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Abstract 9 

 10 

Apple (Malus spp.) is a widely grown and valuable fruit crop. Leaf shape and size are important 11 

for flowering in apple and may also be early indicators for other agriculturally valuable traits. 12 

We examined 9,000 leaves from 869 unique apple accessions using linear measurements and 13 

comprehensive morphometric techniques. We identified allometric variation in the length-to-14 

width aspect ratio between accessions and species of apple. The allometric variation was due to 15 

variation in the width of the leaf blade, not length. Aspect ratio was highly correlated with the 16 

primary axis of morphometric variation (PC1) quantified using elliptical Fourier descriptors 17 

(EFDs) and persistent homology (PH). While the primary source of variation was aspect ratio, 18 

subsequent PCs corresponded to complex shape variation not captured by linear measurements. 19 

After linking the morphometric information with over 122,000 genome-wide SNPs, we found 20 

high narrow-sense heritability values even at later PCs, indicating that comprehensive 21 

morphometrics can capture complex, heritable phenotypes. Thus, techniques such as EFDs and 22 

PH are capturing heritable biological variation that would be missed using linear measurements 23 
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alone, and which could potentially be used to select for a hidden phenotype only detectable using 24 

comprehensive morphometrics.  25 

 26 

Introduction  27 

 28 

Apples (Malus spp.) are one of the world’s most widely grown fruit crops, with the third highest 29 

global production quantity of over 84 million tonnes in 2014 (1). The shape and size of apple 30 

leaves plays an essential role in the growth and development of the tree, and ultimately impact 31 

characteristics of the fruit. Apple leaves are generally simple, with an elliptical-to-ovate shape. 32 

Previous studies in apple used linear measurements, such as length and width, to quantify leaf 33 

shape (2, 3). The length-to-width aspect ratio is a major source of variation in leaf shape. 34 

Differing aspect ratios lead to a disproportionate increase or decrease in length relative to width, 35 

or allometric variation, in leaves (4, 5). While linear measurements such as leaf length and width 36 

are useful, they fail to capture the full extent of leaf shape diversity. Failing to measure leaf 37 

shape comprehensively also limits our ability to discern the total underlying genetic 38 

contributions. 39 

 40 

Elliptical Fourier descriptors (EFDs) are a valuable, well-recognized tool for quantifying the 41 

outline of a shape. EFD analysis first converts a contour to a chaincode, a lossless data 42 

compression method that encodes shape by a chain of numbers, in which each number indicates 43 

step-by-step movements to reconstruct the pixels comprising the shape. A Fourier decomposition 44 

is subsequently applied to the chain code, quantifying the shape as a harmonic series. EFDs have 45 

been used extensively to quantify leaf shape in diverse species, such as grape (6), tomato (7), and 46 
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Passiflora (8). Previous work used EFDs to assess apple fruit shape (9), but this technique has 47 

not yet been applied to apple leaves. A newly developed morphometric technique, persistent 48 

homology (PH), provides another method for estimating leaf shape. PH, like EFDs, is 49 

normalized to differences in size, but it also could be orientation invariant. PH treats the pixels of 50 

a contour as a 2D point cloud before applying a neighbor density estimator to each pixel. A 51 

series of annulus kernels of increasing radii are used to isolate and smooth the contour densities. 52 

The number of connected components is recorded as a function of density for each annulus, 53 

resulting in a curve (a reduced version of persistent barcode) that quantifies shape as topology. 54 

The topology-based PH approach can also be applied to serrations and root architecture, allowing 55 

the similar framework to be used across different plant structures (10, 11).  56 

 57 

Comprehensively measuring leaf shape, using approaches such as EFDs and PH, is important, as 58 

shape features may be associated with agriculturally important traits. Leaves are present during 59 

the lengthy juvenile phase in apple but fruits appear only on mature trees and thus, leaf traits can 60 

enable early selection without the need for genetic markers. In apple, it generally takes 5 years 61 

for significant fruiting to occur and any ability to discard trees not possessing a trait of interest 62 

earlier in development is extremely valuable (12). There are already several cases of unique leaf 63 

characteristics providing an early marker for other genetic differences in apple. For example, the 64 

gene underlying red fruit flesh color may lead to anthocyanin accumulation in the leaves, causing 65 

red foliage (13, 14) while columnar tree architecture may be accompanied by an increase in leaf 66 

number, area, weight per unit area and length-to-width ratio (15). Leaf pH has also been 67 

proposed as an early indicator of low acid fruit (16).  68 

 69 
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In addition to serving as early markers for other traits, leaf shape and size may influence the 70 

amount of light a tree receives, and light exposure is crucial for flowering in apple. Light 71 

penetration results in higher levels of flowering, while leaf injury or defoliation can reduce 72 

flowering (17). Thinning apple trees to a particular leaf-to-fruit ratio is a common practice to 73 

attain optimal fruit color and size. Contrastingly, trees with fewer fruit may increase vegetative 74 

growth and thus leaf area (18). In previous work, several leaf traits such as area and perimeter 75 

were correlated with apple fruit size (19). Clearly, there is an important relationship between the 76 

leaves and the fruit, and comprehensively quantifying the variation in leaf shape is a crucial 77 

component to understanding this relationship in apple.  78 

 79 

Leaves are the main photosynthetic organs of apple, but the genetic basis underlying their shape 80 

and size remains unknown. In cotton, a single locus controls the major leaf shapes (20), but in 81 

most instances leaf shape appears to be controlled by numerous small-effect loci (5, 21). There 82 

are limited examples of genomic analyses of leaf shape in apple, however, a previous bi-parental 83 

linkage mapping study found two suggestive quantitative trait loci for leaf size (2). Previous 84 

work also measured several leaf traits such as area, perimeter and circularity, in 158 apple 85 

accessions. The study linked these measurements with 901 single nucleotide polymorphisms 86 

(SNPs) but found no significant genotype-phenotype relationships (19). Thus far, efforts have 87 

not been made to estimate the genetic heritability of comprehensive morphometric leaf 88 

phenotypes, such as those described using EFDs and PH. It therefore remains unclear to what 89 

extent these methods are capturing biologically meaningful, heritable variation.  90 

 91 
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To fully understand the genetic basis of leaf shape, it is essential to include both linear and 92 

morphometric estimates of shape. Decreasing sequencing costs and access to a large and diverse 93 

germplasm collection allowed us to analyze approximately 9,000 leaves from over 800 unique 94 

accessions which we linked to over 122,000 genome-wide SNPs. We present the first 95 

comprehensive analysis of leaf shape in apple, revealing that both accessions and species show 96 

allometric variation due to differences in the width of the leaf blade. While the primary axis of 97 

variation in apple using EFDs and PH is due to this allometric variation, we find high narrow-98 

sense heritability values even at later principal components, indicating that comprehensive 99 

estimates of shape capture heritable variation which would be missed by linear estimates alone.  100 

Results 101 

 102 

Variation in apple leaf shape 103 

 104 

We examined 24 phenotypes related to apple leaf shape and size including length, width, surface 105 

area, dry weight, leaf mass per area, within-tree variance, and overall shape estimated using PCs 106 

derived from EFD (elliptical Fourier descriptor) and PH (persistent homology) data (see 107 

Materials and Methods and Figure 1-2). The sample size and distribution of each phenotype, as 108 

well as the raw data, are provided (Figure S1; Table S1).  109 

 110 

To visualize the primary axes of morphometric variation, we chose a representative leaf from 111 

accessions with the minimum and maximum values along the first 5 PCs for EFDs and PH 112 

(Figure 3a). The accessions with extreme values along PC1 for both methods are similar. In fact, 113 

‘Binet Rouge’ has the lowest value along PC1 for EFD and PH, with the axis clearly 114 
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representing a decrease in the length-to-width (aspect) ratio. The annulus kernels most strongly 115 

contributing to PH PC1 (Figure S2) provide further evidence that this PC captures variation in 116 

aspect ratio. Variation in leaf shape captured by higher-order PCs is more complex and cryptic, 117 

and is thus not captured using linear measurements alone. In addition, while the primary axis of 118 

variation (PC1) using EFDs and PH may explain similar aspects of leaf morphology, the 119 

morphospaces resulting from the two techniques differ (Figure 3b).  120 

 121 

Figure 3. Examples of leaf shape across PCs derived from EFDs and PH. Binary images of 122 

leaves from accessions with minimum and maximum values along PCs 1 to 5 for EFD and PH 123 

estimates. PCs were calculated using values estimated as the average across 8-10 leaves but only 124 

a single representative leaf is displayed. PCs were REML-adjusted based on tree position in the 125 

orchard. The accession name is also listed (a). Visualization of PC1 vs PC2 for EFD and PH 126 

data. Accession with minimum and maximum values along PC1 and PC2 are indicated (b).  127 

 128 

Next, we examined the correlation between all measured traits (Table S3). By assessing the 129 

correlation of PCs resulting from a classical morphometric technique such as EFDs with a novel, 130 

topology-based morphometric approach like PH, we reveal how complementary the methods are 131 

(Figure 4; Figure S3). While there is a highly significant correlation between PC1 for both 132 

methods (R2 = 0.949, p < 1 x 10-15), later PCs are often not significantly correlated, with the most 133 

notable exception being EFD PC2 and PH PC3 (R2 = 0.432, p < 1 x 10-15), although several other 134 

PCs also show weak correlations. Thus, while the primary axis of variation (PC1) is consistent 135 

and highly correlated between methods, each method captures distinct aspects of leaf 136 

morphology in subsequent PCs.  137 
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 138 

Figure 4. Correlations among leaf phenotypes. Values above the diagonal are colored 139 

according to the Pearson’s correlation coefficient, and those below the diagonal indicate 140 

Bonferroni-corrected p-values. The box enclosed by the dotted lines include comparisons only 141 

between phenotypes captured by comprehensive morphometric analyses.  142 

 143 

Many of the leaf phenotypes show a strong correlation with each other (Figure 4). In particular, 144 

aspect ratio is highly correlated with PH PC1 (r = -0.878, p < 1 x 10-15), EFD PC1 (r = -0.855, p 145 

< 1 x 10-15) and minor axis (leaf blade width) (r = -0.734, p < 1 x 10-15). The correlation between 146 

the minor axis of a leaf and surface area (r = 0.939, p < 1 x 10-15) is higher than the correlation 147 

between the major axis (blade length) and surface area (r = 0.810, p < 1 x 10-15). As expected, 148 

leaf surface area is also highly correlated with average leaf dry weight (r = 0.934, p < 1 x 10-15), 149 

indicating that larger leaves are heavier. 150 

 151 

Allometry in apple leaves 152 

 153 

The high correlation between aspect ratio and PC1 for both EFD and PH methods indicates that 154 

length-to-width ratio is the primary source of variation in apple leaf shape. If there is an 155 

allometric relationship between the minor and major axis, and thus, the length and width of a leaf 156 

do not increase at equal rates, a slope significantly differing from 1 is expected. We find that the 157 

slope between the two measurements is significantly greater than 1 (95% CI = 1.506-1.678, R2 = 158 

0.343, p < 1 x 10-15), indicating that the minor axis increases at a greater rate than the major axis. 159 

While there is no significant correlation between the major axis (blade length) and EFD PC1 (R2 160 
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= 0.001, p = 1) or PH PC1 (R2 = 0.002, p =1), there is a significant correlation for the minor axis 161 

(blade width) and EFD PC1 (R2 = 0.541, p < 1 x 10-15) and PH PC1 (R2 = 0.573, p < 1 x 10-15) 162 

(Figure 5). As PC1 explains 80.23% of the variation in the leaf shape for EFDs, and 62.20% for 163 

PH, it is apparent that the width of the leaf blade, and not length, is the major source of leaf 164 

shape variation in apple. In fact, the aspect ratio, calculated as the ratio of major axis to minor 165 

axis, is even more strongly correlated with EFD and PH PC1, with an R2 of 0.732 for EFD PC1 166 

(p < 1 x 10-15) and R2 of 0.771 for PH PC1 (p < 1 x 10-15). Given the significant correlation 167 

between EFD PC1 and PH PC1 (Table S3), it is not surprising that aspect ratio is highly 168 

correlated with both.  169 

 170 

Figure 5. Correlation between the primary axis of variation (PC1) captured using EFD and 171 

PH values and leaf shape measures. The EFD PC1 is plotted against the major axis (length of 172 

leaf blade) (a), minor axis (width of leaf blade) (b) and aspect ratio (ratio of length-to-width of 173 

blade) (c). The PH PC1 is plotted against the same measures in panels d-f.  The percent variances 174 

explained by PC1, prior to REML-adjustment, is shown in parentheses. All p-values are 175 

Bonferonni-corrected based on the number of comparisons in Figure 4. A regression line from a 176 

linear model with a shaded 95% confidence interval is also shown.  177 

 178 

In addition to variation between accessions, we investigated differences in leaf shape and size 179 

between species by comparing Malus domestica, the domesticated apple, with its primary 180 

progenitor species, Malus sieversii (Table S4). PCA of the genome-wide SNP data reveals a 181 

primary axis of genetic variation that separates M. domestica and M. sieversii, although 182 

separation is incomplete (Figure 6a). The major axis (p = 0.975) of the leaves does not differ 183 
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between species (Figure 6b). However, the minor axis (p = 4 x 10-4) of M. domestica leaves are 184 

significantly larger than M. sieversii (Figure 6c) and the aspect ratio (p = 0.023) is significantly 185 

less (Figure 6d). Thus, there is allometric variation both within (Figure 5) and between (Figure 6) 186 

Malus species.  187 

 188 

Figure 6. Genetic and phenotypic comparison of the domesticated apple and its wild 189 

ancestor. PCs 1 and 2 were derived from 75,973 genome-wide SNPs and samples are labeled as 190 

M. domestica (purple), M. sieversii (green) or unknown (gray). M. domestica leaves do not differ 191 

from M. sieversii leaves along the major axis (b), but they have a larger minor axis (c) and aspect 192 

ratio (d). P-values reported are Bonferroni-corrected based on multiple comparisons (Table S4). 193 

Species labels are based on USDA classification.   194 

 195 

The genetic basis of leaf shape in apple  196 

 197 

GWAS of the 24 leaf phenotypes examined in this study yielded few significant results. We 198 

identified 70 significant SNPs representing 5 phenotypes which are reported in Table S5. We 199 

examined the regions surrounding significant SNPs for candidate genes using the GBrowse tool 200 

(Table S6) (22). We searched within a +/- 5,000 bp window, which should capture any linked 201 

causal variation given the rapid LD decay observed in a diverse collection of apples that is 202 

largely replicated in the germplasm studied here (23). However, no strong candidate genes were 203 

identified.  204 

 205 
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While GWAS examines the genome for single, large-effect loci, genomic prediction estimates 206 

our ability to predict a phenotype using genome-wide marker data. We complimented our 207 

GWAS with genomic prediction and observed prediction accuracies (r) ranging from -0.10 to 208 

0.52 (Table S7; Figure S5a). Aspect ratio is the primary source of variation in leaf shape (Fig 5c) 209 

and it is also the leaf measurement that had the highest genomic prediction accuracy (0.52). 210 

Other phenotypes highly correlated with aspect ratio, such as leaf width (0.51), minor axis 211 

(0.49), EFD PC1 (0.48) and PH PC1 (0.47), all had relatively high prediction accuracies. PH 212 

PC3 (0.51) was also among the most well-predicted using genetic data.  213 

 214 

Similarly, estimates of narrow-sense heritability (h2) calculated using GCTA (24) ranged from 0 215 

to 0.75, with the highest heritability observed for aspect ratio (0.75) followed by leaf width 216 

(0.71), EFD PC1 (0.71), minor axis (0.69) and PH PC1 (0.65) (Figure 7; Table S8). Heritability 217 

estimates were highly correlated with genomic prediction accuracies (Figure S5b, R2 = 0.936, p 218 

< 1 x 10-15), which is not surprising given that both techniques involve predicting a phenotype 219 

from genome-wide SNP data. None of the phenotypes measuring variance within the 8-10 leaves 220 

sampled had heritability estimates significantly different from 0.  221 

 222 

Figure 7. Narrow-sense heritability (h2) of leaf phenotypes. Values represent the additive 223 

genetic variance (Vg) divided by the phenotypic variance (Vp) with a standard error as calculated 224 

using GCTA (24). The dotted red lines are found at h2 = 0, indicating that none of the phenotypic 225 

variance is explained by the genetic data. The proportion of the total phenotypic variance 226 

explained by each PC is indicated in parentheses.   227 

 228 
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While the principal component of variation in leaf shape detected by EFDs and PH is aspect 229 

ratio, we were also interested in determining if higher-order PCs, which capture variation not 230 

readily visible to the eye, are extracting information that is biologically meaningful. Using 231 

genomic prediction and heritability estimates, we found evidence of a genetic basis for these 232 

“hidden phenotypes”, which are unmeasurable using linear techniques. For example, the 233 

heritability of phenotypes such as PH PC6 (0.48), PH PC9 (0.35), PH PC10 (0.33) and EFD PC9 234 

(0.33) are similar to traditionally measured phenotypes such as leaf length (0.44) and leaf mass 235 

per area (0.40). While higher PCs may have relatively high heritability values, after a certain 236 

point the values (+/- standard error) overlap with 0, indicating that they are not heritable. The 237 

cutoff for morphometric PCs with a heritable genetic basis is approximately PC17. These results 238 

suggest that by making use of morphometric techniques that measure shape comprehensively, we 239 

are describing biologically meaningful, heritable phenotypes which would be missed by simple 240 

measurements such as leaf length, width and surface area. 241 

 242 

Discussion  243 

 244 

Leaf shape and size play a crucial role in the growth and development of apple trees, including 245 

the fruit. To elucidate the genetic basis of this variation, we quantified leaf shape in apple using 246 

traditional linear measurements and comprehensive morphometric techniques. Our work offers 247 

the first comparison between the novel topology-based technique, PH, and EFDs, which we find 248 

are complementary but distinct methods. For both methods, PC1 was highly correlated with the 249 

aspect ratio, thus providing evidence that the primary axis of variation in apple leaf shape can be 250 

captured using linear measurements. The minor axis, or width of the leaf blade, was also highly 251 
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correlated with PC1, while the major axis was not. Thus, variation in the aspect ratio is due to 252 

variation in the leaf blade width, not length. Leaf surface area was also more highly correlated 253 

with the minor axis than the major axis. Variation in leaf width is therefore essential to both the 254 

size and shape of apple leaves, similar to previous work in tomato (25).  255 

 256 

The width of the leaf blade is not only the source of variation between apple accessions, but also 257 

between M. domestica and M. sieversii. The presence of the same allometric relationship within 258 

and between species suggests that the genetic loci controlling intra-specific leaf shape variation 259 

within M. domestica may be the same as those controlling the divergence in leaf shape observed 260 

between the domesticated apple and its wild ancestor. For example, in birds, while PC1 and PC2 261 

of bill shape explain the majority of variation across 2,000 species, they are also consistently 262 

associated with the variation between higher taxa (possessing >20 species) (26). Our results 263 

suggest that the increase in leaf size since domestication has not been an overall increase in leaf 264 

size but specifically an increase in blade width leading to larger leaves with a reduced length-to-265 

width ratio.  266 

 267 

Our work provides evidence that allometry is the primary source of morphometric variation in 268 

apple leaves. These findings are consistent with work reported in other species such as tomato, 269 

where the length-to-width ratio was the major source of shape variation (>40%) (5). Similarly, 270 

work in Passiflora and Vitis species performed using two independent morphometric techniques 271 

identified allometric variation as the primary source of variation in PC1, which explained at least 272 

40% of the variation in leaf shape (8, 27). Thus, linear measurements—in particular aspect 273 

ratio—are an important source of information when describing leaf shape. However, linear 274 
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measurements are not sufficient for capturing the full spectrum of diversity. In our study, PC1 275 

accounts for 62.20% or 80.23% of the variation, depending on the technique used. By simply 276 

quantifying apple leaves using linear measurements, we would miss nearly 40% of the variation 277 

in some cases. While PC1 is highly correlated with aspect ratio, later PCs represent orthogonal 278 

variation that can likely only be captured through morphometric techniques such as EFDs and 279 

PH. To fully quantify variation in leaf shape, comprehensive morphometric techniques are 280 

therefore essential.  281 

 282 

To discern the genetic contributions to leaf shape, we paired both linear and comprehensive 283 

morphometric estimates of shape with genome-wide SNP data. There are examples of a simple 284 

genetic basis of leaf shape, such as in Arabidopsis thaliana, where the ANGUSTIFOLIA and 285 

ROTUNDIFOLIA3 independently control leaf width and length (28). In barley, transcript levels 286 

of BFL1 limit leaf width, with overexpression resulting in narrower leaves and loss of BFL1 287 

function resulting in a reduced length-to-width ratio (29). Using GWAS, we found no robust 288 

associations with shape phenotypes, observed a low ratio of significant SNPs to the number of 289 

phenotypes examined, and found that significant SNPs were sparsely distributed across multiple 290 

chromosomes. In addition, the small number of significant SNPs are likely spurious associations 291 

due to poor correction for cryptic relatedness, as evidenced by the QQ plots (Fig S4). These 292 

observations suggest that leaf shape is likely polygenic and controlled by a large number of small 293 

effect loci, such as in tomato and maize (5, 21). In comparison, GWAS on apple fruit 294 

phenotypes, such as color and firmness, have revealed strong associations resulting from a small 295 

number of large effect loci (23). However, it is possible that large effect loci were missed in the 296 

present study, either because of poor reference genome assembly or inadequate marker density. 297 
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Improvements in genome assembly and increases in marker number will aid to further reveal the 298 

genetic architecture of apple leaf shape variation. 299 

 300 

Lastly, we investigated the degree to which leaf shape is heritable and can be predicted using 301 

genome-wide SNP data. We find that the genomic prediction accuracies of the primary axes of 302 

leaf shape variation are similar to previously reported estimates for fruit width (0.48) and length 303 

(0.47), indicating that leaf shape is as heritable as fruit shape (23). In combination with few 304 

significant GWAS results, high narrow-sense heritability estimates support a polygenic basis for 305 

leaf shape. Aspect ratio was identified as the primary source of variation in leaf shape in apple 306 

and had the highest genomic prediction and heritability estimates, indicating that there is a 307 

genetic, heritable basis for allometric variation in apple. While we did not detect a genetic basis 308 

for leaf shape variation within an accession, we intentionally sampled leaves representing the 309 

mean of a tree, and this may have diminished power. Further, although the first 5 PCs for both 310 

EFDs and PH explain the majority of the variation in apple leaf shape, most PCs from 1 to 14 311 

have heritability estimates above 0.20 and may still represent crucial differences in leaf shape 312 

from an ecological, evolutionary, or agricultural perspective. Thus, while our ability to detect the 313 

primary axes of variation in leaf shape using genome-wide data is expected, our observation that 314 

higher level PCs are also heritable confirms that these comprehensive morphometric methods 315 

capture biologically meaningful variation that would be missed by linear measurements alone.  316 

 317 

Conclusions 318 

 319 
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It is clear from our work that variation in apple leaf shape and size are under genetic control. 320 

Further, high genomic prediction and heritability estimates for higher morphometric PCs indicate 321 

that techniques such as EFDs and PH are capturing heritable biological variation that will be 322 

missed if researchers restrict leaf shape estimates to linear measurements. Based on these results, 323 

it may be possible to perform genomic selection for a phenotype that could only be detected 324 

using morphometrics. If a higher order PC was correlated with a trait that was difficult or 325 

expensive to measure, assessing leaf shape could potentially be used as proxy for that phenotype, 326 

in the same manner that red leaf color can be used to select for red fruit flesh color in apples (13, 327 

14). Additionally, a better understanding of the variation in leaf shape and size in apple could 328 

ultimately have important implications for canopy management, where light exposure is crucial 329 

to flowering (17). Ultimately, through the first in-depth study of leaf shape in apple, we uncover 330 

allometry between accessions and species, as well as evidence that complex and heritable 331 

phenotypes can be captured using comprehensive morphometric techniques.  332 

 333 

Materials and Methods 334 

 335 

Sample collection  336 

 337 

Apple trees in Kentville, Nova Scotia, Canada were budded onto M.9 rootstocks in spring 2012. 338 

In the fall, the trees were uprooted and kept in cold storage until spring 2013, when trees were 339 

planted in an incomplete block design (see “REstricted Maximum Likelihood (REML)” below). 340 

Leaves from over 900 trees were collected from August 24th to September 16th 2015. Ten leaves 341 

were collected from each tree. Leaves were flattened and placed to avoid touching, then scanned 342 
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using Canon CanoScan (LiDE 220) Colour Image Scanners. Leaves were then dried for 48 hours 343 

at 65 °C and weighed to estimate the total dry weight (g) for each tree.   344 

 345 

Morphometric analyses  346 

 347 

Leaf scans were converted into a separate binary image for each leaf using custom ImageJ 348 

macros, which included the ‘make binary’ function (30). A new image file was created for each 349 

leaf and named after the tree ID. Images were converted to RGB .bmp files and a chain code 350 

analysis was performed using SHAPE (31). The chain code was used to calculate normalized 351 

elliptical Fourier descriptors (EFDs) in SHAPE. The normalized EFDs were read into Momocs 352 

v1.1.5 (32) in R (33) where harmonics B and C were removed to eliminate asymmetrical 353 

variation in leaf shape.  354 

 355 

The binary leaf images were also analyzed using persistent homology (PH) (10). To numerically 356 

estimate the shape of the leaves using PH, we extracted the leaf contour using a 2D point cloud 357 

(Figure 1a). After centering and normalizing the contour to its centroid size, we used a Gaussian 358 

density estimator (Figure 1b), which assigns high values (red) to pixels with many neighboring 359 

pixels, and low values (blue) to pixels with fewer neighboring pixels. We multiplied the density 360 

estimator by an annulus kernel, or ring (Figure 1c), which emphasizes the shape in an annulus at 361 

the centroid and is thus invariant to orientation (Figure 1d). The resulting function can also be 362 

visualized from the side view (Figure 1e,f). As we moved a plane from top to the bottom, we 363 

recorded the number of connected components above the plane, forming a curve. With each new 364 

component this value increased, and each time components were merged, it decreased (Fig 1g). 365 
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For each leaf, we computed 16 curves corresponding to 16 expanding rings. For computational 366 

purposes, each curve is divided into 500 numbers, ultimately resulting in the shape of each leaf 367 

being represented by 8,000 (16*500) values.    368 

 369 

Figure 1. Visualization of persistent homology technique for annulus kernel 7. Binary 370 

images were converted into a 2D point cloud (a) which was then normalized using a Gaussian 371 

density estimator (b). For each leaf, 16 annulus kernels were used. Annulus kernel 7, indicated in 372 

purple (c) is used as an example for this visualization. The density estimator is multiplied by ring  373 

7 (d). The function can also be visualized from the side view (e, f). As a plane moves from top to 374 

bottom, the number of connected components is recorded along the curve (g). Below (g) are five 375 

visualizations of curves that are represented as red vertical dotted lines in (g).   376 

 377 

Only leaves for which both EFDs and PH shape estimations were successfully calculated were 378 

included in subsequent analyses. Additionally, only trees with 8-10 leaves were included, as 379 

leaves were sometimes removed due to tears, folding, or the absence of a petiole which did not 380 

allow for accurate quantification of shape. The final dataset consisted of 915 trees with 8-10 381 

leaves, which included 869 unique accessions and 8,995 leaves.  382 

 383 

EFDs and PH values were averaged across leaves from an individual tree. The contribution of 384 

EFD harmonics 1 to 15 to the mean leaf shape across all trees was visualized using the ‘hcontrib’ 385 

function in the Momocs R package (Figure 2). To allow for discrimination between accessions 386 

based on leaf shape, principal component analysis (PCA) was performed using the Momocs 387 

‘PCA’ function (32) for EFDs, and the ‘prcomp’ function in R for PH values, which center but 388 
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do not scale the data. The resulting PC values were adjusted using REstricted Maximum 389 

Likelihood (see below). Subsequently, we identified the accession with the minimum and 390 

maximum value along each of the first 5 PCs.    391 

 392 

Figure 2. Contribution of elliptical Fourier descriptor harmonics to leaf shape. The leaf 393 

shapes depicted are the mean leaf shapes based on all 915 trees. Harmonics 1 to 15 are 394 

represented on the x-axis and each harmonic is multiplied by the amplification factor on the y-395 

axis to visualize their contribution to mean leaf shape. An amplification factor of 0 indicates the 396 

removal of the harmonic; a factor of 1 results in the normal shape; and values above 1 exaggerate 397 

effects to better visualize the harmonic’s contribution to the final shape.  398 

 399 

In addition to estimating the contour of the leaf using EFDs and PH, we used several more 400 

metrics to describe the leaves. Using ImageJ, we automated the measurement of leaf surface area 401 

(cm2), length (cm) of the leaf and width (cm) of the leaf as well as major (blade length) and 402 

minor (blade width) axes of the best fitting ellipse—which excluded the petiole—through batch 403 

processes (30). Throughout the manuscript, we use ‘major’ when referring to the length of the 404 

leaf blade, and ‘minor’ when referencing the width of the leaf blade. We also calculated the 405 

aspect ratio of the leaf, by dividing the major axis by the minor axis. Additionally, leaf mass per 406 

area was calculated for 780 trees where we possessed surface area data for all 10 leaves, by 407 

calculating the ratio of dry weight to surface area (g/cm2). 408 

 409 

While linear phenotypes were calculated as an average value for a particular tree, we also 410 

estimated variance within a tree for aspect ratio, length, width, major and minor axis, and surface 411 
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area. Variance was calculated as the coefficient of variation using the ‘cv’ function in the raster 412 

package (34) in R to estimate within-tree variability in leaf size, which is indicated as ‘var’ 413 

throughout this manuscript. 414 

 415 

REstricted Maximum Likelihood (REML) adjustment of phenotype data 416 

 417 

The orchard sampled in this study is an incomplete block design with 1 of 3 standards per grid. 418 

The standards, or “control trees”—‘Honeycrisp’,  ‘SweeTango’, and ‘Ambrosia’—are replicated 419 

across the grid. Leaves from these trees were sampled multiple times across the orchard, which 420 

allowed us to correct for positional effects. Each phenotype was adjusted using a REstricted 421 

Maximum Likelihood (REML) model which resulted in one adjusted value per accession, even 422 

when multiple trees were measured. The impact of row grid (rGrid), column grid (cGrid) and 423 

rGrid x cGrid effects were adjusted for using the following REML model:  424 

 425 

��������� ~ 
������� � � 1 | ����� � � 1 | ����� � � 1 | ����: ����� 

 426 

We fit a linear mixed-effects model via REML using the ‘lmer’ function in the lme4 package in 427 

R (35) and then calculated the least squares means using the ‘lsmeans’ function in the lsmeans R 428 

package (36). 429 

 430 

Thus, while the initial phenotype data was collected for 915 trees, following REML adjustment, 431 

one value remained per unique accession, resulting in 869 accessions. REML-adjustment was 432 

applied directly to all size, weight and variance estimates. For PH and EFDs, we applied the 433 
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REML following PCA and thus the percent contribution for each PC was calculated using 434 

unadjusted values. The adjusted data for all 24 phenotypes are included in Table S1.  435 

 436 

Phenomic analyses  437 

 438 

The correlation between leaf phenotypes was calculated using Pearson’s correlation and p-values 439 

were Bonferroni-corrected for multiple comparisons. The resulting heatmap was visualized using 440 

the ‘geom_tile’ function in ggplot2 in R (37). Next, we examined the leaves for allometry using 441 

the ‘SMA’ function in the smartr R package (38) to estimate if the slope between the log-442 

transformed minor and major axis differed from 1. 443 

 444 

Accessions were labelled as either Malus x. domestica Borkh. or Malus sieversii Lebed. based on 445 

information provided by the United States Department of Agriculture (USDA) Germplasm 446 

Resources Information Network website (http://www.ars-grin.gov/) (Table S2). We used a 447 

Mann-Whitney U test to test if any phenotypes differed between species and Bonferroni-448 

corrected all p-values for multiple comparisons.   449 

 450 

Genomic analyses 451 

 452 

DNA was extracted using commercial extraction kits. Genotyping-by-sequencing (GBS) libraries 453 

were prepared using ApeKI and PstI-EcoT221I restriction enzymes according to Elshire, et al. 454 

(39). GBS libraries were sequenced using Illumina Hi-Seq 2000 technology. Reads which failed 455 

Illumina's “chastity filter” were removed from raw fastq files. Remaining reads were aligned to 456 
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the Malus x. domestica v1.0 pseudo haplotype reference sequence (40) using the Burrows-457 

Wheeler aligner tool v0.7.12 (41) and the Tassel version 5 pipeline (42). Tassel parameters 458 

included a minKmerL of 30, mnQS of 20, mxKmerNum of 50000000 and batchSize of 20. The 459 

kmerlength was set to 82 for ApeKI and 89 for PstI-EcoT22I based on the max barcode size. The 460 

minMAF for the DiscoverySNPCallerPluginV2 was set to 0.01. All other default parameters 461 

were used. Non-biallelic sites and indels were removed using VCFtools v.0.1.14 (43). VCFs for 462 

both enzymes were then merged using a custom perl script, preferentially keeping SNPs called 463 

by PstI-EcoT22I at overlapping sites, since those sites tended to be at higher coverage.  464 

 465 

Missing data was imputed using LinkImputeR v0.9 (Money et al., Submitted, available: 466 

http://www.cultivatingdiversity.org/software.html) with global thresholds of 0.01 for minor allele 467 

frequency (MAF) and 0.70 for missingness. We examined depths of 3 to 8 and selected a case 468 

for imputation with a max position/sample missingness of 0.70, a minimum depth of 5, and an 469 

imputation accuracy of 94.9%. The VCF was converted to a genotype table using PLINK v1.07 470 

(44, 45).  471 

 472 

Of the 869 accessions assessed in this study, 816 had genomic data following imputation and 473 

filtering and were included in downstream analyses. The resulting genotype table consisted of 474 

816 accessions and 197,565 SNPs. Subsequently, a 0.05 MAF filter was applied using PLINK, 475 

after which 128,132 SNPs remained. SNPs with more than 90% heterozygous genotypes were 476 

removed. The final genotype table consisted of 816 samples and 122,596 SNPs.  477 

 478 
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To perform PCA, SNPs were pruned for linkage disequilibrium (LD) using PLINK. We 479 

considered a window of 10 SNPs, removing one SNP from a pair if R2 > 0.5, then shifting the 480 

window by 3 SNPs and repeating (PLINK command: indep-pairwise 10 3 0.5). This resulted in a 481 

set of 75,973 SNPs for 816 accessions. PCA was performed on the LD-pruned genome-wide 482 

SNPs using ‘prcomp’ in R with data that were centered but not scaled. The first 2 genomic PCs 483 

were visualized using ggplot2 in R (37).  484 

 485 

We performed a genome-wide association study (GWAS) using the mixed linear model in Tassel 486 

(version 5) for each phenotype, adjusting for relatedness among individuals using a kinship 487 

matrix as well as the first 3 PCs for population structure (46, 47). The threshold for significance 488 

was calculated using simpleM (48, 49) which estimates the number of PCs needed to explain 489 

0.995 of the variance, or the number of independent SNPs. The inferred Meff used to calculate 490 

the significance threshold was 91,667 SNPs.  491 

 492 

We searched the regions surrounding any significant GWAS SNPs using the Genome Database 493 

for Rosaceae GBrowse tool for Malus x. domestica v1.0 p genome (22). We used a window of 494 

+/- 5,000 bp (10 kb) surrounding the significant SNP to check for genes, and when identified, we 495 

used the basic local alignment search tool (BLAST) from NCBI to search for the mRNA 496 

sequence and reported the result with the max score (50). 497 

 498 

Genomic prediction was performed using the ‘x.val’ function in the R package PopVar (51). The 499 

rrBLUP model was selected and 5-fold (nFold=5) cross-validation was repeated 3 times 500 

(nFold.reps=3) with no further filtering (min.maf=0) from the set of 122,596 SNPs used for 501 
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GWAS. All other default parameters were used. In addition to performing genomic prediction on 502 

the main 24 phenotypes examined in this study, we performed genomic prediction on all 40 PCs 503 

for EFDs and on the first 40 PCs for PH values. We also used the ‘rnorm’ function in R to 504 

generate 1,000 random phenotypes with a mean of 0 and a standard deviation of 1, and 505 

performed genomic prediction using these random phenotypes to obtain the range of genomic 506 

prediction accuracies one can expect at random. Lastly, we used genome-wide complex trait 507 

analysis (GCTA) v.1.26.0 which estimates the genetic relationships between individuals based 508 

on genome-wide SNPs and uses this information to calculate the variance explained by these 509 

SNPs. The ratio of additive genetic variation to phenotypic variance is used to calculate narrow-510 

sense heritability (h2), or SNP heritability, of a trait (24). We used GCTA to estimate heritability 511 

for each phenotype, including the first 40 PCs for EFD and PH. We also estimated the 512 

correlation between genomic prediction accuracy (r) and narrow-sense heritability (h2) using a 513 

Pearson’s correlation. 514 
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Supplementary Material  525 

Figure S1. Distribution of leaf phenotypes following REML-adjustment. N is equal to the 526 

total number of unique samples. 527 

Figure S2. Visualization of contributions of each ring to PH PC1. Rings 6, 7 and 16 528 

contribute the most to leaf shape according to PH PC1. The placement of each ring is visualized 529 

on a leaf representing the minimum and maximum value along PC1 (a). The contribution to PC1 530 

of each of the 16 rings is also shown (b).   531 

 532 

Figure S3. Comparison of morphometric EFD and PH PCs 1 to 5. Correlation between first 5 533 

PCs, estimated using Pearson’s correlation, including R2 and Bonferroni corrected p-values 534 

based on Figure 4/Table S3. 535 

 536 

Figure S4. GWAS results for all 24 leaf phenotypes examined. Manhattan and QQ plots are 537 

included for each phenotype.  The QQ-plot shows both the results of a naive GWAS (Pearson 538 

correlation) and the results from applying the mixed model. P-values are log-transformed and the 539 

threshold for significance is simpleM-corrected and indicated by a horizontal dotted line. 540 

Chromosome R indicates SNPs found on contigs unanchored to the reference genome. 541 

 542 

Figure S5. Genomic prediction accuracy (r) (a) and correlation between genomic prediction 543 

results and narrow-sense heritability estimates (h2) for all leaf phenotypes (b). Genomic 544 

prediction accuracies represent the average correlation (+/- standard deviation) between observed 545 

and predicted phenotype scores, based on 5-fold cross-validation with 3 iterations. Dotted red 546 

lines indicate the minimum and maximum prediction average accuracy (r) achieved using 1,000 547 
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randomly generated phenotypes. The percent variance explained by each PC was calculated prior 548 

to REML-adjustment and is indicated in parentheses.   549 

 550 

Table S1. All leaf phenotypes assessed in apple, following REML-adjustment. Accessions 551 

are identified by their unique “apple id”. Further information about these accessions is available 552 

in Table S2.  553 

 554 

Table S2. Metadata for all accessions assessed in this study. In addition to the unique numeric 555 

apple_id, we report the Germplasm Origin (where budwood was obtained from) and Species 556 

(Malus domestica/Malus sieversii).  557 

 558 

Table S3. Correlation between leaf phenotypes as well as Bonferroni-adjusted p-values. 559 

Pearson's product moment correlation coefficients are reported. These results are visualized in 560 

Figure 2.  561 

 562 

Table S4. Comparison of leaf phenotypes between accessions based on metadata. 563 

Bonferroni-adjusted p-values resulting from a Mann-Whitney U test estimating the difference 564 

between accessions based on species (Malus domestica/Malus sieversii) for the leaf phenotypes 565 

examined.  566 

 567 

Table S5. Positional information for significant GWAS results. Additional information about 568 

significant SNPs are included such as p-value, marker R2, minor and major allele, minor and 569 

major effect and MAF.  570 
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 571 

Table S6. Genes found within +/- 5 kb of SNPs with significant associations to phenotypes 572 

from GWAS. Results are listed according to the Genome Database for Rosaceae GBrowse 573 

(accessed January 27 2017). Overlapping mRNA, length, contig, GO category, GO term 574 

accession, GO term name, InterPro Term, InterPro Description and NCBI sequence with Max 575 

Score when BLASTed using NCBI are reported.  576 

 577 

Table S7. Genomic prediction accuracies (r) for leaf phenotypes. r_avg represents the 578 

average correlation between observed and predicted phenotype scores, based on 5-fold cross-579 

validation with 3 iterations. The standard deviation (r_sd) is also reported.  580 

 581 

Table S8. Narrow-sense heritability (h2) for leaf phenotypes. h2 represents the genetic 582 

variance (Vg) divided by the phenotypic variance (Vp). The standard error (SE) is also reported. 583 

These results are visualized in Figure 7. 584 

 585 
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