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Our ability to predict protein expression from DNA sequence alone remains poor, 
reflecting our limited understanding of cis-regulatory grammar and hampering the design 
of engineered genes for synthetic biology applications. Here, we generate a model that 
predicts the translational efficiency of the 5’ untranslated region (UTR) of mRNAs in the 
yeast Saccharomyces cerevisiae. We constructed a library of half a million 50-nucleotide-
long random 5’ UTRs and assayed their activity in a massively parallel growth selection 
experiment. The resulting data allow us to quantify the impact on translation of Kozak 
sequence composition, upstream open reading frames (uORFs) and secondary structure. 
We trained a convolutional neural network (CNN) on the random library and showed that 
it performs well at predicting the translational efficiency of both a held-out set of the 
random 5’ UTRs as well as native S. cerevisiae 5’ UTRs. The model additionally was used 
to computationally evolve highly translating 5’ UTRs. We confirmed experimentally that 
the great majority of the evolved sequences lead to higher translation rates than the 
starting sequences, demonstrating the predictive power of this model. 
 
Precise control of protein expression is critical for cellular homeostasis and growth. One major 
layer of this control is exerted via post-transcriptional regulation of mRNAs, typically through the 
activity of their 5’ and 3’ untranslated regions. In S. cerevisiae, the effects of 5’ UTRs on 
translation have been characterized in detail for a few genes, pointing to the role of such 
features as upstream ORFs (Thireos et al. 1984; Werner et al. 1987), hairpins and other 
secondary structures (Linz et al. 1997; Yoon et al. 1992; Ringnér et al. 2005) and the Kozak 
sequence, i.e. the nucleotides (nt) immediately surrounding the AUG start codon (Hamilton et al. 
1987). More recent studies have analyzed the functional consequences of polymorphisms and 
short sequence motifs (≤10 nt) in thousands or even tens of thousands of yeast (Dvir et al. 
2013) and mammalian (Noderer et al. 2014) 5’ UTRs. However, this variation was targeted to 
nucleotides near the start codon, such that we are still unable to predict from sequence alone 
how the many distinct sequence and structural features of an entire 5’ UTR combine to regulate 
protein production. 
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A predictive model relating 5’ UTR sequence to protein production would not only provide novel 
insights into the grammar of biological cis-regulation, but it would also enable forward 
engineering of 5’ UTRs with tailor-made properties. Designing sequences with quantitatively 
predictable properties is a long-standing goal of synthetic biology and a prerequisite for 
accelerating the design-build-test cycle in metabolic engineering. Models have been designed, 
for example, to predict for E. coli the impact of a ribosome binding site on translation (Salis et al. 
2009) or to understand how combinations of promoters and ribosome binding sites affect RNA 
and protein expression (Kosuri et al. 2013). However, so far, no generally applicable model has 
been generated that captures the effect of 5’ UTR sequence variation on protein production, 
primarily due to the lack of a dataset large and diverse enough to train such a model. Here, we 
overcome this limitation by using a library with 500,000 5’ UTR variants to generate a predictive 
model using a CNN. 
 
While many different types of machine learning models have been applied successfully to 
biological data, CNNs in particular offer a combination of model power and interpretability, and 
as such have recently been used to predict transcription factor binding, DNase I hypersensitivity 
sites, enhancers, and sites of DNA methylation (Alipanahi et al. 2015; Zhou and Troyanskaya 
2015; Kelley et al. 2016; Quang and Xie 2016; Lanchantin et al. 2016; Liu et al. 2016; 
Kleftogiannis et al. 2015; Wang et al. 2016). However, with yeast possessing only about 5,000 
genes, measurement of the translational efficiency of this number of 5’ UTRs yields far too 
limited a dataset for accurate model building using CNNs. To generate data on a vastly larger 
scale, we designed a 5’ UTR library composed of completely random sequences of length 50. 
With 450 possible 5’ UTR sequences, the size of a resulting dataset of protein expression levels 
is limited only by experimental considerations and measurement capacity. The small number of 
nucleotides typically involved in the binding of proteins to RNA (4-8 nt) or in forming secondary 
structures (Weirauch et al. 2013) suggests that functional biological motifs will occur often and 
in a wide range of contexts within these random 5’ UTRs. Our study of alternative splicing 
corroborates the idea that highly predictive biological models can be learned from fully 
degenerate sequences (Rosenberg et al. 2015). 
 
Results 
 
5’ UTR library and assay 
 
Previous analyses of protein expression resulting from variants in a large library employed 
fluorescence activated cell sorting (FACS) for measurement (Dvir et al. 2013; Shalem et al. 
2015; Lubliner et al. 2015; Noderer et al. 2014; Kosuri et al. 2013), wherein cells are separated 
into  bins of differing fluorescence and the variants within each bin are sequenced. However, the 
FACS step limits the number of cells that can be assayed, thus also limiting the number of 
sequence variants that can be tested. To increase the number of 5’ UTRs that we could test 
simultaneously and to improve the resolution in measuring activity, we instead used a 
competitive growth assay based on the accumulation of the yeast His3 protein; the growth rate 
of cells in media lacking histidine is proportional to the level of their expressed His3 protein, a 
selection on continuous fitness values that is not reliant on arbitrary bins. In this selection, yeast 
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are transformed with a library of plasmids carrying a HIS3 reporter gene, each containing one of 
the random variants of the 5’ UTR sited immediately upstream of the start codon. The number of 
cells harboring each variant before and after growth in selection media is determined through 
sequencing, with the relative enrichment or depletion of a variant over time correlating with its 
HIS3 expression. Since the number of cells in a selection is not limiting, a single culture can in 
principle be used to assay up to millions of variants. Similar growth-based selections have 
proven to be accurate in measuring activity differences (Starita et al. 2015; Rich et al. 2016). 
 
We constructed a library of more than half a million 5' UTR variants (of which 489,348 were 
detected) (Fig. 1a, Online methods). With transcriptional regulation under the well-characterized 
low expression CYC1 promoter and the CYC1 terminator, (Chen et al. 1994; Guo et al. 1995; 
Martens et al. 2001; Watanabe et al. 2015; Yagil et al. 1998) and the use of a low copy number 
plasmid, the growth of each cell should reflect His3 protein accumulation. We performed a 
large-batch selection in media lacking histidine and supplemented with 1.5 mM 3-amino-1,2,4 

Figure 1 - Experimental design and biological discovery. 
Experimental design of a liquid-based growth assay of 489,348 5’ UTR variants. Random 50 nucleotides were 
introduced directly upstream of the HIS3 coding sequence, replacing the 56 nucleotides of the 5’ UTR of the 
CYC1 promoter. These constructs were introduced into a low copy number plasmid, transformed into yeast 
without a native copy of HIS3, and competed in media lacking histidine. The enrichment of each UTR after growth 
was measured by using massively parallel sequencing before and after selection. (b) 5’ UTR enrichment scores 
per nucleotide were averaged at each position. (c) The Kozak sequences (-5 to -1 position) leading to the highest 
His3 protein expression compared to the most abundant yeast Kozak sequence (AAAAA). (d) The enrichment of 
5’ UTRs based on the predicted minimum free energy of the -50 to +70 sequences. (e) The enrichment of 5’ 
UTRs based on the presence of an upstream AUG (uAUG) and a stop codon within the UTR. Upstream open 
reading frames (uORF) are characterized by an in-frame uAUG followed by a termination codon before the 
primary ORF start codon, or an out-of-frame uAUG followed by a stop codon before or after the primary ORF start 
codon. 
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triazole (3-AT, Supplemental Fig. 1a, see Methods), a competitive inhibitor of His3, collecting 
cells after ~6.2 doublings. Using massively parallel sequencing, we quantified the relative 
change in abundance of each variant before and after selection.  
 
To determine the accuracy of these pooled, competitive growth rate measurements, we chose 
13 individual variants from the library with a range of translation levels and individually tested 
them. The relative growth rates of these 13 were similar to those measured in the bulk assay 
(R2 = 0.84, Supplemental Fig. 1b, c). To further test the validity of our approach, we individually 
cloned 12 5’ UTRs from the library into a yellow fluorescent protein reporter, and measured 
fluorescence levels for these constructs using flow cytometry. We found good correlation 
between the data from the growth selection and flow cytometry (R2 = 0.61, Supplemental Fig. 
1d), suggesting that results from the HIS3 assay generalize to other gene contexts. 
 
Effects of 5’ UTR features 
  
We next analyzed the effects of nucleotide identity at each position and in particular in the 
Kozak sequence, defined here as positions -5 to -1 relative to the start codon. Consistent with 
prior work (Dvir et al. 2013; Looman and Kuivenhoven 1993; Baim and Sherman 1988), the 
single nucleotide effects at positions -3 to -1 relative to the start codon were the most important, 
with an adenine in the -3 position the most beneficial to protein expression (Fig. 1b). This -3 
preference for adenine is shared across many eukaryotes, including fungi, mammals and plants 
(Nakagawa et al. 2008). We examined the effect on protein expression of all possible Kozak 
sequences, as the library encompassed the 1,024 possible 5-mers at positions -5 to -1, with 
each 5-mer occurring on average in 478 different 5’ UTR contexts. Although the most common 
Kozak sequence for yeast is all adenine (Hamilton et al. 1987; Cavener and Ray 1991), we 
found that this sequence did not lead to the highest protein expression. In fact, 154 other Kozak 
sequences (122 of which contain an adenine at position -3) led to higher average protein 
expression than all adenine (the top 5 are plotted in Fig. 1c), contrary to the widely held belief 
that the most efficient Kozak is all adenine (supplemental Table 2). These highly efficient Kozak 
sequences are also present in the yeast genome in substantial numbers. Each of these top five 
Kozak sequences from our assay led to higher average translational efficiency than an all 
adenine sequence when assessed by ribosome profiling of native yeast genes (Supplemental 
Fig. 2a)(Pop et al. 2014). 
 
We assessed the effect of secondary structure, which can influence ribosome initiation, 
scanning, and elongation (Pop et al. 2014; Rouskin et al. 2013). We first examined the 
correlation between the predicted minimum free energy (MFE) of the 5’ UTRs and protein 
expression. To calculate the predicted MFE, we used RNAfold (Gruber et al. 2015; Lorenz et al. 
2011; Gruber et al. 2008) to fold each UTR sequence along with the 5’-most 70 nucleotides of 
the HIS3 coding region. Binning the 5’ UTRs by their predicted MFE score, we found that lower 
MFE bins corresponded to decreased protein expression (Fig. 1d). Since the MFE provides only 
an aggregate measure of structure, we next looked at the effect of structure at each position in 
the 5’ UTR. We found that secondary structure had the largest effect on His3 expression when it 
occurs either near the 5’ end of the UTR or near the start codon (Supplemental Fig. 2b). 5’ 
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secondary structure may reduce access to the 5’ cap by the 5’ cap binding complex, although 
only highly stable 5’ UTR secondary structures (<30 kcal/mol) markedly decrease eukaryotic 
translation rates (Babendure et al. 2006). Finally, as an alternative, simpler measure of 
secondary structure, we looked at the presence of hairpins with varying stem (5, 6, or 7 base 
pairs) and loop (0-25 nucleotides) lengths within the UTRs. We found that hairpins with longer 
stems and relatively short loops had the most negative impact on protein expression, perhaps 
because hairpins with longer loops form more slowly and are therefore scanned more readily by 
the translation machinery (Supplemental Fig. 2c). In spite of these correlations, secondary 
structure alone can explain only a small fraction of overall translational efficiency (MFE, 
enrichment correlation of R2 = 0.078, Supplemental Fig. 2d). 
 
We analyzed the effects of upstream open reading frames (uORFs), characterized by an in-
frame uAUG followed by a termination codon before the primary ORF start codon, or an out-of-
frame uAUG followed by a stop codon before or after the primary ORF start codon (Dvir et al. 
2013; Wang and Rothnagel 2004; Morris and Geballe 2000). uORFs compete with the primary 
ORF, often producing nonsensical polypeptides and requiring translation to restart at the 
primary ORF start codon. Consistent with this competition, we found that the presence of a 
uORF led to greatly reduced protein expression (Fig. 1e, Supplemental Fig. 2e). On the other 
hand, a uAUG in-frame with the primary ORF, which results only in additional amino acids at the 
N-terminus of the translated protein, caused a minor reduction in expression. The effects of 
these in-frame uAUGs became more severe as the uAUG was located further towards the 5’ 
end of the UTR (Fig. 1e, Supplemental Fig. 2e), consistent with other reports (Rich et al. 2016; 
Dvir et al. 2013; Wang and Rothnagel 2004). The additional amino acids might cause a 
cumulative effect on translation, protein function or protein stability. Enrichment of 5’ UTRs with 
in-frame uAUGs correlated with the frequency with which the codons added upstream of the 
true AUG are used in S. cerevisiae (R2 = 0.75, Supplemental Fig. 2f), generally considered a 
measure of translational efficiency (Pop et al. 2014; Akashi 2003; Sharp and Cowe 1991). 
 
A convolutional neural network model 
 
To better understand and engineer both native and synthetic UTR sequences, we sought to 
create a model capable of predicting our massive dataset. A comparison between different 
modeling approaches revealed several trade-offs. For example, a linear regression model with 
position-dependent 3-mer features (43 x 48 = 3072 distinct features, R2=0.42) outperformed 
models with more complex but position-independent features (e.g. 6-mer model, 46=4096 
features, R2=0.33, Supplemental Fig. 3a ). Given that many key features of translational 
efficiency in yeast have a position dependence—e.g. the identity of the nucleotide at position -3 
or the frame of an upstream start codon—it is not surprising that a model that captures such 
position dependence can outperform a model that does not, even at the expense of using 
relatively simple features. However, we found that CNN models that capture not only position 
dependence but also non-linear interactions between features outperformed all simpler linear 
regression models on the task of predicting protein production from sequence alone.    
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CNNs typically consist of several layers of convolution that eventually feed into a classic feed-
forward neural network. The first convolutional layer consists of many “filters” that essentially 
each learn a positional weight matrix (PWM). The output of this layer then feeds into further 
convolutional layers that can learn interactions between the different motifs recognized by each 
filter in the first layer. To choose the architecture of the model (such as the size of filters, 
number of filters and number of layers), we performed a hyper-parameter search using cross-
validation on our training set. This search led us to choose a model with 3 layers of convolution, 
each with 128 filters of length 13. The convolutional layers then feed into a fully connected layer 
and finally a linear output layer. The output of our model is the predicted fitness score for each 
5’ UTR, which should be proportional to translational efficiency. 
 
In a test of the model with a held-out test set consisting of the top 5% of our library based on 
input read count, the CNN accounted for 62% of the observed variability (R2 = 0.62, Fig. 2a), 
outperforming a linear regression model trained on 3-mers as inputs (R2 = 0.42, Supplemental 
Fig. 3b). To understand the filters presented in the first layer, we scored 488,000 random 13-
mers and created a PWM out of the top 1000 scoring sequences for each filter (Online 
methods). Twelve of the 128 filters in the first layer of the model learned uAUG motif variants, 
while eight learned motifs with stop codons (UAG/UGA/UAA) (Fig. 2b, Supplemental Fig. 4). 
Additional filters resemble motifs involved in a G-quadruplex, an important motif in RNA 
secondary structure (Capra et al. 2010). However, several other motifs have no known function. 
They may correspond to the binding sites of RNA-binding proteins, as few binding sites for such 
proteins have been characterized in S. cerevisiae (Ray et al. 2013). Because the model should 
be interpreting not just translational efficiency, but features like RNA stability and changes in the 
transcriptional start site, filters could include several types of potential motifs (Fig. 2b, 
Supplemental Fig. 4). 
 
Visualizing the positional dependencies of the first-layer motifs resulted in interpretable maps of 
the 5’ UTR sequence–function relationship. Some motifs had positional effects (Fig. 2c), such 
that they influenced protein expression differentially depending on their location within the 5’ 
UTR. Others showed a striking 3-nucleotide periodicity, reflecting their position relative to the 
reading frame of uAUGs. This periodicity was not present when 5’ UTRs lacking uAUGs were 
analyzed. 
 
The second and third layer of the CNN can learn information about the interplay of lower-level 
filters. For example, some of the higher layers combine uAUG and stop codon filters to learn the 
concept of a uORF, as evidenced by the model predicting much lower protein expression for 5’ 
UTR sequences containing a uORF (see Fig. 2a). The model predicts that a 5’ UTR with only an 
in-frame upstream AUG will have a higher enrichment than one with an in-frame uAUG as well 
as an in-frame stop codon (Supplemental Fig. 3c). The model also predicts that a 5’ UTR with 
an in-frame uAUG as well as an out-of-frame stop codon will have only a small effect on 
expression (Supplemental Fig. 3c). Unlike a CNN, a simpler 3-mer model cannot capture these 
positional combinations.  
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Native 5’ UTRs may contain a higher density of motifs or higher order motifs not captured using 
a random library. We therefore asked whether the model could predict protein expression from 
native S. cerevisiae 5’ UTRs (Park et al. 2014). We constructed a library composed of 50 nt 
segments from all known native 5’ UTR sequences in the context of the HIS3 reporter (Fig. 3a). 
Our model performed well on the task of predicting the impact of the native sequences (R2 = 

 
Figure 2 - A convolutional neural network approach to model random 5’ UTR sequences. 
(a) A three-layer convolutional neural network model trained on random 5’ UTRs was tested on a heldout test set 
of the top 5% based on input read depth. Tested 5’ UTRs are specified by color for those with or without an 
upstream open reading frame (uORF). (b) 488,000 random 13-mers  were scored for each filter in layer 1 of the 
CNN. The top 1000 13-mers were used to create a positional weight matrix (PWM) for each filter. These PWMs 
include motifs of start codons, stop codons, and guanine quadruplexes. Positive Pearson correlations indicate a 
positive effect on enrichment, while negative correlations indicate a negative effect on enrichment. (c)The effect of 
each motif per position was measured by assessing the Pearson correlation of motif score and enrichment at 
each position. Heatmaps of all 5’ UTRs (left), and those lacking upstream AUGs (right), including specific 
examples highlighting filters with different positional patterns are shown. 
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0.60, Fig. 3b), giving us confidence that it captured the sequence information important for 5’ 
UTR function. 

 
In silico evolution of 5’ UTRs 
 
The design of functional sequences with user-defined properties is a compelling demonstration 
of the predictive power of a model. As a goal, we sought to use our model to improve the 
expression of a sample of random and native 5’ UTRs. We performed a model-guided in silico 
evolution of 200 5’ UTR sequences, half chosen from our random library and half from the 
native library, representing UTRs over the entire range of activity. During each step of the 
evolution, we made all possible mutations and selected the single nucleotide substitution 
predicted to result in the greatest increase in protein expression. We continued making changes 
until the predicted expression of each 5’ UTR plateaued (Fig. 4a and Supplemental Fig. 5a).  
 
For 98 of the sequences derived from the random library and 93 from the native library, we were 
able to construct HIS3 constructs for the starting, midpoint and endpoint of the evolutions. We 
then tested these 573 sequences in our growth assay. Our approach yielded improved 
expression for ~94% and ~84% of the sequences selected from the random and native libraries, 
respectively (Fig. 4b and Supplemental Fig. 5b). The relative expression due to these 5’ UTRs 
held in different 3-AT conditions (R2 > 0.93, Supplemental Fig. 6a). For the majority of 
sequences from both libraries, the largest increases in expression occurred between the starting 
and midpoint sequences, consistent with prediction from the evolutions. In both datasets, we 
also found that the degree to which the expression improved negatively correlated with the 

 
Figure 3 - Validation of  the CNN model on native 5’ UTRs. 
(a) Native 5’ UTR sequences were synthesized in 50 nucleotide fragments and introduced into the HIS3-based 
selection system. (b) Correlation of a native library with the predictions from our convolutional neural network built 
from random sequences. 
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starting value, suggesting that it is easier to improve upon low expression 5’ UTRs than on high 
expression ones (random: R2 = 0.54; native: R2 = 0.86, Supplemental Fig. 6b). We also found 
that the majority of the endpoint sequences from the evolutions (88 out of 98 of the random 
library, and 75 out of 93 of the native library) performed better than 90% of their corresponding 
larger library after normalization (Fig. 4c, online methods). 
 
To analyze where and how the CNN made changes, we expanded the number of random 
sequences that we computationally evolved to 5000, with each proceeding through 40 steps. 
We looked at the prevalence of simple characteristics, including uORFs, in-frame uAUGs, an A 
in the -3 position, favorable Kozak sequences and nucleotide bias (Fig. 4d, Supplemental Fig. 
7a). The model selected against uORFs and structure (Fig. 4d, e and Supplemental Fig. 7b), 
and selected for an in-frame uAUG, A at the -3 position and overall A-rich composition except at 
positions -1 and -49, where Gs predominated (Supplemental Fig. 7a). Although one Kozak 
sequence (ACAAG) was the most prevalent, no single 5-nucleotide sequence dominated.  
 
These more predictable changes were accompanied by more complex ones, revealed by 
analyzing the addition and removal of specific 4-mers (Fig. 4f, g and Supplemental Fig. 8). The 
4-mers most enriched in the evolved sequences often appeared multiple times in a single 5’ 
UTR. We analyzed the experimental data collected from the random and native libraries and 
found additional copies of the enriched 4-mers correlated with continued increases in 
enrichment (Fig. 4f and Supplemental Fig. 9). Similarly, each additional copy of the depleted 4-
mers correlated with reduced expression (Fig. 4g and Supplemental Fig. 9b). The spatial 
distribution of enrichment and depletion of all 4-mers was largely uniform across the 5’ UTRs, 
except at the ends of this region (Supplemental Fig. 8). The most enriched 4-mers and the most 
enriched Kozak sequence partially overlap with the reverse complement of part of the 
consensus motif for Nab3 (UCUUGU), a component of the transcription termination Nrd1 
complex. The three 4-mers CAAG, ACAA and AAGA that match the reverse complement of the 
consensus site were highly enriched at the end of the evolutions compared to other motifs with 
the same nucleotide composition (p = 4.6 e-7, t-test, 42,906 occurrences in total for the three 
motifs), while 4-mers found within the motif itself (UCUU, CUUG and UUGU) occurred only 48 
times at step 40. 
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Figure 4 - Model-guided optimization of 5000 random sequences.  
(a) Using our convolutional neural network, we iteratively predicted the optimal single nucleotide change in 100 
random 5' UTR sequences until no additional increase in enrichment was predicted. An example of these changes 
can be seen in the inset. (b) The start, midpoint and endpoints from these evolutions were tested experimentally. 
The predicted and observed enrichments are plotted. (c) Experimental data from endpoints of the optimized 5' UTR 
sequences derived from both the random and native sets of sequence are compared to the enrichment distribution 
from the original random and native libraries. 5000 sequences from our random library were evolved over 40 steps 
and assayed for enrichment and depletion of common nucleotide features (d), secondary structure (e), and 4-mers 
(f and g). The effects of having the indicated enriched and depleted 4-mers occur multiple times in a single 5’ UTR 
were assessed by querying our original experimental random 5’ UTR dataset for enrichments based on the motif 
occurrences. 
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Discussion 
 
Here we built and analyzed a library of approximately 500,000 random 5’ UTRs. We used the 
resulting data to train a CNN model that can predict the effect that any 5’ UTR in yeast will have 
on protein expression. Although the model was trained only on data from the random library, it 
performed equally well at predicting the behavior of native 5’ UTRs. This high quality of 
predictions is a direct result of the large training data set, compared to methods that consider 
only the limited set of approximately 5,000 native yeast 5’ UTRs.  
 
Analysis and visualization of the model features allowed us to generate a comprehensive spatial 
map of the impact of cis-regulatory motifs on protein production. While some of the motifs 
identified were previously known and thus validated our approach, we also uncovered novel cis-
regulatory motifs. For example, we identified 154 variants of the -5 to -1 region that 
outperformed the consensus Kozak sequence of five adenines. While functional roles for these 
motifs are supported by ribosome profiling data (Supplemental Fig. 2), the vast majority appear 
in the yeast genome in such low frequency that they could not be uncovered using native 
genes. Due to the large number of random sequences assayed in our library, we could observe 
these short elements in a large number of contexts, giving us power to identify these motifs and 
quantitate their impact.  
 
We further demonstrated that our model can be used for the forward engineering of sequences 
with improved properties. Such computationally performed evolutions can dramatically reduce 
experimental overhead in the design of regulatory elements for synthetic pathways. Over the 
course of the model-guided sequence optimization, we found several motifs that became 
enriched. One of these, captured by the 4-mers CAAG and ACAA (Fig. 4d and f) and as the 
motif ACAAG in a convolutional filter (Fig. 2b), matches the reverse complement of the binding 
site for Nab3, a protein involved in transcriptional termination (Creamer et al. 2011; Porrua et al. 
2012). We hypothesize that these sequences act to promote termination of transcription that 
occurs antisense to the HIS3 reporter gene (Porrua and Libri 2015). Other motifs contain start or 
stop codons, G-quadruplex sequences known to influence expression or motifs of unknown 
function. Some of these motifs may represent target sites for RNA binding proteins, for which 
only a limited number of recognition sites have been identified to date in yeast 5’ UTRs. 
 
Any approach that uses protein expression as its readout is potentially limited by its inability to 
distinguish among transcription, RNA processing and stability, and translation and protein 
stability. Transcription and post-transcriptional effects could be disentangled by direct 
measurement of RNA levels. Moreover,  because our experimental approach relies upon growth 
selection, it is inherently less sensitive in detecting sequence variants that lead to poor protein 
expression. However, in any case, such variants are of limited interest at least for engineering 
applications. 
 
 
Yeast has been the source of much of our knowledge of the highly conserved process of 
translation. Thus, we expect that our approach developed here will be similarly useful for 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/137547doi: bioRxiv preprint 

https://doi.org/10.1101/137547
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12 

understanding aspects of the biology of other organisms, for example allowing predictions about 
the impact of human genetic variation on transcription and translation (Dunham and Fowler 
2013). 
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ONLINE METHODS  
 
Library construction 
Synthetic 5’UTR library 
We replaced a 56 bp CYC1 5’UTR fragment upstream of the HIS3 ATG on a p415-CYC1 
plasmid(Mumberg et al. 1995) with a library of 50 bp synthetic 5’ UTR fragments. The CYC1 
promoter is short (298 nucleotides), with well-established TATA-binding protein sites, upstream 
activating sequences (UASs) for HAP1 (Pfeifer et al. 1987) and MIG1 (Olesen et al. 1987; 
Treitel and Carlson 1995), and transcriptional start sites, and is regularly used as a consistent 
low expression promoter. The synthetic 5’ UTR fragments were constructed by annealing 
primers 126 and 127 containing an overlap region (ggacctttgcagca) and making the sequence 
double-stranded using the Klenow fragment of DNA polymerase I (NEB). The resulting fragment 
had a 50 bp random region and 60 bp and 33 bp 5’ and 3’ overlaps with the CYC1 promoter and 
the HIS3 coding sequence, respectively, including the ATG start codon. We inverse PCR-
amplified the p415-CYC1 plasmid backbone with primers 132 and 133 using KAPA Hi-Fi 
polymerase (Kapa Biosystems), excluding the ATG start codon. Including the start codon in the 
library fragment served to prevent background plasmids not containing a library fragment from 
resulting in growth in media lacking histidine. The final library (YTLR200) was assembled using 
Gibson assembly3 and electroporated4 into 40 µl of 5-alpha electrocompetent E. coli (NEB) to 
yield 500,000 colonies. 
 
Native 5’ UTR library 
For the native library, we constructed 11,962 sequences representing native 5’ UTRs from the 
yeast genome5 in 50 bp fragments with 25 bp overlap if the UTR exceeded 50 bp in length, and 
in smaller fragments for UTRs shorter than 50 bp. 20 bp overhangs were added to both 5’ 
(acattaggacctttgcagca) and 3’ (ATGacagagcagaaagccct) ends of these sequences, again 
overlapping the CYC1 promoter and HIS3 gene on the p415-pCYC1 plasmid. The library 
sequences were purchased from CustomArray Inc. as a mixed oligo pool and amplified by 
qPCR using primers 126 and 142 in 15 cycles. The resulting fragment was assembled with the 
plasmid backbone via Gibson reaction and electroporated as described above, resulting in 
200,000 colonies (YTLN200). 
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Yeast transformation 
For the library transformation into yeast, we followed the electroporation protocol described6. 
For the large synthetic 5’ UTR library (YTLR200), we used an overnight culture of 
BY4741(Baker Brachmann et al. 1998) diluted 1:50 into 50 ml of YPAD media(Amberg et al. 
2005) and grown to OD 1.6. We prepared 400 µl of electroporation-competent cells as 
described and transformed with a mixture of 3.66 µg library plasmid YTLR200 linearized with 
EcoRI and 11.2 µg of DNA fragment PCR-amplified from YTLR200 with primers 134 and 135 to 
contain regions of overlap both upstream and downstream of the EcoRI restriction site. We grew 
the transformed library in 500 ml of synthetic dextrose media(Amberg et al. 2005) without 
leucine (SD-Leu) overnight and used colony counts from serial dilutions plated on SD-Leu to 
estimate library size. Using a longer region of homology (2.3 kb) led to improved transformation, 
resulting in ca. 2x106 colonies. For the generation of the native 5’ UTR library (YTLN), the same 
protocol was followed. 6.7µg of EcoRI-digested library plasmid YTLN200 and 15.55 µg of PCR-
amplified fragment (primers 134 and 135) were transformed into 800 µl of electrocompetent 
BY4741 yeast cells with similar efficiency as YTLR library described above. For the 
transformation of individual plasmids into yeast strains, we followed a lithium acetate method7. 
 
Growth rates measurements  
Yeast cultures were grown overnight at 30 °C in 5 ml until saturated. In 96-well plates, cultures 
were diluted 1:20 in 200 µl volume of minimal selective media. The plates were shaken at 30° in 
media lacking histidine and leucine and with 3-amino-1,2,4 triazole (Brennan and Struhl 1980) 
(3-AT, Sigma) in a Synergy H1 hybrid reader (Biotek). Mean (n=6) maximum doubling rate was 
determined by measuring the maximum slope of O.D. 660 measurements over 6 points of 
measurement +/- standard error.   
  
Oligonucleotides and DNA sequencing  
Oligonucleotides were obtained from Integrated DNA Technologies with standard desalting 
purification.  
 
Sanger sequence and analysis was performed as described8. Deep sequencing of plasmid DNA 
was performed on an Illumina Nextseq after purifying plasmid DNA using the Zymoprep yeast 
plasmid prep II (Zymo Research) and PCR amplification for 12 to 20 cycles.    
  
Library selection  
Cells from the input population were collected for sequencing and for back dilution into the 
selection medium (SD–His–Leu + 1.5 mM 3-AT) in triplicate adding 1 x 108 cells to 1 L medium.  
Each  replicate was cultured for 20 h to logarithmic phase (O.D. A660 = 1.0, 6 x 109 cells), after 
which 3 x 108 cells were collected for sequencing.  
 
Optimization of the dynamic range of the selection assay 
To optimize the dynamic range of our selection assay, we compared the growth of two yeast 
strains, one harboring the HIS3 construct with the native CYC1 5’ UTR and the other with a 5’ 
UTR containing a strong hairpin known to impair translation(Dvir et al. 2013; Lamping et al. 
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2013). In the presence of various concentrations of 3-AT, we found a maximal separation of 
growth rate between the two strains at 1.5 mM 3-AT (Supplemental Fig. 1a).  
  
Strains and media  
Yeast experiments used the BY4741 strain. pCYC1-HIS3 was cloned into the pRS series10 of 
yeast vectors with the LEU2 nutrient marker (pRS415).  To construct the plasmids harboring the 
individual synthetic and native 5’ UTRs, we designed a set of one forward and two reverse 
primers, each 30 base long with a 10 base overlap in the middle of the sequence for each 
sequence listed above. We added a 5’ acattaggacctttgcagca overhang to the forward primer 
(overlapping CYC1 promoter), and either agggctttctgctctgtcat 3’ overhang (overlapping HIS3 
gene) or attcttcacctttagacat 3’ overhang (overlapping Venus gene) to the reverse primers. We 
obtained the oligos in a 96-well array (IDT), annealed them, filled them in with the Klenow 
fragment and cloned them into either the p415-pCYC1 backbone or p415-pCYC1-Venus 
backbone as described. The p415-pCYC1-Venus plasmid was constructed by replacing the 
HIS3 sequence in the p415-pCYC1 plasmid used in our library construction with Venus via 
Gibson assembly. 
 
Enrichment analysis 
For the random libraries, we first listed all identified UTRs. We then collapsed any sequences 
with a hamming distance of less than 3 and removed any with length less than 3. We used 
STAR (Dobin et al. 2013) to align reads from both our input libraries and selection libraries to 
this complete list of UTRs. Next, we counted the number of alignments to each UTR. To 
calculate the enrichment scores, we first added a “pseudocount” of 1 to the counts of each UTR 
in both inputs and selections and normalized the adjusted counts of each UTR by the total 
counts in each time point (input or selection), calculating the log enrichment of each sequence 
in the selection relative to the input. Native sequences were quantified similarly; however, 
because we started with known sequences, we were able to simply count the occurrences of 
each UTR in both the input and selection libraries as described above. 
  
Identifying features of 5’ UTRs 
Using the enrichment scores derived from deep sequencing, we determined the average per-
position score for each base, resulting in the plot in Fig. 2b. Ribsome profiling scores of native 
genes were calculated as the log-ratio of ribosome footprints counts over mRNA fragment 
counts. Minimum free energy was calculated using a window of -56 (the predicted 
transcriptional start site) and +70 using RNAfold (Gruber et al. 2015), then binned based on this 
MFE in increments of 5. Free base probabilities were also calculated using RNAfold. We 
searched for potential hairpins comprising combinations of hairpin length (5-7 nt) and loop 
length (0-24 nt), and then searched for perfect complementary pairs of 5-7 nt contained in a 
UTR. For each type of hairpin, we calculated the average enrichment scores of the subset of 
UTRs containing that type of hairpin. Plots were generated using matplotlib (Hunter 2007) or 
ggplot2 (Hadley Wickham 2009). 
 
Convolutional neural network training 
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All models were trained using the python package Keras (Chollet 2015). The test set was made 
from the 5’ UTRs with the most reads before selection (top 5%), using the rest of the data as a 
training set. All of our models were trained with the Adam optimizer (Kingma and Ba 2014) and 
early stopping was used to prevent overfitting to the training data. Cross-validation was 
performed on the training set to choose the model architecture. We tested combinations of the 
following hyper-parameters: convolutional filter width: [9, 13, 17, 25], number of convolutional 
filters per layer: [32, 64, 128, 256], number of convolutional layers: [2, 3, 4], number of dense 
layers: [1, 2], dropout probability in convolutional layers: [0, 0.15], dropout probability in dense 
layers: [0, 0.1, 0.25, 0.5], number of units in each dense layer: [32, 64,128, 256]. The best 
combination of hyper-parameters proved to be the following model architecture: 
Layer 1: Convolutional, 128 filters (4x13), relu activation, 0.15 dropout probability 
Layer 2: Convolutional, 128 filters (1x13), relu activation, 0.15 dropout probability 
Layer 3: Convolutional, 128 filters (1x13), relu activation, 0.15 dropout probability 
Layer 4: Fully connected layer, 64 hidden units, relu activation, no dropout 
Layer 5: Linear output layer, 1 output unit 
 
K-mer models 
The same training and test data were used to train linear regression models based on k-mer 
features. We trained models that simply used k-mer counts in each 5’ UTR as features as well 
as training models using k-mers at each position as features (e.g. for a 3-mer model there are 
64 possible 3-mer sequences and 48 positions, leading to 3072 model weights; 3072=43 x 48). 
We cross-validated to choose optimal L2 regularization parameter for all k-mer models. 
 
Visualization and analysis of convolutional filters 
To visualize each filter in the first layer of convolution, we scored 488,000 random 13-mers with 
each filter. We then used the top 1000 (0.2%) scoring 13-mers as input into the weblogo3 
(Crooks et al. 2004) program to generate motifs. In order to calculate whether a given filter 
output associated with increases or decreases in protein expression we calculated the 
correlation across all 5’ UTRs between each filter output score at each position and the 
enrichment scores. 
 
Forward engineering of sequences 
5,000 random sequences and 100 native sequences were analyzed for the single nucleotide 
change that led to the largest predicted change from our CNN model. This was done iteratively 
for 40 steps. From these, the start, midpoint and endpoint of 100 sequences from the random 
library and the 100 native sequences were chosen for synthesis. Endpoints were chosen based 
on the step at which no additional predicted enrichment was attained. Sequences were 
synthesized by oligonucleotide array (Custom array), introduced using Gibson assembly, and 
transformed into yeast. These yeast transformants were grown, collected and sequenced as 
before. Deep-sequencing data were analyzed using the Enrich package to assess enrichment of 
sequences (Rubin et al. 2016).  To directly compare the evolved sequences with our larger 
random and native libraries, we determined the differences in  enrichment scores of the starting 
point sequences (present in both libraries). We then normalized the rest of the larger libraries by 
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the slope of these starting point scores to account for the differences in the strength of selection 
due to the differences in the sizes of the larger libraries compared to the evolutions. 
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