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Abstract  

Background: 

To examine the impact on diagnosis, treatment and cost with early use of targeted whole-exome 

sequencing (WES) in early-onset epilepsy. 

Methods: 

WES was performed on 50 patients with early-onset epilepsy (≤ 5 years) of unknown cause. Patients 

were classified as retrospective (epilepsy diagnosis > 6 months) or prospective (epilepsy diagnosis < 6 

months). WES was performed on an Ion ProtonTM and variant reporting was restricted to the sequences 

of 565 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost 

and impact on treatment was also performed.   

Results: 

A likely/definite diagnosis was made in 17/50 patients (34%) with immediate treatment implications in 

8/17 (47%). A possible diagnosis was identified in 9 additional patients (18%) for whom supporting 

evidence is pending. Time from epilepsy onset to genetic diagnosis was faster when WES was performed 

early in the diagnostic process (mean: 143 days prospective versus 2,172 days retrospective). Costs of 

prior negative tests averaged $8,344 in the retrospective group, suggesting savings of up to $5,110 per 

patient.  

Interpretation: 

These results support the clinical utility and potential cost-effectiveness of using targeted WES early in 

the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits 

are likely to continue to improve. Advances in precision medicine and further studies regarding impact 

on long-term clinical outcome will be important.   
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Introduction  

Epilepsy is a common pediatric neurological disorder with increased risk of developmental 

delay, autism and psychiatric illness, for which treatment is ineffective in 30-40% of patients. 

High-throughput sequencing technologies, including whole-exome sequencing (WES) and 

epilepsy gene panels, have advanced our genetic understanding as pathogenic variants have 

been identified in 10-78% of select patients (1–6). A genetic diagnosis of epilepsy may enable 

more accurate counseling regarding prognosis and recurrence risk, avoids unnecessary medical 

investigations and may change care. It also allows families to connect with the same genetic 

condition and/or join support groups. Recent studies have demonstrated the potential cost 

savings of WES in the diagnostic work-up of children with suspected monogenic disorders (7–

10). However, in Canada, access to such technology in clinical care is variable. In this British 

Columbia study, we assess the effectiveness of using WES by comparing diagnostic yield, time 

to diagnosis, and cost to current clinical practices. The potential treatment impact of a genetic 

diagnosis is also described. 

 

Methods  

Patients   

Fifty patients with epilepsy (11) were enrolled between December 2014 and June 2015. All had 

seizure onset at ≤5 years of undefined cause after EEG, brain MRI and chromosome microarray 

investigations. Seizure types and electroclinical syndromes were classified according to the 

International League Against Epilepsy (ILAE)(12). Patients with self-limiting benign 

electroclinical syndromes, such as Childhood Absence Epilepsy (onset >4 years), were excluded 
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as they most likely have multifactorial inheritance. Patients were classified as retrospective 

(n=37), defined as an epilepsy diagnosis >6 months before study enrollment with a standard 

clinical approach to genetic testing (variable genetic tests which include gene-by-gene approach 

using Sanger sequencing (n=15), small epilepsy gene panels using high-throughput sequencing 

(n=4), and/or mitochondrial DNA sequencing (n=4)); or prospective (n=13), which included an 

epilepsy diagnosis <6 months before study enrollment date and having limited to no genetic 

testing. Varying degrees of screening tests for inborn errors of metabolism; such as plasma 

amino acids, lactate and ammonia, was also performed in both groups. Clinical data was 

recorded using a secure Research Electronic Data Capture (REDCap)(13) information system 

hosted at Child and Family Research Institute.  

This study was approved by the BC Children’s Hospital and University of British Columbia Ethics 

Board. Informed consent and/or assent were obtained before study inclusion.  

 

Whole-exome sequencing  

Genomic DNA was extracted from peripheral blood lymphocytes following standard protocols. 

Exonic regions were captured using the Ion AmpliSeq Exome Kit (57.7Mb) and WES was 

performed on an Ion ProtonTM according to manufacturers' recommendations (Life 

Technologies Inc., CA) within 2 weeks of receiving samples. Reads were aligned against the 

human reference genome hg19. Variant annotation was performed with ANNOVAR (14) 

integrating data from PHAST PhyloP (15), SIFT (16), Polyphen2 (17), LRT (18) and 

MutationTaster (19) algorithms, Combined Annotation Dependent Depletion (CADD) scores 

(20), dbSNP (www.ncbi.nlm.nih.gov/SNP/), the Exome Aggregation Consortium (ExAC; 
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exac.broadinstitute.org) and ClinVar (21)(www.ncbi.nlm.nih.gov/clinvar). Additionally, variants 

were compared to an in-house database containing more than 900 exomes to exclude platform 

artifacts and common variants not present in public databases.  

Analysis was restricted to 565 genes previously implicated in epilepsy (Supplementary Table 1), 

using a gene-reporting pipeline developed in-house. The gene list was compiled through the 

combination of a comprehensive literature search (Pubmed, OMIM) and clinically available 

epilepsy panels (GeneDx, Courtagen). Annotation was limited to exonic nonsynonymous and 

splicing (±3bp) substitutions. Homozygous variants, potential compound heterozygous variants 

(defined as genes with >1 variant locus per individual) with a minor allele frequency (MAF) <5% 

and heterozygous variants with MAF <0.1% were reported. All samples were required to meet 

minimum quality standards, with a WES average coverage >80X. 

Sanger sequencing, performed as previously described (22),  was used on a case-specific basis in 

a few individuals with very specific clinical phenotypes to complete regions of poor coverage in 

genes related to the patient’s phenotype when no candidate variants were identified, or when 

a heterozygous and potentially pathogenic variant was identified in gene previously implicated 

in autosomal recessive disease. No additional variants were identified though post-WES Sanger 

sequencing. 

 

Variant prioritization and validation  

Cases were reviewed at a bi-weekly meeting by a multi-disciplinary genomic team. Variant 

prioritization was performed based on: 1) frequency in public databases; 2) predicted protein 

impact; 3) disease inheritance, and; 4) correlation of patient phenotype and candidate gene 
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literature. Up to 3 putative causative variants were validated by Sanger sequencing in patient 

and parental samples. Clinical Sanger sequencing confirmation and interpretation in accordance 

with ACMG guidelines (23) allowed disclosure to families and management adjustments when 

indicated. Two time intervals were measured: 1) from a clinical diagnosis of epilepsy to Sanger 

validation of a putative pathogenic variant; and 2) from enrollment with genetic counselling to 

Sanger validation of same.   

  

Genetic Counseling and Treatment Implications 

Pre- and post-test genetic counseling was performed for each patient/family. As only a limited 

set of 565 genes related to seizure disorders were annotated, and only in affected probands, 

reporting related to incidental (secondary) findings was uncommon (24). Genetic disorders with 

specific therapeutic implications (47 genes) were defined as conditions in which current 

literature supports a preferred antiepileptic medication and/or approach (25–27).   

 

Cost Estimation   

Resource use data were retrospectively acquired from electronic health records and medical 

charts. Cost estimates in Canadian dollars were based on micro-cost information from the 

British Columbia Provincial Medical Service Plan Index (2015), Canadian Interprovincial 

Reciprocal Billing Rates (2014/2015), Children`s and Women`s Health Centre of British Columbia 

Internal Fee Schedule (2015) and the internal accounting system. Diagnostic costs included: 

biochemical tests, imaging tests, genetic tests, neurophysiological tests and biopsies (a 

complete list of tests is provided in Appendix 1). Academic and/or hospital pricing is used 
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throughout. Inpatient hospitalization costs, outpatient visits such as clinic visits, and indirect 

costs such as parental time off work for medical visits related to their child’s epilepsy were not 

included.  

 

Data Analysis  

All categorical and quantitative variables were analyzed using STATA (Release 13, College 

Station, TX). 

 

Results  

Targeted WES was performed on 50 patients and clinical features are summarized 

(Supplementary Table 2). The average age of epilepsy onset was 19 months (range 0.2-60 

months), 18 months for prospective cases (n=13) and 19 months for retrospective cases 

(n=37)(Table 1). Of the 565 genes, 90% had at least 85% of their consensus-coding region 

sequenced with >20X coverage (Supplementary Table 1).  

 

Diagnostic Yield  

A definite or likely diagnosis was made in 17/50 patients (34%). A possible diagnosis was 

identified in another 9 (18%)(Supplementary Table 3). Eight of 17 patients (47%) were given a 

definite or likely diagnosis with potential treatment implications (Table 1).  Pathogenic variants 

were identified in 15 genes and the majority were the result of de-novo mutations (12/17). The 

diagnostic yield was higher in the prospective (54%) than retrospective group (27%). Patients in 

whom a diagnosis was made had earlier onset epilepsy (mean 8.6 vs 27 months, t-test p-
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value<0.001), and global developmental delay and/or intellectual disability were more common 

(Table 3).  Of 27 patients with epileptic encephalopathy a definite or likely pathogenic variant 

was identified in 12 (44%)(Supplementary Table 4).    

 

Treatment implications  

A genetic disorder with specific therapeutic implications was diagnosed in eight patients (4 

prospective and 4 retrospective).  Clinical information, treatment changes, and impact are 

summarized (Table 2). Variants in SCN5A, incidental to patient phenotype but with treatment 

implications, were identified in 2 individuals (001, 067)(Supplementary Table 3). SCN5A 

mutations are implicated in cardiac arrhythmias with sudden death and, rarely, epilepsy (OMIM 

300163). Both patients were evaluated by a Cardiologist and no abnormalities were found. 

 

Comparative time to diagnosis  

The mean time to genetic diagnosis, from study enrolment with genetic counselling to research 

validation of the variant was 38 days (20-70) for the prospective group, 48 days (26-105) for the 

retrospective group, and 44 days (21-105) overall. The mean time from epilepsy diagnosis to 

research validation of genetic diagnosis was 143 days (42-242) for the prospective group, and 

2,172 days (42-6,040) or ~6 years for the retrospective group.   

 

Cost Analysis   

Point estimates and 95% confidence intervals, based on bootstrapped standard errors (1000 

times with replacement) for each category of diagnostic test by cohorts, were calculated (Table 
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4).  All cost estimates use rates effective for the 2014-2015 fiscal year. The mean total cost 

related to the diagnosis of epilepsy was $4,524 (range $1,223-$7,852) for the prospective 

cohort and $8,344 (range $3,319-$17,579) for the retrospective cohort. Diagnostic imaging and 

electrophysiological tests comprise >60% of total epilepsy-related diagnostic costs. The mean 

for diagnostic imaging testing constituted $1,391 and $3,276, for prospective and retrospective 

cohorts, respectively. The mean for electrophysiological testing constituted $1,353 and $2,731, 

for prospective and retrospective cohorts, respectively.   

Our alternative scenario for diagnostic testing is MRI, EEG, chromosome microarray (CMA) and 

WES testing with Sanger sequencing validation, which amounts to $3,234 per patient 

(Supplementary Table 5). The difference in mean total cost related to the diagnosis of epilepsy 

for prospective ($4,524) and retrospective ($8,344) groups, exceeds the cost of our diagnostic 

alternative ($3,234). The potential average savings of targeted WES in the diagnostic workup 

constitute $1,290 per prospective patient and $5,110 per retrospective patient. 

 

Interpretation 

Studies have supported high-throughput panel sequencing as a first-tier testing approach over 

similarly targeted WES for several diseases based on diagnostic yield, coverage, and cost-

savings (7,28). However, a recent comparative coverage analysis limited to disease-causing 

variants identified through panels demonstrated that targeted WES detects ≥98.5% of those 

mutations (29), and that both approaches have comparable diagnostic yield. A major advantage 

of WES over panels is the ability to sequence the entire coding genome. Such comprehensive 

assessment can facilitate re-analysis for novel genes as they are implicated (in the course of this 
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study ~7 genes were identified in seizure disorders and could be examined). Panel sequencing 

cannot include such contemporary targets. 

The clinical utility of targeted WES with Sanger validation (limited ≤3 variants/exome) is 

supported by the identification of a definite or likely diagnosis in 17/50 (34%) patients and a 

possible diagnosis in an additional 9/50 (18%)(Table 1). A higher yield was found in the 

prospective group with new-onset epilepsy and supports earlier testing, though the number of 

patients is small. The retrospective group had already undergone extensive clinical testing that 

was non-diagnostic. Nevertheless, our ability to still identify a genetic diagnosis supports the 

technology’s superior resolution, while related data on phenotypes, management and 

outcomes may yet inform clinical practice.  

The diagnostic yield in our study is comparable to previous findings (2–6,30). Most variants 

were de-novo and the genetic causes identified were heterogeneous, with recurrent variants 

only identified in KCNQ2 (Table 2).  In a comparable cohort, positive results were identified by 

WES in 112/293 (38.2%) epilepsy patients (30).  We concur that the diagnostic yield is likely 

affected by the characteristics of the group studied, sample size, platform used (gene panel or 

WES) and the timing of the study, given ongoing gene discoveries in epilepsy. In our study, 

patients with a genetic diagnosis were younger and more likely to have global developmental 

delay/intellectual disability compared to patients in which no genetic cause was found. Similar 

to a prior study (30), our patients with epileptic encephalopathies had a high rate of positive 

findings (44%).   

Our results support the feasibility of targeted WES to rapidly provide clinically-confirmed 

genetic diagnoses in early-onset epilepsy. Time to Sanger sequencing validation from 
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enrollment averaged 6 weeks which is similar to the 6-8 week turn-around-time quoted by 

most commercial testing labs. However, this estimate did not include the additional time 

required to obtain provincial government approval, on a case-by-case basis, to fund WES.  

A timely genetic diagnosis is important when considering the potential for treatment impact 

and optimization of patient outcomes. For the seventeen patients with a genetic diagnosis, 

eight (47%) were identified to have a disorder with specific treatment implications; for all eight 

patients, an immediate change in medical management was made (Table 2). The number of 

genetic disorders identified to have specific treatments implications is likely to grow with 

ongoing advances in precision medicine.  

In British Columbia, the average savings are estimated to be between $1,290 and $5,110 per 

patient, depending on whether they are new prospective referrals or retrospective. Of note, 

price estimates reflect academic and/or hospital costs rather than commercial costs, which are 

1-5X higher. The Canadian sequencing costs cited are comparable to previous reports but will 

decrease as even higher throughput sequencing technologies become accessible (7–10).  

Current healthcare cost estimates are also conservative as patients without a genetic diagnosis 

will undoubtedly require additional clinic visits and inpatient hospital stays, including epilepsy 

monitoring unit admissions related to finding the cause of their condition. Of note, a targeted 

WES approach did not lead to a substantial increase in referrals for incidental findings. Overall, 

our findings show targeted WES may provide an effective end to an otherwise invasive, time 

consuming and costly diagnostic odyssey, with societal and economic benefits. Our results also 

support WES implementation beyond early-onset epileptic encephalopathies, as we have 

examined a larger and more diverse group of children (10).  
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Limitations and strengths 

Our study has several limitations, including small sample size although our diagnostic yield is 

comparable to previous studies (30). Incomplete coverage of the 565 genes analyzed was 

partially addressed as outlined in the methods. Proband-parent trio-based WES analyses were 

not used primarily for financial reasons. Analysis was restricted to 565 epilepsy genes, rather 

than the entire exome, to identify a genetic diagnosis as quickly as possible and to minimize 

secondary findings. Assessing relevance of secondary findings and proving pathogenicity of 

variants in novel candidate epilepsy genes is costly; thus, this approach was taken to maximize 

patient care and minimize cost. WES data from patients with initial negative results continues 

to be periodically reviewed for variants in newly described epilepsy genes. In subsequent WES 

trio analysis, a subset of families has helped identify novel genetic etiologies (31).  

Although almost half of the diagnoses had treatment implications, the long-term impact on 

clinical outcome following genetically-informed therapeutic interventions is unknown. Early 

diagnosis and early intervention are important, but advances in precision medicine are also 

required.   

The methods employed for cost analysis cannot replace a prospective randomized controlled 

trial (RCT) and may not have accurately assessed or included all healthcare costs related to an 

epilepsy diagnosis. However, an RCT assessing the effect of WES testing on healthcare costs is 

not yet a practical consideration. Our estimates are not a perfect or a complete description of 

the current diagnostic work-up, as test records are scattered across different electronic health 

records systems and paper charts. Data collation within an accessible unified health electronic 
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record would help identify where additional savings are possible. In this study, indirect costs, 

and the psychosocial impact on the child and family were not measured. 

 

Conclusion/Summary  

Targeted WES with limited Sanger sequencing validation is a rapid and minimally invasive test 

with potential to save costs within the Canadian healthcare system. An early genetic diagnosis 

may improve a patient’s clinical outcome and quality of life. Further research on larger cohorts 

is warranted to inform diagnosis, clinical outcome and precision medicine. Acknowledging the 

limitations of our study, targeted WES with Sanger sequencing validation substantially improves 

current practice and is recommended as the dominant diagnostic strategy. 
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Table 1: Results: Demographics and Diagnostic Yield 

 
All Patients 

(N=50) 
Prospective 

(N=13) 
Retrospective 

(N=37) 

Age at Epilepsy Onset (months) 
average (range) 

19 (0.2 – 60) 18 (0.2 – 60) 19 (0.3 – 60) 

Males; Females 21;29  6;7 15;22 

Diagnosis    

Definite/likely 17 (34%) 7 (54%) 10 (27%) 

Treatment Implications 8 (47%) 4 (57%) 4 (40%) 

Possible 9 (18%) 1 (8%) 8 (22%) 
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Table 2: Patients with definite/likely diagnosis and treatment impact.  

 
Subject 

Age of 
Onset 

Epilepsy and  
Seizures types 

Gene Inheritance GRCh37/hg19 NT Change AA Change Treatment Impact 

P
ro

sp
e

ct
iv

e 

001 7.5 m Dravet SCN1A De novo  chr2:166848491 c.5294T>C p.F1765S 
Change from levetiracetam to clobazam, valproic acid and 
topiramate. 10 months later no further episodes of SE and 
mild speech/language delay.  

010 23 m Unclassified SMC1A De novo chrX:53409269 c.3255C>G p.Y1085X  

018 2 m Ohtahara, West STXBP1 De novo chr9:130434396 IVS12+1GT>AA NA
a
  

033 9 m EE POLG 
♀carrier  
♂carrier  

chr15:89871929 
chr15:89866657 

c.1157G>C 
c.2243G>C 

p.R386P                
p.W748S 

Stopped valproic acid; early palliative care; prenatal testing 
for next pregnancy 

069 52 m Unclassified MED23 
♀carrier  
♂carrier  

chr6:131944505 
chr6:131941826 

c.G382A 
c.C539A 

p.G128R 
p.A180D 

 

104 0.5 m  SLFNE KCNQ2 ♀carrier  chr20:62059782 c.154delT p.I385TfsTer4 
Stopped phenobarbital at 2 m; avoided MRI with 
anaesthetic; seizure free and normal development at 6 m 

120 2 m West ADSL 
♀carrier  
♂carrier  

chr22:40760969 
chr22:40754948 

c.G1277A 
c.G563A 

p.R426H 
p.R188H 

S-Adenosyl-I-methionine trial proposed but patient died 
just prior to implementation 

R
e

tr
o

sp
e

ct
iv

e
 

002 3.2 m Dravet-like ATP1A2 
♀carrier  
♂carrier  

chr1:160100072 
chr1:160109762 

c.1642C>T 
c.3022C>T 

p.R548C 
p.R1008W 

Stopped stiripentol; started flunarizine. No further 
episodes on flunarizine. 

005 12 m West ALG13 De novo chrX:110928268 c.320A>G p.N107S  

039 <7 d EE KCNQ2 De novo chr20:62070997 c.881C>T p.A294V 
Topiramate changed to carbamazepine : no improvement 
in seizure frequency 6 months later.  

040 <7 d EE KCNQ2 De novo chr20:62071034 c.844G>T p.D282Y 
Phenytoin changed to carbamazepine: seizures less 
frequent and shorter 9 months later. 

043 3 m West PAFAH1B1 De novo chr17:2577530 c.849_853delCTGGG p.W292SfsTer10  

044 1.4 m EE SLC1A2 De novo chr11:35336636 c.244G>A p.G73R  

050 14 m Unclassified TUBB2B De novo chrX:110928268 c.G74A p.S25N  

065 3.5 m West SLC35A2 De novo chr20:62070997 c.550_552delTCC p.S184del 
Galactose trial: 6 months later more alert and interactive; 
no change in seizure frequency. 

077 2 m West CDKL5 De novo chrX:18622288 c.1245_1246delAG p.E416VfsTer2  

106 9.7 m EE STXBP1 De novo chr17:2577530 c.T41G p.I14S 
 

AA= amino acid change; d = days; EE=unspecified Epileptic Encephalopathy; m = months; NT= nucleotide change; SE: status epilepticus; SLFNE=Self-limited familial 
neonatal epilepsy. 

a
c.1029+1_1029+2delGTinsAA disrupts the canonical splice donor site of exon 12 and is predicted to abolish normal splicing at this site. ADSL, 

NM_000026; ALG13, NM_001099922; ATP1A2, NM_000702; CDKL5, NM_001037343; KCNQ2, NM_172107; MED23, NM_004830; PAFAH1B1, NM_000430; POLG, 
NM_001126131; SCN1A, NM_001165963; SLC1A2, NM_004171; SLC35A2, NM_001282651; SMC1A, NM_001281463; STXBP1, NM_001032221.3; TUBB2B, NM_178012 
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Table 3: Clinical Features in Patients with and without a Genetic Diagnosis 

 

Genetic 
Diagnosisa 

Age of Onset 
mean  

(range) 

Males Epileptic 

Encephalopathy 

Treatment 
Resistantc 

GDD/ID Autism MRI 
Abnormal 

Definite or 
Likely  
(n=17) 

8.6 monthsb 

(0.3 – 52) 
41% 71% 82% 88% 12% 35% 

No 
Diagnosis 
(n=24) 

27 months 
(0.2 – 60) 

46% 46% 88% 72% 13% 21% 

 

a We excluded individuals with variants of unknown significance or possible genetic diagnosis 
(9). b t-test p-value <0.001, c Treatment resistant refers to failure to respond to 2 or more 
appropriate anti-seizure medications. GDD/ID=Global Developmental Delay/Intellectual 
Disability. 
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Table 4: Average diagnostic investigation cost per patient 

   
Mean 

Bootstrap 
Std. Err. 

95% CI 
Range 

Min           Max              

Combined Diagnostic cost       

Retrospective $8344.27  $556.97  $7252.61  $9435.90  $3318.50 $17578.8  

Prospective  $4524.07  $497.57  $3548.85  $5499.29  $1223.18  $7852  

Lab tests       

Retrospective $1333.5  $83.71  $1169.42  $1497.56  $123.30 $3129.91  

Prospective  $1151.32  $135.14  $886.43  $1416.19  $209.75  $1959.19  

Genetic tests       

Retrospective $1179.55  $98.80  $985.90  $1373.20  0  $2279.34  

Prospective  $633.187  $144.27  $350.41  $915.96  0  $1720  

Diagnostic Imaging       

Retrospective $3276.10  $214.10  $2856.47  $3695.74  $1460  $6836  

Prospective  $1391.38  $150.26  $1096.86  $1686  $630  $2290  

Electrophysiological        

Retrospective $2731.22  $376.26  $1993.75  $3468.70  0  $8460.45  

Prospective  $1353.12  $315.64  $734.4  $1971.78  $188.01  $3572.19  
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