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Abstract  1 

Alanine scanning mutagenesis is a widely-used method for identifying protein positions 2 

that are important for function or ligand binding. Alanine was chosen because it is 3 

physicochemically innocuous and constitutes a deletion of the side chain at the β-4 

carbon. Alanine is also thought to best represent the effects of other mutations; 5 

however, this assumption has not been formally tested. To determine whether alanine 6 

substitutions are always the best choice, we analyzed 34,373 mutations in fourteen 7 

proteins whose effects were measured using large-scale mutagenesis approaches. We 8 

found that several substitutions, including histidine and asparagine, are better at 9 

recapitulating the effects of other substitutions. Histidine and asparagine also correlated 10 

best with the effects of other substitutions in different structural contexts. Furthermore, 11 

we found that alanine is among the worst substitutions for detecting ligand interface 12 

positions, despite its frequent use for this purpose. Our work highlights the utility of 13 

large-scale mutagenesis data and can help to guide future single substitution mutational 14 

scans.   15 
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Main text 16 

 17 

Introduction 18 

Making and studying mutants is a fundamental way to learn about proteins, revealing 19 

functionally important positions, validating specific hypotheses about catalytic 20 

mechanism and yielding insights into protein folding and stability. Single amino acid 21 

scanning mutagenesis, in which every position in a protein is sequentially mutated to 22 

one particular amino acid, was a key advance. By searching sequence space 23 

systematically, scanning mutagenesis enabled the unbiased identification of positions 24 

important for protein function. The first application of scanning mutagenesis used 25 

alanine substitutions to identify positions in human growth hormone important for 26 

receptor binding1. Alanine was chosen because it represents a deletion of the side 27 

chain at the β-carbon, and because, being uncharged and of modest size, it is 28 

physicochemically innocuous. Furthermore, alanine is the second most abundant amino 29 

acid in natural sequences and is found in a variety of structural contexts2-4. In addition to 30 

alanine, many other amino acids including arginine5, cysteine6, glycine7, methionine8, 31 

phenylalanine9, proline10 and tryptophan11 have been used for scanning mutagenesis, 32 

often with a specific hypothesis in mind (e.g. that bulky amino acids are important). 33 

Nevertheless, the vast majority of scanning mutagenesis experiments are conducted 34 

using alanine under the assumption that alanine substitutions are especially useful for 35 

identifying functionally important positions.  36 

Does alanine best represent the effect of other substitutions? Are alanine substitutions 37 

ideal for finding functionally important positions, such as those that participate in binding 38 
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interfaces? Answering these questions is important because alanine scans continue to 39 

be used to understand and engineer proteins. Despite the large investment in alanine 40 

scanning mutagenesis, little work has been done to determine which substitutions are 41 

ideal. Some scanning mutagenesis studies compare two different types of scans (e.g. 42 

alanine and cysteine), but generally find that the information revealed by each 43 

substitution is distinct9,12. Computational predictions for all substitutions at 1,073 44 

positions across 48 proteins in the Alanine Scanning Energetics Database suggested 45 

that alanine substitutions correlated best with the mean effect of every mutation at each 46 

position13. However, concrete answers to these questions require comparing the 47 

empirical effects of different substitutions in many proteins. Thus, we analyzed large-48 

scale experimental mutagenesis data sets comprising 34,373 mutations in fourteen 49 

proteins. We found that proline is the most disruptive substitution and methionine is the 50 

most tolerated. Global and position-centric analyses revealed that histidine and 51 

asparagine substitutions best represent the effects of other substitutions. We evaluated 52 

the utility of each amino acid substitution for determining whether a position is in a 53 

ligand-binding interface, and found that aspartic acid, glutamic acid, asparagine and 54 

glutamine performed best. Thus, our results suggest that, compared to other 55 

substitutions, alanine substitutions are not especially representative, nor are they the 56 

best choice for finding ligand-binding interfaces.  57 

 58 

Results 59 

Deep mutational scanning is a method that enables measurement of the effects of 60 

hundreds of thousands of mutations in a protein simultaneously14,15. Deep mutational 61 
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scanning can be used to quantify the effects of all mutations at each position in a 62 

protein, and is therefore a conceptual extension of single amino acid scanning 63 

mutagenesis. Broad application of deep mutational scanning has resulted in an 64 

explosion of protein mutagenesis data14. These large-scale mutagenesis data sets 65 

create the opportunity to assess relationships between the effects of different amino 66 

acid substitutions comprehensively. 67 

 68 

We curated sixteen large-scale mutagenesis data sets from published deep mutational 69 

scans of fourteen proteins (Fig. 1A, Table 1). Here, we included two distinct data sets 70 

for the BRCA1 RING domain and for UBI4 because mutations in these proteins have 71 

been independently assayed for different protein functions (e.g. BRCA1 BARD1 binding 72 

and E3 ligase activity). Our collection of data sets is ideal for an unbiased analysis of 73 

the general effects of mutations because the mutagenized proteins are highly diverse, 74 

encompassing enzymes, structural proteins and chaperones from organisms ranging 75 

from bacteria to humans. The frequency of amino acids in the wild type sequences of 76 

the fourteen proteins was similar to amino acid frequencies in all known proteins2 (Fig. 77 

1B). For example, leucine (frequency = 11%) and alanine (8%) were the most frequently 78 

occurring wild type amino acids in the fourteen proteins, while tryptophan (<1%) was the 79 

rarest. However, the unbiased and massively parallel nature of deep mutational 80 

scanning experiments yielded a relatively uniform distribution of amino acid 81 

substitutions (Fig. 1C). Furthermore, the data sets were generated by different labs at 82 

different times using different types of assays, reducing the chances of bias arising from 83 

specific experimental or analytical practices. Importantly, the assay formats used for the 84 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2017. ; https://doi.org/10.1101/140707doi: bioRxiv preprint 

https://doi.org/10.1101/140707
http://creativecommons.org/licenses/by/4.0/


 6

deep mutational scans included many commonly employed in alanine scanning like 85 

phage display and yeast two-hybrid. Collectively, these large-scale mutagenesis data 86 

sets comprised 34,373 nonsynonymous mutations at 2,236 positions in the fourteen 87 

proteins. The data sets contained effect scores for most mutations at each position. To 88 

facilitate comparisons between each data set, we rescaled mutational effect scores for 89 

each protein, using synonymous mutations to define wild type-like activity and the 90 

bottom 1% of mutations to define lack of activity (Fig. S1A). Thus, each mutational 91 

effect score reflects the impact of the mutation, relative to wild type, with a score of zero 92 

meaning no activity and a score of one meaning wild type-like activity. 93 

 94 

To validate the large-scale mutagenesis data, we examined expected patterns of 95 

mutational effect. For example, mutations to proline should generally disrupt protein 96 

function, as proline restricts the conformation of the polypeptide backbone and 97 

eliminates the amide hydrogen necessary for hydrogen bonding. Indeed, proline 98 

substitutions were overwhelmingly more damaging than other substitutions to protein 99 

function (Fig. 1D; Fig.S1B).  In fact, proline was the most damaging amino acid in 100 

eleven of fourteen proteins and second most damaging in the remaining three proteins 101 

(Fig. 1E). Additionally, as expected from the Dayhoff16, Blosum17 and Grantham18 102 

substitution matrices, tryptophan tended to be deleterious. Methionine was the best-103 

tolerated substitution. Many other substitutions were also well-tolerated, with seven 104 

different amino acids appearing as the most tolerated across the fourteen proteins (Fig. 105 

1D, E). Tolerance to substitutions depends on structural context, so the variability in the 106 

best tolerated substitution might be due to diversity in the structural composition of each 107 
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protein in our data set. Thus, the large-scale mutagenesis data sets we collected 108 

generally recapitulated our expectations about the effects of mutations, despite coming 109 

from fourteen distinct proteins that were each assayed independently.  110 

 111 

Next, we determined which amino acid substitution best represented the effects of all 112 

other substitutions. To avoid bias arising from incomplete data, we restricted this 113 

analysis to the 882 positions in the fourteen proteins with measured effects for all 114 

nineteen possible substitutions. We calculated the median mutational effect at each of 115 

these 882 positions. Overall, the median effects across these positions were mildly 116 

damaging, with a mean of 0.82 (stop ~ 0, wild-type ~ 1). We found that the effects of 117 

phenylalanine, glycine, histidine, isoleucine, leucine, asparagine, glutamine and tyrosine 118 

substitutions were all indistinguishable from the median effects (Fig. 2A, Table S1). 119 

However, proline, aspartic acid and tryptophan substitutions are much more damaging 120 

than the median substitution. Alanine, cysteine, methionine, serine, threonine and valine 121 

are considerably less damaging than the median substitution. These well-tolerated 122 

amino acid substitutions might be useful for detecting the most mutationally sensitive 123 

positions in a protein. However, these substitutions, alanine included, are not especially 124 

representative of the effects of other substitutions.  125 

 126 

We also examined the dispersion of each amino acid’s mutational effect about the 127 

median at all 882 positions, reasoning that representative substitutions would have 128 

minimal dispersion. Of substitutions whose effects were indistinguishable from the 129 

median effect, histidine and asparagine have the smallest dispersion (standard 130 
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deviation = 0.15 and 0.14, respectively; Fig. 2B), while tyrosine (0.18), glutamine (0.16), 131 

phenylalanine (0.19), glycine (0.17), leucine (0.17) and isoleucine (0.19) all had larger 132 

dispersions. Thus, of all possible substitutions, histidine and asparagine tended to have 133 

effects closest to the median effect at the 882 positions we examined.  134 

 135 

Because of the comprehensive nature of the large-scale mutagenesis data sets, we 136 

could ask how well the mutational effect scores of each substitution correlated with the 137 

scores of every other substitution at each position. Thus, we calculated Pearson 138 

correlation coefficients for the mutational effect scores of each substitution pair across 139 

all positions (Fig. 2C, Fig. S2). The effects of histidine and asparagine substitutions 140 

correlated best with the effects of all other substitutions, while the effect of proline 141 

substitutions correlated worst. To visualize the relationships between each pair of 142 

substitutions, we constructed a force-directed graph (Fig. 2D). As expected, 143 

substitutions cluster by physicochemical type in the graph, meaning that similar 144 

substitutions have similar effects. Proline is not represented because its effects are 145 

poorly correlated with other substitutions. Histidine and asparagine are connected to 146 

many other amino acids, owing to the high correlation of the effects of these 147 

substitutions with many other substitutions. 148 

 149 

We next asked whether the secondary structural context of a position altered the effect 150 

of each substitution. We excluded DBR1 and GB1 from this analysis because they did 151 

not have structures of a sufficiently close homologs. We used DSSP to identify 1,007 152 

positions in the remaining proteins that were in an α-helix, a β-sheet or a turn19. Overall, 153 
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substitutions in turns are less damaging than substitutions in α-helices or β-sheets (Fig. 154 

3A). However, the relative effects of each substitution in the three structural contexts 155 

were mostly consistent, especially between α-helices and β-sheets (Fig. 3B, S3A). 156 

Surprisingly, the tolerance for each amino acid substitution in the different secondary 157 

structural contexts was not strongly correlated with the frequency of that amino acid’s 158 

occurrence in known structures20. For example, alanine occurs more frequently in α-159 

helices, relative to β-sheets.  However, in our large-scale mutagenesis data sets, 160 

alanine substitutions were mildly damaging in both structural contexts. These 161 

observations suggest that secondary structure does not dominate mutational tolerance, 162 

at least for the proteins we examined.  163 

 164 

We next investigated which substitutions were the most representative regardless of 165 

structural context. We found that histidine substitutions have close to the median effect 166 

in α-helices and turns, but were more damaging than the median effect in β-sheets (Fig. 167 

3B). Asparagine and glutamine substitutions had near median effects in all three 168 

contexts. As above, we examined how well the effects of each substitution correlated 169 

with every other substitution at each position in each context. We found that the effects 170 

of histidine, asparagine and glutamine substitutions correlated best with the effects of 171 

other substitutions (Fig. S3B, C). Thus, the effects of histidine, asparagine and 172 

glutamine are relatively consistent in the different structural contexts we examined, 173 

highlighting the representativeness of these substitutions.  174 

 175 
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An important use of alanine scanning is to identify positions in protein-ligand interfaces. 176 

In order to determine whether alanine is ideal for that purpose, we analyzed the effects 177 

of substitutions in four proteins with ligand-bound structures: the hYAP65 WW domain, 178 

the PSD95 pdz3 domain, the BRCA1 RING domain and GAL4. Amongst these four 179 

proteins there were 4,884 mutations at 282 positions. We used relative solvent 180 

exposure to classify each position as either buried or on the surface. We also 181 

determined interface positions based on published structures and functional studies 182 

(see Methods). We found that substitutions at interface positions are substantially more 183 

damaging than substitutions at buried, non-interface or surface, non-interface positions 184 

(Fig. 4A).  This result is expected, given that all four deep mutational scans were 185 

conducted using selections that depended on ligand binding. Alanine, along with 186 

phenylalanine, isoleucine and methionine, are the least disruptive amino acid 187 

substitutions at interface positions, suggesting that they may not be ideal for interface 188 

detection. 189 

 190 

We reasoned that the ideal substitution for detecting protein-ligand interfaces would 191 

exhibit a large difference in mutational effect between interface and non-interface 192 

positions. To formalize this idea, we used a mutational effect threshold. If a substitution 193 

at a particular position had a mutational effect below the threshold, we classified that 194 

position as “interface.” Conversely, if the mutational effect was above the threshold that 195 

position was classified as “non-interface.” For each substitution, we varied the 196 

mutational effect threshold from the maximum mutational effect score to the minimum 197 

effect in 200 steps. At each step, we compared the true interface positions to those 198 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2017. ; https://doi.org/10.1101/140707doi: bioRxiv preprint 

https://doi.org/10.1101/140707
http://creativecommons.org/licenses/by/4.0/


 11

determined using the mutational effect threshold procedure. We then constructed 199 

receiver operating characteristic (ROC) curves. The area under each ROC curve 200 

revealed the ability of that substitution to discriminate between true interface and non-201 

interface positions.  Surprisingly, we found that alanine had among the worst 202 

discriminatory power (Fig. 4B, Fig. S4). Substitutions that were highly disruptive at 203 

interfaces, like asparagine, glutamine, aspartic acid and glutamic acid, had the best 204 

discriminatory power. Next, we calculated the fraction of true interface positions 205 

detected by each amino acid substitution at a 5% false positive rate. Here, we found 206 

that asparagine and glutamine substitutions revealed over 60% of the true interface 207 

positions; aspartic acid and glutamic acid substitutions also performed well (Fig. S5). 208 

However, alanine substitutions detected fewer than 20% of the true interface positions 209 

at a 5% false positive rate. Thus, asparagine, glutamine, aspartic acid or glutamic acid 210 

substitutions are all better choices than alanine for detecting protein-ligand interfaces.  211 

 212 

Discussion 213 

Alanine scanning mutagenesis is a widely-used method for identifying protein positions 214 

that are important for function or ligand binding. Alanine was selected on rational 215 

grounds: it is physicochemically innocuous and constitutes a deletion of the side chain 216 

at the β-carbon. By analyzing tens of thousands of mutations in fourteen proteins, we 217 

have determined that alanine is not the most revealing substitution. In fact, many 218 

superior choices exist. For example, histidine and asparagine substitutions have an 219 

effect close to the median, and these substitutions correlate best with the effects of all 220 

other substitutions. Thus, they better represent the effects of mutations generally. 221 
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Asparagine, glutamine, aspartic acid and glutamic acid are the most useful substitutions 222 

for detecting ligand interface positions. Thus, our work highlights the utility of large-scale 223 

mutagenesis data and suggests that alanine is not necessarily the best choice for future 224 

single substitution mutational scans whose goal is to identify functionally important 225 

positions or map protein-ligand interfaces.  226 

 227 

However, our conclusions are based on only fourteen proteins. While these proteins are 228 

diverse in structure and function, they may not fully reflect the mutational propensities of 229 

other proteins. For example, tryptophan scanning mutagenesis is often applied to 230 

transmembrane domains21-23, which were absent from the proteins we analyzed. Thus, 231 

our conclusions are most applicable to soluble proteins. Furthermore, we do not 232 

address specialized applications of single amino acid scanning mutagenesis. For 233 

example, cysteine scanning mutagenesis has been used to introduce disulfide bridges6 234 

and glycine scanning mutagenesis has been used to increase conformational 235 

flexibility24. Our conclusions do not apply to these situations. Finally, the deep 236 

mutational scanning data we analyzed arises from genetic selections for protein 237 

function. Biochemical assays might reveal different patterns.  However, we note that a 238 

few of the large-scale mutagenesis data sets we used were benchmarked against and 239 

found to be consistent with biochemical assay results25,26.  240 

 241 

Deep mutational scanning can reveal the functional consequences of all possible single 242 

amino acid substitutions in a protein.  However, these experiments can be expensive or 243 

unwieldy. Therefore, scanning mutagenesis with one or a few amino acids will remain 244 
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useful for determining functionally important positions, probing protein-ligand 245 

interactions and answering other specific questions. Our results could be used to guide 246 

future single amino acid scanning mutagenesis experiments, enabling selection of the 247 

amino acid best suited for the goals of the experiment.  248 
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Materials and Methods 261 

 262 

Data curation and rescaling 263 

We curated a subset of the published deep mutational scanning data sets. We excluded 264 

deep mutational scans of non-natural proteins, because the mutational properties of 265 

natural and non-natural proteins could differ. The result was a set of sixteen deep 266 

mutational scans of fourteen proteins (Table 1). BRCA1 and UBI4 each have two large-267 
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scale mutagenesis data sets corresponding independent experiments in which different 268 

functions were assayed (e.g. ligand binding or catalytic activity). We treated these data 269 

sets separately, and did not perform any averaging of mutational effects between the 270 

data sets. Additionally, we removed any variants with more than one amino acid 271 

substitution from all the data sets. 272 

 273 

Most of the data sets reported mutational effect scores as the log-transformed ratio of 274 

mutant frequency before and after selection, divided by wild type frequency before and 275 

after selection. For data sets that used a different scoring scheme, we recalculated 276 

mutational effect scores as the log-transformed ratio of mutant frequency before and 277 

after selection, divided by wild type frequency before and after selection. Given that the 278 

assays used to detect mutational effect differ, we rescaled the reported mutational effect 279 

scores for each data set. First, we subtracted the median effect of synonymous 280 

mutations from each reported effect score and then divided by the negative of the 281 

bottom 1% of reported effect scores. Finally, we added 1. In cases where synonymous 282 

mutational effect scores were unavailable, we omitted the synonymous score median 283 

subtraction step. Our rescaling scheme is expressed as  284 

��,������ �  
��,	�
�	��� – � ������ ����������

�������� ������ �%

� 1 

where S is the mutational effect score. Our normalization scheme resulted in scaled 285 

mutational effect scores where the most damaging mutations have effect scores ≈ 0 and 286 

wild-type-like mutations have scores ≈ 1.  287 

 288 
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Unless otherwise stated, we used all of the rescaled mutational effect data for each 289 

analysis. In each analysis, we used median as a summary statistic rather than mean 290 

because the frequency distributions of mutational effect are bimodal rather than 291 

Gaussian (Fig. S1).  292 

 293 

Variant annotation 294 

DSSP was used to annotate the secondary structure and absolute solvent accessibility 295 

of each wild type amino acid in our data set (http://swift.cmbi.ru.nl/gv/dssp/DSSP_3.html). 296 

To estimate the relative solvent accessibility of amino acids, we divided absolute solvent 297 

accessibility as determined using DSSP by the total surface area of each amino acid. 298 

Amino acids with relative solvent accessibilities greater than 0.2 were labeled as 299 

“surface”, whereas amino acids with relative solvent accessibilities less than 0.2 were 300 

labeled as “buried”27.  301 

 302 

Identification of interface positions 303 

Four proteins in our data set had high-resolution PDB structures with peptide or 304 

nucleotide ligands, Gal4 (3COQ), BRCA1 RING domain (1JM7), PSD95 pdz3 domain 305 

(1BE9) and hYAP65 WW domain (1JMQ). We determined interface positions from the 306 

literature15,28-30. The interface positions in hYAP65 WW domain were 188, 190, 197 and 307 

199. The interface positions in BRCA1 RING domain were 11, 14, 18, 93 and 96. PSD95 308 

pdz3 domain positions were 318, 322-327, 329, 339, 372 and 379. Gal4 interface 309 

positions were 9, 15, 17, 18, 20, 21, 43, 46 and 51.  310 

 311 
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Construction of ROC curves 312 

We constructed empirical ROC curves to illustrate the power of each substitution to 313 

discriminate between interface and non-interface positions, determined as described 314 

above. First, we defined a discrimination threshold, such that positions with a mutational 315 

effect score below the threshold were classified “interface” and positions with a 316 

mutational effect score above the threshold were classified as “non-interface.” For each 317 

substitution, we varied this discrimination threshold from the maximum mutational effect 318 

score to the minimum mutational effect score in 200 steps, calculating the true positive 319 

interface detection rate (TPR) and false positive interface detection rate (FPR) at each 320 

step. The TPR was calculated by dividing the number of interface positions with scores 321 

below the mutational effect threshold by the total number of interface positions. The 322 

FPR was calculated by dividing the number of non-interface positions with scores below 323 

the mutational effect threshold by the total number of non-interface positions. ROC 324 

curves were constructed by plotting the TPR and FPR for each of the 200 mutational 325 

effect thresholds. The area under each ROC curve was determined in R using the auc() 326 

function in the pROC package (https://cran.r-project.org/web/packages/pROC/pROC.pdf).  327 

 328 

Data and code availability 329 

The data sets used in this study came from a variety of published works (see Table 1). 330 

The curated data sets and code for generating figures can be found at: 331 

https://github.com/FowlerLab/   332 
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Data set Number of 
mutations 

Mutagenized 
positions 

Mutational 
completeness* Organism Selected 

Phenotype Citation 

Aminoglycoside 
kinase 4,234 264 84% K. pneumoniae 

Antibiotic 
resistance 31 

BRCA1 RING 
domain -
BARD1 binding 

1,748 102 90% 
H. sapiens 

Binding 
activity (Y2H) 

28 

BRCA1 RING 
domain - E3 
ligase activity 

4,872 303 85% 
H. sapiens 

Ubiquitin 
ligase activity 

28 

DBR1 144 25 30% H. sapiens 
RNA enzyme 

activity 
32 

Gal4 1,196 64 98% H. sapiens 
Transcription 
factor activity 

33 

GFP 1,084 235 24% A. victoria Fluorescence 34 

Hsp82 4,021 219 97% S. cerevisiae 
Chaperone 

activity 35 
hYAP65 WW 
domain 363 33 58% H. sapiens Ligand binding 

15 

MAPK1/ERK2 4,470 359 66% H. sapiens Kinase activity 36 
Pab1 1,188 75 83% S. cerevisiae mRNA binding 

37 
Protein G GB1 
domain 1,045 55 100% Streptococcus 

sp. group G IgG-Fc binding 
25 

PSD95 pdz3 
domain 1,577 83 100% H. sapiens Ligand binding 

26 

TEM1 β-
lactamase 5,198 287 95% E. coli 

Antibiotic 
resistance 

38 

Ube4b U-box 899 102 46% S. cerevisiae 
Ubiquitin 

ligase activity 
39 

Ubi4 - activity 1,249 75 88% S. cerevisiae 
Ubiquitin 

ligase activity 
40 

Ubi4 – 
activation by 
E1 

1,085 60 95% 
S. cerevisiae 

Ubiquitin 
ligase activity 

41 

*proportion of all possible single amino acid mutations in mutagenized 
region observed 

 333 

Table 1. Large-scale mutagenesis data sets used in this study  334 
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Figure Legends 335 

 336 

Figure 1. Large-scale mutagenesis data from fourteen proteins. (A) The number of 337 

single amino acid mutations with effect scores in each of the fourteen proteins is shown. 338 

(B) A radar plot shows the relative frequency of occurrence of each amino acid in the 339 

wild type sequences of the fourteen proteins (blue) or in 554,515 proteins in the UniProt 340 

Knowledgebase2 (dashed red). (C) A radar plot shows the relative frequency of each of 341 

the twenty amino acid substitutions in the large-scale mutagenesis data sets for all 342 

fourteen proteins. (D) The median mutational effect score of each amino acid 343 

substitution is shown for 34,373 mutations at 2,236 positions in all fourteen proteins. (E) 344 

A heat map shows the median mutational effect score of each amino acid substitution 345 
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for each protein separately. Yellow indicates tolerated substitutions while orange 346 

indicated damaging substitutions. Amino acids and proteins were ordered according to 347 

similarity using hierarchical clustering with the hclust function from the heatmap2 348 

package in R. The dendrogram is shown only for amino acid clustering.  349 

  350 
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 351 

Figure 2. Histidine and asparagine substitutions best represent the effect of other 352 

substitutions. (A) For each of the 882 positions where the mutational effects of all 353 

nineteen substitutions were measured, the difference from the median effect was 354 

calculated for each substitution at each position. The median of these differences 355 

across all positions for each substitution is shown, with the red line indicating a median 356 

difference of zero. A paired, two-sided Wilcoxon rank sum test was used to determine 357 

whether each substitution’s difference from the median effect across all positions was 358 

equal to zero (* indicates substitutions with a Bonferroni-corrected p-value > 0.01; Table 359 

S1). (B) The standard deviation of each substitution’s differences from the median effect 360 

at the 882 positions where the mutational effects of all nineteen substitutions were 361 

measured is shown. (C) For each substitution, Pearson correlation coefficients were 362 
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calculated for the mutational effects of that substitution with every other substitution at 363 

each position. The distribution of correlation coefficients for each substitution is shown. 364 

(D) These pairwise mutational effect score correlations are also illustrated using a force 365 

directed graph. Each node represents an amino acid and each edge force value is the 366 

Pearson correlation coefficient for the mutational effect scores of the two amino acid 367 

substitutions connected by the edge. To reduce the density of edges, only the top 40% 368 

of Pearson correlation coefficients were included. This cutoff removed proline from the 369 

graph. Amino acids are colored by physicochemical type. The graph was constructed 370 

using the networkD3 package in R. 371 

 372 

  373 
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 374 

Figure 3. Secondary structural context of mutational effects. (A) Density functions 375 

describing the distribution of mutational effect scores for each substitution are shown for 376 

three different structural contexts as determined using DSSP: β-sheets (left panel, N = 377 

4,796), α-helices (middle panel, N = 8,669) and turns (right panel, N = 3,329). (B) The 378 

mutational effect score distributions for each substitution in β-sheets (left panel), α-379 

helices (middle panel), and turns (right panel) are shown. The vertical line in each panel 380 

represents the median effect score for all substitutions in that secondary structure type.  381 
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 383 

Figure 4. Alanine is not especially useful for identifying positions in protein-384 

ligand interfaces. (A) The distribution of mutational effect scores for every substitution 385 

in four proteins with ligand-bound structures (hYAP65 WW domain, PSD95 pdz3 386 

domain, BRCA1 RING domain (BARD1 binding) and Gal4) is shown at ligand interface 387 

positions as reported in the literature, and for non-interface buried positions or non-388 

interface surface positions. (B) A mutational effect threshold was defined such that 389 

positions with a mutational effect below the threshold were classified as “interface,” 390 

whereas positions with a mutational effect above the threshold were classified as “non-391 

interface.” ROC curves for each amino acid were generated by varying this threshold. 392 

The area under each ROC curve is shown, illustrating the power of each substitution to 393 

discriminate between interface and non-interface positions.  394 
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Supplemental Figure Legends 506 

 507 
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Figure S1. We curated large-scale mutagenesis data sets describing the effects of 508 

34,373 mutations at 2,236 positions in fourteen proteins. To facilitate comparisons 509 

between each data set, we rescaled mutational effect scores for each protein by 510 

subtracting the median mutational effect score of all synonymous mutations in that 511 

protein from each nonsynonymous mutational effect score and then dividing that 512 

difference by the median of the bottom 1% of mutational effect scores (see Methods). 513 

(A) Stacked histograms of the original scores (left panel) and rescaled scores (right 514 

panel) are shown. (B) Density plots of the scaled mutational effect scores for each 515 

amino acid substitution are shown. 516 
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 518 

Figure S2. For each substitution, Pearson correlation coefficients were calculated for 519 

the mutational effect scores of that substitution with every other substitution at each 520 

position. A correlation plot of these Pearson coefficients is shown. Color indicates the 521 

Pearson correlation coefficient ranging from 0 (light brown) to 1 (green). 522 
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Figure S3. (A) For each amino acid substitution, the median mutational effect score 524 

was calculated. The correlation between the median mutational effects for each 525 

substitution in helices, strand and turns are shown in scatterplots, and Spearman’s Rho 526 

indicates the degree of rank correlation within each scatterplot. (B) Pearson correlation 527 

coefficients were calculated for the mutational effects of each substitution with every 528 

other substitution at every position. The Pearson correlation coefficient plots are shown 529 

separately for α-helices (top), β-sheets (middle), and turns (bottom). (C) Boxplots show 530 

the distribution of Pearson correlation coefficients for each amino acid type in three 531 

structural contexts. 532 
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 533 

Figure S4. A mutational effect threshold was defined such that positions with a 534 

mutational effect score below the threshold were classified as “interface,” whereas 535 

positions with a mutational effect score above the threshold were classified as “non-536 

interface.” ROC curves were generated by varying this threshold for each amino acid 537 

type in the four proteins with protein or DNA ligand-bound structures (hYAP65 WW 538 

domain, PSD95 pdz3 domain, Gal4 and BRCA1 RING domain (BARD1 binding)).  539 

 540 

 541 
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 542 

Figure S5. A mutational effect threshold was defined such that positions with a 543 

mutational effect score below the threshold were classified as “interface,” whereas 544 

positions with a mutational effect score above the threshold were classified as “non-545 

interface.” A barplot shows each amino acid substitution’s true positive rate (TPR) for 546 

detecting interface positions at a fixed, 5% non-interface position false positive rate.  547 

 548 

Supplemental Table 549 

Table S1. A table showing sample size, p-value and Bonferroni corrected p-value for 550 

paired, two-sided Wilcoxon rank sum tests of the position median effect scores versus 551 

each amino acid substitution’s effect scores. This analysis was restricted to the 882 552 

positions where the effects of all 19 possible substitutions were scored.  553 
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