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Abstract

Many adult organs grow or shrink to accommodate different physio-
logical demands. Often, as total cell number changes, stem cell number
changes proportionally in a phenomenon called ‘stem cell scaling’. The
cellular behaviors that give rise to scaling are unknown. Here we study
two complementary theoretical models of the adult Drosophila midgut, a
stem cell-based organ with known resizing dynamics. First, we derive a
differential equations model of midgut resizing and show that the in vivo
kinetics of growth can be recapitulated if the rate of fate commitment
depends on the tissue’s stem cell proportion. Second, we develop a two-
dimensional simulation of the midgut and find that proportion-dependent
commitment rate and stem cell scaling can arise phenomenologically from
the stem cells’ exploration of physical tissue space during its lifetime. To-
gether, these models provide a biophysical understanding of how stem cell
scaling is maintained during organ growth and shrinkage.

Introduction

Mature organs contain both differentiated cells, which execute physiological
function, and stem cells, which generate new differentiated cells. In organ home-
ostasis, stem cells divide to replace differentiated cells that are lost, and numbers
of stem and differentiated cells are constant. Increased functional demand can
induce adaptive growth, a transient, non-homeostatic state in which stem cells
divide to generate excess differentiated cells [1–4]. Similarly, decreased demand
leads to adaptive shrinkage, in which differentiated cells are reduced in part
because stem cells cease to divide [5, 6]. Adaptive resizing enables mature or-
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gans to maintain physiological fitness in the face of changing environmental
conditions [1, 7–9].

Intriguingly, many organs exhibit altered numbers of stem cells in response to
major physiological adaptation or resizing; examples of these include altered
numbers of satellite stem cells in muscles after exercise or induced hypertro-
phy [10–12], altered numbers of mammary gland stem cells during pregnancy
[13, 14], and altered numbers of intestinal stem cells after feeding [15]. In partic-
ular, authors in [15] found that stem cells scale with the size of the organ, that
is, stem cells adjust their numbers during resizing to remain a similar proportion
of total cells in the organ. Because of scaling, the cellular ‘replacement burden’
of an individual stem cell stays constant irrespective of organ size. Physiolog-
ically, the constant replacement burden may be advantageous since it allows
the organ to respond exponentially quickly (at least initially) to environmental
changes. This is because the rate of change of the size of the system would typ-
ically be proportional to the number of stem cells and therefore proportional to
the size of the system, leading to exponential response. In the adult Drosophila
midgut, a simple epithelial organ functionally equivalent to the vertebrate small
intestine, this scaling behavior is extraordinarily precise; a four-fold increase in
differentiated cells, induced by increased dietary load, is matched by a four-fold
increase in stem cells [15]. Importantly, for stem cell scaling to occur, there must
be population-wide coordination between symmetric and asymmetric fate out-
comes after cell division [15–17]. While we know that at the individual cell level,
fate outcomes are determined through Delta-Notch signaling, we do not know
what mechanisms coordinate stem cell scaling at the population level.

Some prior models of the midgut [16, 18] and of other self-renewing organs [18–
27] have considered homeostasis without adaptive resizing. Some of these as
well as other models have considered embryonic development [17, 18, 28, 29]
or cancer [19, 24, 27, 30–32], two growth states that do not exhibit stem cell
scaling. To shed light on scaling mechanisms, we develop a set of non-spatial
differential equations as well as a two-dimensional simulation of cell dynamics
in the Drosophila midgut. Here we find that the physiological kinetics of stem
cell scaling during midgut adaptive growth can be recapitulated by a set of
ordinary differential equations. The ability of these equations to recapitulate
physiological kinetics depends strongly on the inclusion of feedback. Specif-
ically, physiological dynamics of cell populations are captured if the rate at
which new cells commit to differentiation depends on the existing proportion of
stem cells. Next, we develop a two-dimensional simulation of the midgut and
show that this tunable commitment rate can be explained by the concept of a
‘stem cell territory’ – the physical space that a stem cell explores during its life-
time. We show that territory size is determined by cell-cell adhesion, stochastic
motility, and Delta-Notch signaling. We find that stem cell scaling requires a
threshold territory size and that systems within this regime fit our differential
equations.
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Figure 1: Stem cells in the Drosophila midgut regulate growth and homeosta-
sis. (A) Schematic of the Drosophila midgut (yellow). (B) Schematic of midgut
epithelium with stem cells (red) and enteroblasts (green) situated among ente-
rocytes (blue outline). (C) Cellular processes taken into account by the model
in Equation 1.

Non-spatial Model

Description of non-spatial model

We propose a mathematical description of the midgut that considers the midgut’s
three major cell types: stem cells, enteroblasts, and enterocytes, each of which
exhibits a distinct cellular behavior (Figure 1). Stem cells, s, are the only
cells in the midgut that typically divide [33]. In our model, all stem cell divi-
sions generate two daughters that are equipotent stem cells [16]; this division
rate is denoted a. Some stem cells become enteroblasts, u. Enteroblasts are
post-mitotic and committed to differentiate into enterocytes, but still lack the
morphological features of differentiation. The rate that stem cells commit to
terminal fate is denoted b. Enterocytes, U , are fully mature epithelial cells that
comprise most of the cells in the midgut epithelium. Enteroblasts differentiate
into enterocytes at a rate λ. Enterocytes die, or are otherwise lost, at a rate
Λ.

These cellular relationships lead to a simple mathematical description for num-
bers of stem cells, enteroblasts, and enterocytes as functions of time s(t), u(t),
and U(t) with the form:

ṡ = as− bs
u̇ = bs− λu
U̇ = λu− ΛU .

(1)

For the system to have a non-zero, finite steady state, either rates of division and
commitment must always be equal (b = a), which would imply highly precise
regulation of these two processes, or else some rates in Figure 1 and Equation
1 must depend on cell numbers. We assume the latter case since highly precise
regulation is unlikely in a noisy tissue system.
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To account for nutrient-driven adaptive growth and shrinkage [15], we propose
that cell numbers depend on ingested nutrients, and that the system contains
feedback. We denote the total energy of ingested nutrients as Ein and define
the ‘energy density’ Ed as:

Ed =
Ein

A1s+A2u+A3U
≡ Ein

A
, (2)

in which A ≡ A1s+A2u+A3U is the total tissue consumption of Ein, and A1,
A2, and A3 denote the cell-type specific consumption per cell.

Physiologically, we assume that cells most likely can access only the local value
of nutrients, namely the energy density. Therefore, we designate rates of cell
division a and cell loss Λ to depend on Ed. In fact, In vivo analysis of the midgut
has shown that high levels of nutrients promote divisions and suppress death,
whereas low levels of nutrients has the opposite effect, as reflected by levels of
insulin signaling [15]. Accounting for these observations, denoting am and Λm
as maximal rates of division and death, respectively, non-dimensionalizing Ed,
and choosing Hill functions to represent generic sigmoidal functions, we arrive
at nutrient-dependent expressions for division and death rates:

a = am
E2
d

1 + E2
d

, Λ = Λm
1

1 + E2
d

. (3)

Note that although we chose second order Hill functions to represent the sig-
moidal dependence of cell division and loss rates on nutrient density, other Hill
functions do not significantly alter the results, as detailed in the Supplement.
Model equations for s, u, and U taking into account nutrient-dependent division
and death rates are therefore:

ṡ = am
E2
d

1 + E2
d

s− bs

u̇ = bs− λu

U̇ = λu− Λm
1

1 + E2
d

U .

(4)

Importantly, the steady states of Equation 4 satisfy scaling because {Ein, s, u, U} →
{αEin, αs, αu, αU} leaves the steady state equations for Equation 4 invari-
ant.

Constant versus stem cell proportion-dependent commit-
ment rate: compatibility with empirical measurements

We next sought to compare the solutions of Equation 4 to the known dynamics of
the midgut in vivo. Solving Equation 4 under steady state conditions, we find for
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steady state stem cell number ratios s0/u0, s0/U0, and s0/(s0 +u0 +U0):

s0/u0 =
λ

b
(5)

s0/U0 = Λm

(
1

b
− 1

am

)
(6)

s0
s0 + u0 + U0

=
1

1 + λ
b + Λm

(
1
b −

1
am

) . (7)

Full steady state solutions to Equation 4 are in the Supplement. Note that in
this general form, we assume that b may have functional dependence on s0, u0,
or U0 and that b cannot surpass am in value.

Important to the discussion of empirical measurements in the midgut is the
definition of symmetric and asymmetric fate outcomes. Since, as a first approx-
imation, stem cells are the only cells in the midgut capable of dividing [33], we
designate fate outcomes as symmetric-stem if both daughter cells divide before
either daughter becomes a committed enteroblast. Following similar logic, we
designate fates as symmetric-terminal if both daughters become committed en-
teroblasts before either divides, and as asymmetric if one daughter becomes a
committed enteroblast while the other divides [15].

Since we model division and commitment as Poisson processes (uncorrelated)
with rates a and b, the probability that a given stem cell undergoes division
before commitment is a/(a+b). The frequency of symmetric-stem fate outcomes
is therefore

P (sym) =

(
a

a+ b

)2

, (8)

where a and b can have any functional dependence. Note that, in steady
state, similar to the results in [18], we have P (sym) = 1/4 because a = b in
steady state. The maximum symmetric-stem division rate, often achieved dur-
ing growth, is Pmax(sym) = (am/(am + b))

2
.

Constant rate of commitment is incompatible with empirical mea-
surements

Other models of tissue homeostasis have assumed that commitment rate is con-
stant [16, 22]. We thus asked whether a constant commitment rate is compatible
with growth. Solving Equation 4 for b = B0 = constant and a 4x increase in
food, we find that the key features of midgut growth in vivo are indeed recapit-
ulated: cell numbers increase, the frequency of symmetric-stem fates increases
transiently, and stem cell number scales (Supplement). Here, the value of 4x
food increase was chosen to generate a 4x increase in cell numbers so as to best
compare to the experimentally measured 4x increase in cell numbers when the
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gut undergoes feeding [15]. As noted, the cell number ratios s0/U0 and s0/u0
are independent of food input or absolute cell number, so stem cell scaling arises
naturally. Thus in principle, a constant commitment rate is compatible with
resizing.

However, the validity of a constant commitment rate model breaks down when
we compare the theoretical parameter space with the biologically observed pa-
rameter space. Although commitment rates have not been experimentally mea-
sured, it is known that in steady state, s0/u0 ≈ 1 and s0/U0 ≈ 0.2 during
midgut homeostasis [15, 16]; specifically, the numbers of stem cells, enteroblasts
and enterocytes are around 700± 200, 500± 200, and 2800± 800, respectively
[15]. Using these values in Equations 5 and 6, and replacing commitment rate
b with the constant B0, we obtain:

1 =
λ

B0
, 0.2 =

s0
U0

= Λm

(
1

B0
− 1

am

)
. (9)

Using these relationships to deduce λ and B0 from am and Λm, we solve Equa-
tion 4 for various values of am and Λm. To focus our parameter range, we
apply three criteria. First, homeostatic stem cell division rates a0 vary from
0.5 times/day to 4 times/day [15, 16]. Given that division and commitment
must be equal at homeostasis (a0 = B0), this biologically relevant range of a0
is obtained from am and Λm using Equation 9 (Figure 2A, blue shading). Sec-
ond, the maximum reported rate of symmetric-stem fates under physiological
conditions is 0.7, which is transiently observed during growth [15]. We thus

set Pmax(sym) = (am/(am + b))
2 ≈ 0.7 (with b = B0) and included a margin of

error such that 0.5 ≤ Pmax(sym) ≤ 0.9 (Figure 2A, red shading), where the mar-
gin of error is estimated from data in [15] (see Supplement). Third, the time
required for the growth phase to reach completion is approximately 3.5 days
[15], after which homeostasis is re-established at the organ’s new, larger size.
Therefore, only values of am and Λm for which solutions to Equation 4 approach
steady state by t = 3.5 days give rise to steady states with in vivo kinetics (Fig-
ure 2A, white region). Conditions used to determine whether Equation 4 has
reached approximate equilibrium are in the Supplement.

Applying these criteria, we observe that when commitment rate is constant
(b = B0), no regions of the theoretical parameter space satisfy all three biological
measurements; i.e., there is no region in which blue, red, and white shading all
overlap (Figure 2A). Specifically, solutions to Equation 4 with constant b = B0

show strong behaviors of ringing (see Figure 2C and Supplement) which prevents
solutions from approaching steady state within physiological time. This ringing
in solutions approaching a new steady state determined by Ein is present for all
fold-changes of Ein. Thus, although constant commitment rate is theoretically
compatible with midgut adaptive growth, it is incompatible when biologically
relevant measurements are applied.
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Figure 2: Stem cell proportion-dependent commitment rate b = B0s/U model
satisfies experimental observations whereas constant commitment rate b = B0

model does not. (A,B) For b = B0 (A) and b = B0s/U (B), regions of
parameter space (am,Λm) that satisfy: homeostatic division rate 0.5 /day ≤
a0 ≤ 4.0 /day (blue), maximum frequency of symmetric-stem fate outcomes
0.5 < Pmax(sym) < 0.9 (red), and homeostasis within t = 3.5 days (white). Av-
erages a0 = 2.5 /day and Pmax(sym) = 0.7 indicated by dashed lines. Parameter
values satisfying all experimental measurements do not exist for b = B0 model
(A), while they exist for b = B0s/U model (B) (solid black outline). Circled
letters indicate parameters corresponding to solutions in panels (C-D). (C) So-
lutions of b = B0 model are highly oscillatory in parameter regimes that satisfy
experimental values of division rate and maximum frequency of symmetric-
stem fate outcomes. (D) Solutions of b = B0s/U model respond quickly to
food changes without large oscillations in parameter regimes that satisfy all
experimental measurements.
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A rate of commitment that depends on stem cell proportion is com-
patible with scaling and empirical measurements

Since the model with constant commitment rate does not fit experimental mea-
surements, we examine a second possibility, in which commitment rate varies
depending on how many stem cells and enterocytes are present in the tissue.
Such a relationship can give rise to more realistic dynamics by allowing cell
numbers to feed back into the commitment rate. In the midgut, commitment
to enteroblast fate is known to occur through Delta-Notch signaling between
stem cells [33–36]. This biological phenomenology suggests that it is reasonable
to model the signaling frequency, and consequently commitment rate, such that
it depends on the number ratio of stem cells in the tissue s/U . We therefore
explore the effects of this additional feedback to our model in Equation 4.

We find that a commitment rate proportional to stem cell-enterocyte ratio reca-
pitulates midgut resizing within timescales that are biologically relevant. Specif-
ically, we modify three elements: Equation 4 such that b = B0s/U , Equation
9 such that B0 is replaced by B0s0/U0, and the Pmax calculation such that
b = B0s0/U0. Incorporating these modifications, we solve Equation 4 for vari-
ous values of am and Λm. The resulting values define a theoretical parameter
space that is compatible with the known biological measurements; i.e., the re-
gion in which blue, red, and white shading overlap (Figure 2B). In addition,
stem cell scaling is maintained due to the form of b = B0s/U . Importantly, the
large oscillations and ringing behaviors in the b = B0 model (Figure 2C) that
delays the approach to steady state are suppressed in the b = B0s/U model
(Figure 2D). This result is confirmed by linear stability analysis, detailed in the
Supplement. Moreover, the parameter region in which oscillations are signifi-
cant is smaller in the b = B0s/U compared to the b = B0 model, also detailed
in the Supplement. We conclude that the known kinetics of midgut resizing can
be accounted for by introducing an additional feedback term to Equation 4, in
particular, one that tunes the rate of enteroblast commitment to the existing
proportion of stem cells.

Therefore, from these results, we propose that our model equations be modified
as:

ṡ = am
E2
d

1 + E2
d

s−B0s
2/U

u̇ = B0s
2/U − λu

U̇ = λu− Λm
1

1 + E2
d

U .

(10)

Equation 10 captures stem cell scaling and in vivo resizing dynamics of the
midgut. The steady state solutions to Equation 10 are presented in the Supple-
ment. We note that the feedback through stem cell number ratio s/U does not
uniquely allow the resizing model in Equation 4 to capture realistic dynamics
in the midgut; however, proportionality of commitment rate to s/U is one of
the simplest forms for feedback that both represents biological phenomenology
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and captures realist dynamics. Alternative models for feedback are suggested
and explored in the Supplement.

2-dimensional model

2-dimensional model description

Although our non-spatial model implies that a tunable commitment rate b is
needed for midgut resizing that fits experimental measurements, it does not
provide insight into the cellular mechanisms that underlie this tunability. To
explore these potential mechanisms, we develop a two-dimensional model of
the midgut that builds upon our non-spatial model. Many mathematical ap-
proaches have been used to model two-dimensional epithelia including vertex
models [37–40], cellular automata [41–43], cellular Potts models [44, 45], and
cell-centered models [46–48]. Our 2D model is a cell-centered model based on
overlapping spheres [49–51], where we represent cells as 2D-spheres (disks) that
are specified by the positions of their centers and that interact physically via
forces such as cell-cell adhesion, volume exclusion, and stochastic motion (Fig-
ure 3A-B). We chose a cell-centered model, among others, because it describes
the midgut system at the length scale of cells, which is the length scale of the
phenomenology in which we are interested. As shown, in vivo [35, 52], contact-
mediated, Delta-Notch signaling between individual stem cells serves to define
commitment to terminal fate (Figure 3C). Thus, in the two-dimensional model,
commitment rate becomes a property that emerges from the fate decisions of
individual enteroblasts, in contrast to the non-spatial model, in which commit-
ment rate is explicitly defined with respect to the tissue-wide ratio of stem cells
to enterocytes.

Physical cell-cell forces

Assuming that the system is highly damped, we set the inertial term to 0 so that
external forces are balanced by viscous drag: dx/dt = ηf where the quantity f
is the external force acting on a cell, the quantity x is the position of the cell
center, and η is the mobility:

dx

dt
= η

( ∑
n∈n.n

(ρn + γn)d̂n + σX(t)

)
. (11)

Here, the sum on n ∈ n.n indicates summing over nearest neighboring cells;
if the cell centered at x has radius R1 and another cell has radius R2, the
two cells are nearest neighbors if their cell centers are separated by less than
R1 + R2. The quantities ρn and γn are magnitudes of repulsion and adhesion
forces from neighbor cells, known to be important in epithelial cells, and dn
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is a unit vector towards the neighbor cell. The self-generated random force is
provided by X(t) which has components sampled from a normal distribution
N(0, 1); here σ indicates an amplitude factor for X. We refer to σX as an
intrinsic stochastic motility. Cell motility has recently been shown to occur in
enteroblasts [53], and labeled clones have been shown to split [15, 16]. The
latter may be due to stochastic motility or random cell shuffling, both of which
are captured by the term σX. Forces are indicated in Figure 3B. Details are
given in the Supplement.
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Figure 3: Two-dimensional model accounts for spatial tissue dynamics. Midgut
cells are represented by physically interacting, soft pseudo-spheres that signal
to each other via Delta-Notch interactions. (A) Schematic: stem cells, enter-
oblasts, and enterocytes in a 2D domain. (B) Attractive and repulsive forces
from neighbor cells and stochastic motility are taken into account. Trapping
potential V (d) from neighbor interactions with preferred distance d0 between
cells of radii R1 and R2. (C) Schematic of Delta-Notch lateral inhibition from
protein dynamics z(t). (D) Frames from 2D simulation of feed-fast cycle: Ein is
increased 4-fold then decreased to original value. (E-F) Cell numbers (E) and
stem cell-enterocyte ratio (F) as a functions of time for the simulation in (D)
with times of frames indicated (vertical dotted lines).
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Delta-Notch signaling

In the midgut, asymmetric fate outcomes arise through activation of Notch re-
ceptor on the surface of one stem cell by Delta ligand on an adjacent stem cell
[33–36, 52, 54]. Activation of Notch marks a cell’s commitment to differenti-
ate [52], and is the defining feature of enteroblast identity. Many mathematical
models of Delta-Notch interactions separately describe Delta and Notch popula-
tions [54–57], or distinguish between membrane-bound and intracellular Notch
[56, 57]. To model lateral inhibition signaling, we employed a fictitious protein
with values z(t) indicating the “stemness” of a given cell. Delta-Notch inter-
actions between neighboring cells are modeled with the dynamics of z through
a delay differential equation. Delta-Notch signaling have been modeled to con-
tain time delays to account for signal transduction [58], and a delayed model of
lateral inhibition has been shown to reduce errors in patterning [59].

For each cell (stem cells and enteroblasts) expressing z, we assume that z is pro-
duced within the cell in a non-linear fashion with saturating effects at level p,
and z decays exponentially with rate β. To take into account the effects of near-
est neighboring cells, we assume that neighbor cells’ protein levels zn decreases z
production in a given cell with time delay tn, taking into account protein trans-
port times, see Figure 3C. Choosing a sigmoidal Hill function of order m > 1 for
the production term, we have for the dynamics of non-dimensionalized z:

dz

dt
= p

(
zm

1 + zm(t)

)
·

 1

1 +

( ∑
n∈n.n

zn(t− tn)/gn

)k
− βz , (12)

where gn denotes the switch point for neighbor interactions, and m and k are
Hill exponents. Given that m > 1, Equation 12 gives bistable steady states of
z with stable fixed points at z∗ = 0 and z∗ 6= 0 and an unstable fixed point
in between that we denote by z∗u. The non-zero stable fixed point z∗ 6= 0 is
interpreted as the ‘stem cell’ state, and the trivial stable fixed point z∗ = 0 is
interpreted as the ‘enteroblast’ state. A stem cell (that has z > z∗u) is defined
to have permanently “committed” to terminal fate and become an enteroblast
when its z value falls below the value of the unstable fixed point (z becomes
z < z∗u). Inhibitory signaling from nearest neighbors cause a stem cell’s z value
to be suppressed below z∗u, causing commitment. Therefore, in the 2D model,
commitment kinetics and commitment rate are determined by dynamics that
drive z below a threshold value. An enteroblast has a small value of z compared
to stem cells and therefore signals weakly compared to stem cells; it undergoes
growth in size to eventually reach the size of an enterocyte; at this point, the
enteroblast is converted into an enterocyte, and its z value is set identically to 0.
Note that, commitment is still an uncorrelated Poisson process, and therefore,
the fraction of symmetric fate outcomes in steady state is still P (sym) = 1/4.
See Supplement for details of implementation of the 2D model.
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Results of 2-dimensional model

Simulations with this 2D model successfully recapitulate essential features of
the in vivo fly midgut with respect to growth, shrinking, scaling with food, and
the presence of stem cells in every part of the epithelium (Figure 3D-F and
Movie S1). Additionally, cell populations behave qualitatively similar to the
non-spatial b = B0s/U model in that they are non-oscillatory (similar to Figure
2D instead of to Figure 2C).

Note that unlike the non-spatial model, the commitment rate b for the 2D model
is not defined as a function of cell populations. Rather, for each individual cell,
commitment rate arises from the duration and strength of contact-based cell-
cell signaling. This dependence implies that global quantities such as stem cell
ratios are determined by local dynamics.

Stem cell ratio depends on cells’ physical properties

With the 2D model, we can explicitly examine the effects of local dynamics on
population-level quantities by changing physical parameters. Specifically, the
forces “adhesion” γ and “motility” σ in Equation 11 determine how fast stem
cells move in the tissue. In particular, stochastic motility specifies diffusive
motion absent of other interactions. Additionally, these parameters affect the
amount of time stem cells are in signaling contact with other, ultimately affect-
ing the stem cell ratio. Specifically, we found that the stem cell ratio is sensitive
to adhesion values, see Figure 4A. Here the motilities σsc,eb for stem cells and
enteroblasts and σEC for enterocytes were kept constant while adhesions were
varied. Forces are expressed in units of `0/(minη), where `0 is the enterocyte di-
ameter without adhesive or repulsive interactions, and η is the inverse viscosity.
Note that we use minutes as the unit of time in order to employ the relevant
values of am and Λm that were deduced from non-spatial model (Figure 2B) to
compare to physiological timescales found in experiments.

‘Stem cell territory’ determines whether system scales

In these simulations, we noted that values for adhesion and motility influenced
the physical space that a stem cell explores during its lifetime. We denote this
space as a ‘stem cell territory’, T . To gain insight into the relationship between
territories and stem cell interactions, we define T as:

T =
1

b
D/`2 . (13)

Here, 1/b is the average lifetime of a stem cell, i.e., the time between the birth
of a stem cell and its commitment to terminal fate; the quantity D is a diffusion
constant fitted to simulated stem cell tracks (see Supplement); and ` is the
average enterocyte diameter. Hence, T is the dimensionless area (number of
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enterocyte areas) over which a stem cell may influence or respond to other stem
cells. Note that Equation 13 can be generalized for non-diffusive motion.

Investigating resulting stem cell ratios as a function of T (Figure 4B), we find
a transition from increasing stem cell ratios at lower T towards saturation for
larger T . Here, the quantity T was varied via adhesion γ and stochastic motility
σ: as expected, larger σ and lower γ lead to larger territories T . Note that this
transition occurs around T ≈ 1, i.e. when stem cells start to explore a territory
larger than the area of a single enterocyte. For T > 1, different stem cells can
come in contact with each other via overlapping territories. The saturation for
large T also indicates that additional interactions do not change global behavior.
Moreover, the resulting stem cell ratio for large T depends on the intrinsic
parameters (adhesion γ); this dependence suggests that the tissue can flexibly
regulate its stem cell ratio.

It is insightful to compare the 2D simulations to the non-spatial model Figure 4
and Equation 10. We find that for large stem cell territories T , the population
dynamics of the two models agree (simulation (1) in Figure 4C-D). This suggests
that when T is large, stem cells can ‘sense’ their density within the tissue, and
hence their commitment rate can contain density feedback through s/U , as in
the non-spatial model. When T is small, the two models differ (simulation (2) in
Figure 4C-D) since the non-spatial model cannot account for the effect, in 2D,
that stem cells with small territories do not obtain density knowledge. Addi-
tionally, we note that in the latter case, when T is small, the approximate time
to reach new homeostatic cell numbers during resizing is longer than observed
physiologically (approximately 7 days instead of 3.5 days [15]); this supports the
notion that stem cells in the biological system may display motility to increase
their territories.

Finally, we explored how stem cell territory T relates to stem-cell scaling. We
performed numerical experiments for different values of food input Ein for vari-
ous T (see the Supplement and Figure S4). We found that the regime for which
stem cell scaling is enabled approximately coincides with the regime for which
stem cell ratios saturate: at T ≥ 1 (dotted vertical line in Figure 4B). Therefore,
when stem cells explore a large enough area to escape the inhibition signaling
of its immediate sibling stem cell, stem cell scaling is enabled.

Discussion

Proportional scaling of stem cells to total cells during adaptive growth ensures
that the organ has enough stem cells to support its new size after growth is
complete. We have shown that the basic features of adaptive organ resizing
can be captured by simple mathematical descriptions of the Drosophila midgut
in which rates of stem cell division and enterocyte death depend on nutrient
density. Importantly, we find that stem cells must commit to a terminal fate at
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Figure 4: Local physical interactions define a critical ‘territory’ above which
stem cells can ‘sense’ their density. (A) Stem cell-enterocyte ratio as a function
of adhesion between stem cells and enteroblasts (x-axis) and adhesion between
enterocytes and apoptotic cells (y-axis) for motility σ = 0.2`0/minη for all
cells. Colored dots indicate adhesion values used in panel (B). (B) Stem cell-
enterocyte ratio as a function of natural log of stem cell territory ln(T ) for
various adhesion values. Onset of saturating values for stem cell ratios (dotted
line T ≈ 1) corresponds to lower threshold of T that enables stem cell scaling.
(C-D) Comparison of 2D (solid lines, average of 6 replicate simulations) and non-
spatial b = B0s/U model (dashed lines) using time courses of cell population
dynamics (C), and commitment rate dynamics (D). Plots correspond to magenta
parameter set in (B). Circled numbers indicate large vs. small T simulations:
large T simulations (1) fit well to b = B0s/U model while small T simulations
(2) do not. Calculations of relative discrepancy between models are given in the
Supplement.
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a non-constant rate, and that a rate tuned to stem cell proportion reproduces
the in vivo kinetics of division and growth.

A

growth

Large territorySmall territoryC D

Large territorySmall territory

stem cell
enterocyte

growth

stem cell

territory

tissue

typical stem cell track

Non-scaling Scaling

B

Figure 5: Scaling occurs when stem cell territories are above a critical threshold.
(A-B) Cartoons of small (A) versus large (B) stem cell territory (red dotted line)
as defined by spatial range of physical cell motion (black line). (C) For territories
below a threshold size, there is no stem cell scaling. (D) For territories larger
than a threshold size, there is stem cell scaling.

What biological mechanisms might enable cells to ‘monitor’ stem cell propor-
tions and tune their commitment rates appropriately? The models presented
here show that a mechanism involving stochastic motility is compatible with in
vivo measurements. Motility permits stem cells to explore a local tissue area
and engage in signaling interactions with other, potentially non-sibling, stem
cells. We define this local area as the stem cell’s ‘territory’ and explore its
parameter space by varying cell motility and adhesion.

Intriguingly, proportion-dependent commitment and scaling occur only above
a threshold territory size. This threshold size can be understood by its im-
pact on commitment rate (i.e., rate of Notch activation), which occurs through
cell-cell signaling (Notch-Delta interactions) between pairs of stem cells. Es-
sentially, there are two scenarios: (1) When stem cells are constrained within
small territories, two newborn sibling cells contact each other frequently, and
their Notch-Delta interactions increase to the point of a near-certain asymmet-
ric outcome. In this case, the total number of stem cells in the tissue remains
nearly constant during growth, while the number of enterocytes increases, and
scaling does not occur (Figure 5A,C). (2) When stem cells range in large terri-
tories, sibling cells often separate fast enough without Notch-Delta interaction
having a differentiating effect, which promotes symmetric fate outcomes, i.e.,
the total number of stem cells in the tissue can increase. Importantly, the stem
cell ratio does not increase beyond a certain value since pairs of non-sibling
stem cells come into contact sufficiently frequently for Notch-Delta interactions
to induce differentiation. In this case, both stem cells and enterocytes increase
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in proportion, and scaling does occur (Figure 5B,D).

We make the following suggestions for future experimental tests. The core im-
portance of a tunable commitment rate in these models contrasts with the scant
empirical knowledge of commitment rates in vivo. Experimental measurements
of commitment rate are currently impractical in many systems. However, the
availability of fluorescent Notch reporters [60, 61] may provide a means to mea-
sure kinetics of fate commitment in systems such as the midgut in which Notch
activation is the committing step. For the midgut in particular, the models
here generate specific, testable predictions: (1) If newborn stem cells inherit
unequal levels of the Delta ligand or Notch receptor, then because of the de-
layed nature of Equation 12, commitment should occur more rapidly in sibling
pairs than in pairs of stem cells that come into contact by chance. (2) The stem
cell population should undershoot when a tissue undergoes shrinkage (Figure
2D). (3) Stem cell scaling should be disrupted by experimental perturbation
of stochastic motility, adhesive force, or Delta-Notch signaling (Figure 4B). (4)
The territory size of individual stem cells should be larger than one enterocyte
area. In particular, for the last point (4), methods such as cell tracking in vivo
to measure diffusion coefficients of cell motion, or clone-induction methods such
as twin-spot mosaic analysis [15] to measure spatial dispersal of cells from a
common division, can provide measurements and estimations of the stem cell
territory in the midgut.

In summary, we have developed mathematical descriptions of a stem cell-based
organ that undergoes adaptive resizing in response to external input. To real-
istically describe an in vivo system, the Drosophila midgut, we found that the
stem cell commitment rate should depend on organ-wide stem cell proportion.
To elucidate this dependence, we suggested local, spatially-motivated, cell-level
mechanisms such as cell motility, adhesion, and signaling, by which stem cells
can detect their density and therefore tune their commitment rate. Importantly,
these models naturally give rise to stem cell scaling, and we identify physical
regimes in which scaling occurs.
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