). Several proteins with pQTLs linked to CHD, however, are not 

known drug targets, especially those from gene loci not previously linked to CHD risk 

pathways (e.g. BCHE, CXCL16, GRN, MCAM, and sRAGE).  

Causal Testing: We applied MR testing to infer the causal association between protein 

levels and CHD for all proteins having cis-pQTLs and those with at least four cis- or 

trans-pQTL loci that coincided with CHD-associated SNPs from GWAS.1 MR causally 

implicated LPA, REG1A, MCAM, and SAA1 via cis-pQTLs as instrument variables 

(p<0.05; Table S18). For 11 proteins with pQTLs that coincided with SNPs from CHD 

GWAS and had at least four non-redundant cis- or trans-pQTLs, we conducted MR 

analyses using a multi-SNP approach, implemented in MRbase,30 which revealed causal 

CHD associations for APOB (p=0.0005) and GRN (p=7.0x10-5). 

Protein Associations with Clinical Outcomes: For 15 proteins (Figure 4) with pQTLs that 

coincided with CHD GWAS SNPs or tested positive in MR analyses at p<0.05 we tested 
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the associations of protein levels with a) major CHD (recognized myocardial infarction or 

CHD death; n=213 events) and b) CVD death (fatal CHD or death due to stroke, 

peripheral arterial disease, heart failure, or other CVD causes; n=199 events) occurring 

during a median follow-up of 14.3 years (25th percentile 11.4, 75th percentile 15.2 years) 

among 3,520 FHS participants age ≥50 years. Twelve of the 14 proteins with pQTLs that 

coincided with CHD GWAS SNPs were associated (nominal p<0.05) with incident CHD 

or CVD death (Table 2). After adjusting for multiple testing of 15 proteins (p<0.05/15 = 

p<3.3x10-3), nine proteins remained associated with incident events. Four (REG1A, 

SAA1, APOB, and GRN) of the six proteins that tested causal for CHD by MR (at 

p<0.05) were associated with CHD/CVD outcomes (at p<0.05). Two proteins (AGP1 and 

HPX) that tested marginally positive for CHD risk in MR analysis (0.05<p<0.10) were 

associated with new-onset CHD events (p=3.5x10-8 for AGP1 and p=2.0x10-5 for HPX). 

The protein effect sizes on CHD predicted from MR were consistent with the observed 

prospective protein-CHD associations (Figure 5).  

Novel Proteins and Pathways Implicated in CHD: Whereas LPA and APOB can be 

viewed as positive controls because prior studies identified them as causal for CHD,31-34 

four proteins that were causal for CHD in MR are novel, including REG1A, MCAM, 

SAA1, and GRN (Table S18). REG1A is a protein secreted by the pancreas and may be 

related to islet cell regeneration and diabetogenesis, potentially contributing to increased 

atherogenic risk of diabetes.35 REG1A levels were positively associated with CHD and 

CVD outcomes in our protein-trait association analyses (Table 2), and previous studies 

have shown that levels of REG1A are elevated in individuals with CHD and type 2 

diabetes.35,36 MCAM, also known as CD146, a trans-membrane glycoprotein, is highly 
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expressed in vascular cells and plays a role in cell adhesion. MCAM/CD146 levels are a 

biomarker of endothelial activation/injury and are associated with carotid intima 

thickness37,38 and risk for acute CHD events.39-41 Our MR and integrative GWAS 

analyses suggest a protective role of MCAM/CD146 on CHD risk. Protein-trait 

association analysis for MCAM/CD146 in the FHS did not find evidence of association 

with CHD or CVD events, however, a previous FHS case-control analysis reported an 

inverse association of MCAM/CD146 with myocardial infarction,36 concordant with our 

MR results.  

SAA1, a precursor to amyloid A, is an inflammatory apolipoprotein inversely 

associated with HDL-cholesterol.42 Serum SAA1 levels are elevated in patients with 

CHD.43 In addition, SNPs located in the SAA1 gene are associated with carotid intima 

media thickness and HDL-cholesterol levels.44,45 Our follow-up analyses revealed 

association of circulation SAA1 levels with CHD and CVD risk. MR results for GRN 

were positive, largely by virtue of sentinel trans-pQTLs. One of our sentinel trans-

pQTLs for GRN, rs12740374, is located at the CELSR2/SORT1 locus on Chromosome 1; 

it explained 15% of variance in GRN levels and was associated with CHD at p<4.6x10-23 

in prior GWAS.1 Previous studies reported that rs12740374 affects expression levels of 

the SORT1 gene in human hepatocytes, which in turn regulate LDL-cholesterol 

levels.46,47 Our longitudinal analyses revealed association of GRN with CVD death in 

FHS participant (p=0.001; Table 2).  

Molecular QTL browser: Our pQTL resource is accessible through the NCBI Molecular 

QTL Browser (ftp://ftp.ncbi.nlm.nih.gov/eqtl/original_submissions/FHS_pQTLs/; a link 

to the browser will be sent to reviewers under separate cover), which serves as a data 
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resource for associations between genetic variants and molecular phenotypes. The 

browser links our pQTL results to eQTLs and other molecular resources via a user-

friendly interface. Users can browse and search results and specify p-value cutoffs and 

other data filters. The Molecular QTL Browser also permits users to conduct targeted 

studies of specific genes based on prior evidence. The integrated data resource enables 

searches across datasets and filtering by functional annotation and genomic position.  

 

Discussion 

Using a multistage strategy, we discovered thousands of pQTLs associated with 

scores of proteins that were selected a priori as high-value plasma proteins for CVD. 

Integration of pQTLs with CHD GWAS revealed 14 proteins with pQTLs that coincide 

with CHD SNPs (Table 1) and MR analyses identified six proteins with evidence for 

causal effects on CHD (Table S18), four of which were novel (REG1A, MCAM, SAA1, 

and GRN). Furthermore, most of these proteins were associated with new-onset CHD or 

CVD events in FHS participants with long-term follow-up (Table 2). Our strategy 

connected pQTLs, genes, the proteins they code, and CHD risk (Figure 4) and 

highlighted a comprehensive approach to bridge the GWAS knowledge gap for genetic 

variants that have no links to disease via known mechanisms. 

We acknowledge several limitations of our study. Participants were of European 

ancestry; consequently, the results may not be directly generalizable to populations with 

different genetic backgrounds. Although our sample size for GWAS was large, our ability 

to detect pQTLs and to test them for causality using MR was limited by power. Protein 
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levels were measured in whole blood and may not reflect tissue-specific patterns of 

expression. 

To our knowledge, this is the largest sample size pQTL study with well-powered 

discovery, independent external replication, CHD causal testing, and confirmatory 

prospective protein-CHD outcome findings. We provide a large and comprehensive 

compilation of pQTLs as a resource for other researchers (via the NCBI Molecular QTL 

Browser) and provide evidence that an integrated genomic approach can identify proteins 

with putatively causal effects on CHD. Although some of our causally-implicated 

proteins may act through classic CHD risk factors and known pathways, many do not and 

thus represent attractive candidate targets for drug development. Additional studies are 

needed to elucidate the mechanisms by which such proteins alter CHD risk as well as 

trials to confirm our MR prediction that perturbing these pathways can prevent CHD 

events. Taken together, the genetic variants associated with circulating protein levels in 

this study shed new light on genes, proteins, and pathways contributing to the 

pathogenesis of CHD, which could have profound implications for the treatment and 

prevention of the leading cause of death worldwide. 
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Table 1. Proteins with pQTLs that Coincide with Coronary Heart Disease-associated SNPs from Genome-wide Association 
Studies 
 

 
*For proteins with multiple pQTLs that coincided with coronary heart disease GWAS SNPs, the pQTL with the lowest p-value of 
association with its corresponding protein level is shown. 
 

Protein Protein-
coding 
Gene 

Location 
of Protein-

coding 
Gene 

pQTL* pQTL 
Annotated 

Gene Locus 

pQTL Location pQTL Function pQTL-protein 
P-value 

CHD GWAS 
P-value† 

ANGPTL3 ANGPTL3 7:63.1M rs964184 ZNF259 11:116.6Mb UTR3 1.1x10-14 8.0x10-10 

APOB APOB 2:21.2M rs12740374 CELSR2 1:109.8Mb UTR3 3.2x10-15 3.3x10-18 

APOB APOB 2:21.2M rs964184 ZNF259 11:116.6Mb UTR3 9.5x10-9 8.0x10-10 

APOB APOB 2:21.2M rs445925 APOC1 19:45.4Mb Upstream 7.0x10-27 9.4x10-11 

B2M B2M 15:45.0M rs2508015 HLA-C 6:31.0Mb Intergenic 5.2x10-10 1.5x10-9 

B2M B2M 15:45.0M rs10774625 ATXN2 12:119.1Mb Intronic 8.7x10-11 8.0x10-9 

BCHE BCHE 3:165.5M rs35071165 ABI2 2:204.2Mb Intronic 3.4x10-8 5.2x10-10 

CRP CRP 1:159.7M rs12721051 APOC1 19:45.4Mb UTR3 2.4x10-17 2.0x10-10 

CXCL16 CXCL16 17:4.6M rs11065987 CUX2 12:112.1Mb Intergenic 1.1x10-8 2.5x10-10 

GMP140 SELP 1:169.6M rs2519093†† ABO 9:136.1Mb Intronic 1.2x10-78 1.2x10-11 

GRN GRN 17:42.4M rs12740374 CELSR2 1:109.8Mb UTR3 2.7x10-268 4.6x10-23 

LPA LPA 6:161.0M rs55730499** LPA 6:161.0Mb Intronic 3.8x10-167 5.4x10-39 

MCAM MCAM 11:119.2M rs550057 ABO 9:136.1Mb Intronic 1.4x10-11 4.2x10-9 

REG1A REG1A 2:79.3M rs687289 ABO 9:136.1Mb Intronic 2.6x10-12 7.7x10-9 

sGP130 IL6ST 5:55.2M rs507666†† ABO 9:136.1Mb Intronic 8.2x10-19 1.6x10-11 

sICAM1 ICAM1 19:10.4M rs532436†† ABO 9:136.1Mb Intronic 7.7x10-41 1.6x10-11 

sRAGE AGER 6:32.1M rs2523535** MICA 6:31.3Mb Upstream 1.3x10-9 8.1x10-10 
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**Indicates cis-pQTL. All other pQTLs shown in this table are trans-pQTLs. 
 
†P-value of associations with coronary heart disease risk in GWAS reported in the NHGRI GWAS Catalog, GRASP Database, or 
CARDIOGRAMplusC4D Consortium. 
 
††Indicates pQTLs located in the ABO gene that are in high LD (r2>0.8) with each other.  
 
Abbreviations: CHD = coronary heart disease; GWAS = genome-wide association study; pQTL = protein quantitative trait locus (i.e. 
genetic variant associated with protein level) 
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Table 2. Protein Associations with Coronary Heart Disease Events and Cardiovascular Disease Death in Framingham Heart 
Study Participants with Long-term Follow-up 
 

Protein 

Link to 
CHD in 
GWAS, 
MR, or 
Both 

Protein Description 
KEGG Pathways for Which 
pQTLs of Each Protein Are 

Enriched for† 

Association with CHD 
Events* 

Association with CVD Death* 

Hazards Ratio 
(95% CI) 

P-value†† 
Hazards Ratio 

(95% CI) 
P-value†† 

ANGPTL3 
CHD 

GWAS 

A member of a family of 
secreted proteins that 

function in angiogenesis 
PPAR signaling pathway 1.18 (1.01-1.36) 0.03 0.99 (0.85-1.16) 0.94 

APOB Both 
The main apolipoprotein of 

chylomicrons and low 
density lipoproteins 

Endocytosis 1.44 (1.24-1.67) 1.8x10-6 1.07 (0.91-1.26) 0.41 

B2M 
CHD 

GWAS 

A serum protein found in 
association with the major 
histocompatibility complex 
(MHC) class I heavy chain 
on the surface of nearly all 

nucleated cells 

Type I diabetes mellitus 
Antigen processing and 

presentation 
Allograft rejection 

Graft versus host disease 
Autoimmune thyroid 

disease 
 

1.47 (1.24-1.75) 9.0x10-6 1.97 (1.63-2.38) 2.3x10-12 

BCHE 
CHD 

GWAS 

A cholinesterase enzyme and 
member of the type-B 
carboxylesterase/lipase 

family of proteins 

None 1.09 (0.94-1.26) 0.3 0.82 (0.70-0.96) 0.01 

CRP 
CHD 

GWAS 
A member of the pentaxin 

family 
None 1.4 (1.20-1.62) 1.4x10-5 1.43 (1.23-1.68) 5.6x10-6 

CXCL16 
CHD 

GWAS 
A scavenger receptor on 

macrophages 

Chemokine signaling 
pathway 

Cytokine-cytokine receptor 
interaction 

1.13 (0.97-1.31) 0.1 1.17 (1.00-1.37) 0.04 
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Intestinal immune network 
for IgA production 

Neurotrophin signaling 
pathway 

GMP140 
CHD 

GWAS 

Ca(2+)-dependent receptor 
for myeloid cells that binds 

to carbohydrates on 
neutrophils and monocytes 

Cell adhesion molecules 1.23 (1.06-1.42) 7.1x10-3 1.25 (1.06-1.46) 6.0x10-3 

GRN Both 
A family of secreted, 
glycosylated peptides 

None 1.14 (0.98-1.32) 0.08 1.29 (1.11-1.51) 1.2x10-3 

LPA Both 
A serine proteinase that 

inhibits the activity of tissue-
type plasminogen activator I 

None 1.09 (0.94-1.26) 0.2 1.09 (0.93-1.27) 0.29 

MCAM Both 

Plays a role in cell adhesion, 
and in cohesion of the 

endothelial monolayer at 
intercellular junctions in 

vascular tissue 

None 0.88 (0.76-1.03) 0.1 1.11 (0.95-1.30) 0.19 

REG1A Both 
A type I subclass member of 

the Reg gene family 

Glycosphingolipid 
biosynthesis - lacto and 

neolacto series 
Glycosphingolipid 

biosynthesis - globo series 

1.28 (1.10-1.48) 1.2x10-3 1.47 (1.25-1.73) 2.6x10-6 

SAA1 MR 
A member of the serum 

amyloid A family of 
apolipoproteins 

Propanoate metabolism 
Cysteine and methionine 

metabolism 
Pyruvate metabolism 

1.28 (1.10-1.48) 1.0x10-3 1.37 (1.17-1.59) 6.2x10-5 

sGP130 
CHD 

GWAS 

A signal transducer shared by 
many cytokines, including 
Interleukin 6 (IL6), ciliary 

neurotrophic factor (CNTF), 
leukemia inhibitory factor 
(LIF), and oncostatin M 

None 1.02 (0.88-1.18) 0.8 1.34 (1.14-1.56) 2.7x10-4 
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(OSM) 

sICAM1 
CHD 

GWAS 
A cell surface glycoprotein 

Complement and 
coagulation cascades 

1.23 (1.06-1.42) 5.1x10-3 1.33 (1.14-1.55) 2.1x10-4 

sRAGE 
CHD 

GWAS 

A member of the 
immunoglobulin superfamily 

of cell surface receptors 

Antigen processing and 
presentation 

Type I diabetes mellitus 
Allograft rejection 

Graft versus host disease 
Autoimmune thyroid 

disease 
 

1.03 (0.89-1.20) 0.7 1.18 (1.01-1.37) 0.04 

 
*CHD events (n=213) included recognized myocardial infarction or death from CHD, and CVD death (n=199) included fatal CHD or 
death due to stroke, peripheral arterial disease, heart failure, or other CVD causes occurring during a median follow-up of 14.3 years 
(25th percentile 11.4, 75th percentile 15.2 years) among 3,520 Framingham Heart Study participants age ≥50 years. 
 
**Proteins that tested positive in Mendelian randomization analysis for coronary heart disease risk at 0.05<p<0.10. 
 
†For proteins with pQTLs that are enriched for more than five KEGG pathways, the top five most significant pathways based on 
enrichment p-value are shown. 
 
††The p-value threshold for significance (p<3.3x10-3) was determined by the Bonferroni method (0.05/15 proteins tested). Significant 
p-values are shown in bold. 
 
Abbreviations: CHD = coronary heart disease; CI = confidence interval; CVD = cardiovascular disease; GWAS = genome-wide 
association study; KEGG = Kyoto Encyclopedia of Genes and Genomes; MR = Mendelian randomization 
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Figure 1. Flowchart of Study Design 
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Figure 1. Flowchart of Study Design  
The study consisted of seven steps: 1) selection and measurement of 71 high-value plasma proteins for atherosclerotic CVD via 
multiplex immunoassays in 7,333 FHS participants, 2) GWAS of the 71 proteins in 6,861 FHS participants to identify genome-wide 
significant pQTLs, 3) functional enrichment analyses of the identified pQTLs, 4) independent external replication of the sentinel 
pQTLs in KORA and other previous GWAS, 5) integrated analysis to pQTLs that coincide with CHD SNPs from GWAS, 6) 
identification of causal proteins for CHD using a Mendelian randomization approach, 7) association analysis of proteins from steps 5 
and 6 with risk for incident CHD death and CVD death in 3,520 FHS participants age 50 years or older with available long-term 
follow-up.   
 
Abbreviations: CHD = coronary heart disease; CVD = cardiovascular disease; FHS = Framingham Heart Study; GWAS = genome-
wide association study; KORA = Cooperative Health Research in the Region of Augsburg Study; pQTL = protein quantitative trait 
locus (i.e. genetic variant associated with protein level); SNP = single nucleotide polymorphism 
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Figure 2. Sentinel cis- and trans-pQTLs and the Corresponding Proteins  
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B)  
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Figure 2. Sentinel cis- and trans-pQTLs and the Corresponding Proteins.  
Circos plots of sentinel cis- (Panel A) and trans-pQTLs (Panel B) and the plasma protein levels with which they are associated. 
Sentinel pQTLs are listed in order of chromosomal locations (blue boxes in the left semicircle). Loci containing pQTLs previously 
identified in GWAS to be associated with CHD are written in red text. Proteins with genome-wide significant pQTLs are listed in the 
right semicircle. The following three conditions are summarized for each protein: 1) The corresponding protein-coding gene is linked 
to a potential CHD pathway in previous GWAS (above the black line). 2) The corresponding protein-coding gene is a known drug 
target (green text). 3) GO biological processes for the protein-coding gene (green box denotes lipid metabolism pathways, blue box 
denotes inflammatory/immune response pathways, yellow box denotes coagulation/platelet/hemostasis pathways, and gray box 
denotes other pathways not included in the three most common, previously listed pathways). A single primary GO process was chosen 
when the protein-coding gene was included in multiple pathways.  
  
Abbreviations: CHD = coronary heart disease; GO = Gene Ontology; GWAS = genome-wide association study; pQTL = protein 
quantitative trait locus (i.e. genetic variant associated with protein level); SNP = single nucleotide polymorphism 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as not
this version posted M

ay 12, 2017. 
; 

https://doi.org/10.1101/136523
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/136523


28 

 

Figure 3. pQTL Minor Allele Frequency vs. Effect Size and Proportion of Variance Explained 
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Figure 3. pQTL Minor Allele Frequency vs. Effect Size and Proportion of Variance Explained 
Minor allele frequency of pQTLs (X-axis) vs. effect size of variants on proteins (left panel) and proportion of protein variance 
explained (right panel) for each sentinel pQTL locus.  
 
Abbreviations: pQTL = protein quantitative trait locus (i.e. genetic variant associated with protein level) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as not
this version posted M

ay 12, 2017. 
; 

https://doi.org/10.1101/136523
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/136523


30 

 

Figure 4. pQTL-Protein-Coronary Heart Disease Network 
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Figure 4. pQTL-Protein-Coronary Heart Disease Network 
Network of proteins and significant pQTLs with annotated gene loci for the pQTLs that are also GWAS risk SNPs for CHD (see Table 
1). For proteins with multiple pQTLs that coincide with coronary heart disease GWAS SNPs, the pQTL with the lowest p-value of 
association with its corresponding protein level is shown. The following two conditions are summarized: 1) Proteins that tested causal 
for CHD in Mendelian randomization (p<0.05). 2) Proteins associated with new-onset CHD (p<0.05) in 3,520 Framingham Heart 
Study participants age 50 years or older with long-term follow-up. Proteins in green fulfill neither condition 1 nor 2; proteins in blue 
fulfill condition 1; proteins in red fulfill condition 2; proteins in purple fulfill conditions 1 and 2. The pQTL rs2523535 for sRAGE 
was reported to be associated with CHD (p=8.1x10-10) in a Japanese GWAS (PMID 21971053). 
 
Abbreviations: CHD = coronary heart disease; FHS = Framingham Heart Study; MR = Mendelian randomization; pQTL = protein 
quantitative trait locus (i.e. genetic variant associated with protein level) 
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Figure 5. Comparison of Protein Effects on Coronary Heart Disease from Mendelian Randomization Estimate vs. Observed 
Hazards 
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Figure 5. Comparison of Protein Effects on Coronary Heart Disease from Mendelian Randomization Estimate vs. Observed Hazards 
Comparison of protein effects on CHD estimated from Mendelian randomization versus the observed hazards in 3,520 Framingham 
Heart Study participants with long-term follow-up.  
 
Abbreviations: CHD = coronary heart disease; CI = confidence interval; MR = Mendelian randomization; RR = relative risk 
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Methods 

Study Design: The study consisted of seven steps (Figure 1): 1) selection and 

measurement of 71 high-value plasma proteins for atherosclerotic CVD via multiplex 

immunoassays in 7,333 FHS participants, 2) genome-wide association study of the 71 

proteins in 6,861 FHS participants to identify genome-wide significant pQTLs, 3) 

functional enrichment analyses of the identified pQTLs, 4) independent external 

replication of the sentinel pQTLs in KORA, 5) integrative analysis to pQTLs that 

coincide with CHD SNPs from GWAS, 6) identification of causal proteins for CHD 

using a Mendelian randomization approach, 7) association analysis of proteins from steps 

5 and 6 with risk for incident CHD death and CVD death in 3,520 FHS participants age 

50 years or older with available long-term follow-up. 

Discovery Study Sample: The FHS is a community-based prospective study of CVD and 

its risk factors that recruited three generations of participants within families in 1948, 

1971, and 2002, respectively.48-50 The study samples for this investigation were collected 

from 7,333 participants from the FHS Offspring (Exam 7; 1998-2001) and Third 

Generation (Exam 1; 2002-2005) cohorts. The final sample for GWAS was composed of 

6,861 participants with complete imputed dosage data based on the 1000 Genomes 

Project reference panel (1000G).17 For association analyses using Exome Chip genotypes 

(see Genotyping for details), the sample size was 6,763. Genome-wide analysis of SNPs 

associated with gene expression levels (eQTLs) was performed on 5,257 FHS 

participants in whom both genotype and gene expression data were available.23 

Replication Study Sample: The KORA F4 study is a prospective population-based cohort 

study consisting of 3,080 participants living in Augsburg, Southern Germany.12,51 A total 
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of 1,000 participants who also participated in a metabolomic study with follow-up 

information for aging-related diseases composed the study population for replication. 

After excluding participants with missing genotype or protein data (n=3), the final KORA 

sample included 997 individuals. 

Power Calculation: For power in the discovery stage with n=6,800, we assumed an 

additive genetic model with no interaction and a population mean=0 and standard 

deviation=1 for all rank-normalized protein levels. At α=5x10-8 for a two-sided test, 

power was estimated for MAF=0.002, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 with 

QUANTO.52 For empirical power in the replication stage, we performed pQTL analysis 

with 1,000 resamplings of 1,000 unrelated FHS participants. We counted the number of 

tests with p<0.05/n in the 1,000 resamplings, where n is the number of pQTLs that tested 

for replication in KORA. 

Clinical Measures: All FHS participants underwent periodic clinical examinations with 

standard protocols as described previously.50 A three-physician panel was formed to 

perform medical chart review weekly. The review panel jointly assigned CVD diagnoses 

and causes of death. All suspected CVD events were adjudicated by the physician-panel 

after reviewing all available medical evidence including hospital records, personal 

physician records, and interviews with next of kin in the event of an out-of-hospital 

death. Recognized myocardial infarction (MI) was diagnosed when two of three of the 

following conditions were present: prolonged chest discomfort or symptoms of coronary 

ischemia, elevated biomarkers of myocardial necrosis (e.g. CK-MB or troponin), and the 

development of new diagnostic Q-waves on the ECG. Fatal CHD events included fatal 

MI and other deaths due to CHD as an underlying cause in the absence of evidence of 
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recent infarction. Fatal CVD events additionally included deaths due to stroke, peripheral 

arterial disease, heart failure, or other cardiovascular causes. 

Protein Quantification: FHS fasting blood plasma samples were collected and stored at -

80°C. Candidate protein biomarkers were selected a priori based on previous evidence of 

association with atherosclerotic CVD or its risk factors using the following 

complementary approaches: a) comprehensive literature search,53 b) proteomics 

discovery via mass spectrometry in the FHS or elsewhere,36,54 and c) targeting proteins 

coded by genes identified via gene expression profiling studies55,56 or GWAS57 of 

atherosclerotic CVD and its risk factors. A total of 85 plasma protein biomarkers were 

assayed using a modified enzyme-linked immunosorbent assay sandwich method, 

multiplexed on a Luminex xMAP platform (Luminex, Inc., Austin, TX). All targets were 

first developed as singleton assays before compatible targets were pooled to create 

multiplex panels. Standard Luminex assays with previously published methods were 

used.58,59 Measurements were calibrated using a seven-point calibration curve (in 

triplicate) and tested for recovery at both ends of the quantitation scale. The ‘High’ and 

‘Low’ spike controls (QC1 and QC2 respectively) were used to calculate intra- and inter-

assay coefficients of variation (CV) for each protein. A total of 14 proteins had low call-

rate (<90%) mainly due to values falling below the lower detection limit that were 

excluded for the current study. A list of the 71 proteins and their coefficients of variation 

and selection criteria were shown in Table S1.  

 For the KORA study, plasma levels of 1,129 proteins in 1,000 blood samples 

were measured using the SOMAscan platform (SomaLogic Inc., Boulder, Colorado), a 

multiplexed aptamer-based affinity proteomics platform; 1,124 proteins passed quality 
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control. Protein measurement protocol, normalization of protein values, and data quality 

are described elsewhere.12 

Genotyping: Genotyping and QC methods in the FHS have previously been described.17 

In brief, genome-wide genotyping was conducted using the Affymetrix 500K mapping 

arrays and 50K supplemental Human Gene Focused arrays (Affymetrix, Inc., Santa 

Clara, CA) as well as the Illumina Human Exome BeadChip v.1.0 (Exome Chip; 

Illumina, Inc., San Diego, CA). Genotypes from the Affymetrix arrays were used in 

conjunction with the 1000G reference panel17 to generate an imputed set of ~30 million 

variants using MACH.60 SNPs with imputation quality ratio <0.3 (imputation quality 

ratio is calculated by the ratio of the variances of the observed and the estimated allele 

counts) or minor allele frequency (MAF) <0.01 were excluded, leaving a final set of 

8,509,364 SNPs for 1000 genomes imputed GWAS.  

The Exome Chip includes rare coding variants not covered by previous 

genotyping arrays.61 More than 90% of the SNPs included in the Exome Chip are non-

synonymous variants, splice variants, or stop codon altering variants. Common variants 

on the Exome Chip include 5,542 SNPs that were selected based on their associations 

with disease traits reported in the NHGRI GWAS Catalog.1 Rare variants with 

MAF<1x10-4 were excluded from analysis. 

 For KORA, the Affymetrix Axiom Array (Affymetrix, Inc., Santa Clara, CA) was 

used to genotype 3,788 study participants.12,51 Genotypes were then imputed from the 

1,000G reference panel15 and used for lookup of the replication targets. 

Functional Annotation of pQTLs: We used HaploReg22 v4.1 to functionally annotate our 

pQTL results. Using information from the Roadmap Epigenomics62 and ENCODE 
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projects,63 HaploReg linked SNPs and small insertions/deletions with chromatin state, 

protein binding annotation, and regulatory motifs. A total of 14,756 pQTLs could be 

found in the HaploReg database. We used DEPICT20 to conduct gene prioritization, 

pathway analysis, and tissue/cell type enrichment analysis. DEPICT used information 

from co-regulation of gene expression from 77,840 samples, in conjunction with 14,461 

reconstituted functional gene sets, to assess pathway enrichment and prioritize genes. In 

addition, DEPICT utilized a set of 37,427 human microarrays to identify enrichment of 

highly expressed genes in specific tissue/cell types. We used Functional Mapping and 

Annotation21 of GWAS (FUMA; http://fuma.ctglab.nl) to categorize proteins based on 

known pathways and conduct functional annotation of pQTLs (regional plot of each 

pQTL locus, functional categorization of pQTL SNPs, gene mapping, and pathway 

enrichment analyses). 

Gene Expression: Gene expression profiling was conducted using the Affymetrix Human 

Exon 1.0 ST GeneChip platform (Affymetrix Inc., Santa Clara, CA), comprised of >5.5 

million probes covering expression of 17,873 mRNA transcripts. Gene expression values 

were normalized and adjusted for three technical covariates (batch, first principal 

component, and residual of probeset mean values) as described previously.23 

Coronary Heart Disease-associated SNPs: The CARDIoGRAMplusC4D Consortium1 

GWAS of CHD yielded 1,892 genome-wide significant SNPs (at p<5x10-8) from 1000G 

imputation. The National Human Genome Research Institute (NHGRI) GWAS catalog2 

(downloaded in July 2016) and Genome-wide Repository of Associations Between SNPs 

and Phenotypes (GRASP)3,4 v.2.0 (downloaded in June 2016) included 846 SNPs 

associated in GWAS with CHD at genome-wide significance level (p<5x10-8).  
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Statistical Methods: Statistical analyses in the FHS were performed using R software 

version 3.1.164 or SAS software version 9.4.  

Genome-wide association (pQTL) analyses: Linear mixed effects models (the 

“LMEKIN” function of Kinship Package in R64) were used to test associations of inverse-

rank normalized protein levels with 1000G or Exome Chip variants in conjunction with 

an additive genetic model. We applied a p-value threshold of 5x10-8 for defining 

significant pQTLs. A cis-pQTL was defined as a SNP residing within 1 megabase (Mb) 

upstream or downstream of the transcription start site of the corresponding protein-

coding gene. A SNP located >1 Mb upstream or downstream of the gene transcript or on 

a different chromosome from its associated gene was categorized as a trans-pQTL.  

Linkage disequilibrium (LD) was computed as the square of Pearson’s correlation 

(r2) between imputed additive dosages of genotypic variants within the same 

chromosome across 8,481 FHS individuals with genotype data. Independent pQTLs for a 

given protein were defined as those with LD r2<0.2 with other pQTLs at a genomic locus. 

For a genetic locus with multiple pQTLs in LD (i.e., LD r2>0.2), we selected the pQTL 

with the lowest p-value to represent the sentinel pQTL for that locus. 

For KORA, linear regression models were performed on the follow-up SNPs 

using R version 3.1.3.64 Associations between inverse-normalized protein levels and 

imputed dosages were tested using linear additive genetic regression models adjusted for 

age, sex, and body mass index.12 

eQTL Mapping: We used linear mixed effects models, accounting for familial 

relationships using “PEDIGREEMM” in R,64 to assess associations between ~8.5 million 

1000G SNPs that were additively coded and expression levels of 17,873 transcripts.23 
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Models were adjusted for age, sex, platelet count, differential white cell count 

(percentages of lymphocyte, monocyte, eosinophil, and basophil), and for 20 PEER 

factors65,66 to reduce confounding due to unmeasured factors. The criteria used to define 

cis and trans effects for pQTLs were also applied to eQTLs. A false discovery rate (FDR) 

threshold of 0.05 was applied separately for cis- and trans-eQTLs.  

Mendelian randomization: We used an MR approach to test for causal associations 

between protein biomarkers and CHD risk. The sentinel cis-pQTL for each protein, based 

on lowest p-value of association in either 1000G GWAS or Exome Chip analysis, was 

selected as the instrumental variable (IV) for its perspective protein in MR analysis. 

Based on the association between the sentinel cis-pQTL and CHD in prior GWAS,1 a 

putative causal effect of one standard error difference in inverse-rank normalized protein 

level on CHD was calculated as the per risk allele effect on CHD risk dependent on the 

per risk allele effect on one standard error difference in inverse-rank normalized protein 

level (the Wald ratio test).67 For proteins with suggestive single cis-pQTL results 

(0.05<p<0.1) and with additional non-redundant cis-pQTLs, we conducted single-locus 

multi-SNP MR. Low-level correlation (LD r2<0.2) between variants in the genetic risk 

score was adjusted for in MR analysis using the method developed by Burgess et al.68 

Similarly, for proteins with pQTLs that shared genetic signals with CHD from GWAS, 

we conducted multi-SNP MR using MRbase30 when there were at least four non-

redundant pQTL loci. 

Associations of protein levels with CVD: To analyze associations between plasma protein 

levels and MI/CHD death and CVD death in FHS participants, protein biomarkers were 

rank-normalized. Cox proportional hazard models were used to predict MI/CHD death 
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and CVD death for each biomarker, adjusting for age and sex. Participants younger than 

50 years of age at baseline were excluded from outcome analyses due to a paucity of 

events in this age group. In addition, participants with prevalent MI/CHD or CVD at 

baseline were excluded from analyses of incident events, leaving a final sample size of 

3,520 FHS participants. 

Independent External Replication: After merging our 1000G and Exome Chip GWAS 

results, the pQTL with the lowest p-value of association at each genetic locus was 

selected as the sentinel pQTL. We conducted independent external replication of our 

sentinel pQTLs in the KORA study12 and in other protein GWAS. Out of the 60 proteins 

with pQTL SNPs in the FHS, replication was conducted for 47 proteins from discovery 

that also were measured in KORA or other studies. The sentinel pQTL at each genetic 

locus in the FHS was determined to be successfully validated if its corresponding 1000G-

imputed genotype or strong proxy (LD r2>0.8) in KORA was also a significant pQTL for 

the corresponding protein and if directionality of pQTL-protein association was 

preserved. Statistical significance was defined as a p-value <0.05/n (n was the number of 

pQTLs that were studied in KORA).  

Study Approval: All participants from the FHS and KORA study gave informed consent 

for participation in this study and for the collection of plasma and DNA for analysis. The 

KORA study was approved by the Ethics Committee of the Bavarian Medical 

Association, Germany. 

Data Access: All data from the FHS for this study are accessible (dbGaP Study 

Accession: phs000363.v16.p10). Data for KORA are available upon request from 
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KORA-gen (http://epi.helmholtz-muenchen.de/kora-gen). Requests are submitted online 

and are subject to approval by the KORA board. 
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