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Abstract

Feedback control systems with integral action have the unique ability to perfectly reach
constant set-points and to reject constant disturbances. Due to these properties, they are ubiq-
uitous in engineering systems and frequently found in natural biological systems that achieve
homeostasis and adaptation. Recently, there has been increasing interest in realizing integral
controllers in the synthetic biology community as a way to improve robustness of circuits and
tightly regulate gene expression. Although a number of circuit designs have been proposed,
their functionality often hinges on the critical assumption that species in the controller do not
dilute, since dilution breaks the controller integration structure and leads to “leaky integration”.
While this assumption is satisfied in cell-free systems, it is not met in implementations in living
cells, where cell growth and division dictates species dilution. In this report, we abstract previ-
ously proposed designs of biomolecular integral controllers into two ideal integral control motifs
(IICM), type I and type II. Based on these, we mathematically demonstrate how engineering a
time-scale separation between the controller reactions and dilution, we can obtain quasi-integral
control motifs (qICM) that recover almost perfect adaptation even in the presence of dilution.
Contrary to previous hypothesis, our results show that implementing a fast integral action alone
may not be sufficient to recover the adaptation property. Our results are based on a general
dynamical model of a “plant” and a “controller” for which we provide easy-to-check algebraic
conditions for almost perfect adaptation. These conditions can be used as guidance for design.
Here, we propose two bimolecular implementations of qICMs both designed to reach adaptation
of gene expression to fluctuations in cellular resources.

1 Introduction

Integral feedback control is a widely applied engineering principle that ensures the output of a
system can reach a constant set-point in the presence of constant external disturbances or parame-
ter uncertainties [1, 2]. This principle is implemented by many biological systems that demonstrate
homeostasis and adaptation, key properties that ensure robustness to changing or uncertain environ-
ments. For instance, integral feedback motifs have been identified in models of bacterial chemotaxis
[3], calcium homeostasis [4], and yeast osmoregulation [5] (see [6] for a comprehensive review). In
fact, according to the Internal Model Principle of control theory [7], a linear system must contain an
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integrator to achieve perfect homeostasis/adaptation. This principle has been extended to classes
of nonlinear systems under mild technical conditions [2].

In a standard integral feedback control setup, a “memory variable” z integrates the error between
the constant set-point u and the process output y to generate a control input v to the process
(Figure 1A). The process dynamics are subject to constant external disturbances (or parameter
uncertainties) d. This simple integral feedback control mechanism can be modeled by the following
ordinary differential equations (ODEs):

d

dt
x = f(x, v, d), y = h(x),

d

dt
z = k(u− y), v = Θ(z),

(1)

where k is the integral gain, and f(·), h(·) and Θ(·) represent the process dynamics, the process
output function and the controller output function, respectively. Assuming the existence of a unique
stable steady state, it is immediate from (1) that by setting the time derivatives to 0, the steady
state output ȳ must satisfy ȳ = u regardless of d. This implies that the steady state output reaches
set-point u and adapts perfectly to disturbance d.

Due to this robustness property, integral control has raised much attention in the synthetic biol-
ogy community in recent years [8, 9, 10, 11, 12, 13, 14, 15]. In particular, a physical constraint that
has been widely acknowledged to be a challenge for biomolecular realizations of integral controllers
in living cells is that concentrations of all species dilute due to cell growth [6, 9, 10, 13, 16]. In fact,
with reference to (1), if the memory variable z represents the concentration of a biochemical species,
then the integration dynamics dz/dt = k(u− y) become

d

dt
z = k(u− y)− γz, (2)

where γ represents the dilution rate constant, determined by the specific growth rate of the host cell.
Therefore, z is no longer integrating the error (u− y), instead, it implements a leaky integration.

Similar problems exist in electronics. Leaky capacitors may cause catastrophic system level mal-
functions, which are often solved by replacing leaky capacitors with higher quality ones that have less
leakiness (smaller γ) [17]. However, in most biological contexts, it is generally undesirable to reduce
γ because this requires inhibiting host cell growth. This is especially the case in certain synthetic
biology applications, such as in biofuel production, where fast host cell growth is advantageous [18].
Therefore, how to overcome the integration leakiness arising from host cell growth is a fundamental
issue facing the implementation of integral control in living cells.

Previous studies have proposed to overcome this leaky integration problem in a few directions
[9, 10, 16]. One direction, as proposed in [10] and [16], is motivated by the fact that if dilution
rate (−γz) remains sufficiently small over all time, then the trajectory of a system with leaky
integral feedback (2) would be close to that with ideal integral feedback (1). However, this condition
would require z, which represents the integral of the error (u − y), to be sufficiently small over all
time, resulting in severe restrictions on the range of set-point/disturbance input that the system
can reach/adapt to [10, 16]. Another approach proposed in [9] is to counteract dilution (−γz) by
engineering an additional first-order production dynamics (kaz) in the controller that effectively
cancels dilution. While this approach works in theory, it relies on exact parameter matching ka = γ,
which is often impractical to realize experimentally.

It has been also suggested that dilution may be neglected if the integral action is implemented
by reactions that are much faster than dilution [6, 9, 10]. However, no mathematical analysis or
proposed implementation has appeared leveraging this time-scale separation. Additionally, as we
demonstrate here, fast integral action alone may not be sufficient to mitigate the effect of leaky
integration.

In this paper, we take this time-scale separation approach. Specifically, we mathematically
demonstrate how near perfect adaptation can be achieved utilizing the time-scale separation between
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dilution and the reactions that implement the controller, given that a set of easy-to-check algebraic
conditions on system dynamics are satisfied. These results provide guidance for the selection of
core biomolecular processes that implement the controller in order to overcome leaky integration
problems in previously proposed ideal integral control motifs (IICMs). We propose two physical
realizations of quasi-integral controllers (Section 3), which can be applied to mitigate the effect of
cellular resource fluctuation on the expression of the regulated gene. We briefly discuss the practical
implications of our results from both the control-theoretic and the biological perspective (Section
4).

2 Quasi-integral control with a leaky integrator

In Section 2.1, we first introduce two types of IICMs, which implement ideal integral feedback
actions (Figure 1A) and are guaranteed to reach perfect adaptation in the absence of dilution. For
both types of IICMs, we then introduce their corresponding quasi-integral control motifs (qICMs),
which include dilution (Figure 1B) but guarantee almost perfect adaptation. These qICMs fit into a
general system structure that we analyze in Section 2.2, providing sufficient mathematical conditions
to realize quasi-integral control.

2.1 Two types of integral control motifs

As a motivation to the general controller structure we propose in this paper, we first consider
two different types of integral control motifs (Figure 1C). We refer to the motifs that assume no
dilution of the controller species as IICMs. They are shown in the left column in Figure 1C. Type I
and type II IICMs represent abstractions of previously proposed ideal biomolecular integral control
systems [9, 11, 15]. In these motifs, we have assumed the process dynamics to be the production
and dilution of species x subject to an additive external disturbance d. This simplification is for
illustration purposes only and our conclusions are independent of it. A type I IICM regulates the
dynamics of x using a single controller species z, whose concentration z is the memory variable.
This motif arises from saturating certain Hill-type or Michaelis-Menten-type kinetics such that the
production rate of z becomes approximately proportional to the error (u − y) [9, 15]. A type II
IICM, arising from what was called the antithetic integral controller [11], realizes integral action
using two controller species z1 and z2, whose production rates are proportional to the set-point
(u) and the concentration of the output species (x), respectively. The two controller species then
annihilate when bound together. The integral action is carried out by the “hidden” memory variable
z̃ := z1 − z2, which satisfies dz̃/dt = k(u − x). With reference to Figure 1D (black dashed lines),
in the absence of dilution of the controller species, both types of IICMs ensure set-point regulation
and adaptation (to disturbances).

However, when dilution of the controller species is included in these motifs as a consequence of cell
growth, the integration dynamics disappear (central column in Figure 1C). We call the corresponding
motifs leaky integral control motifs (LICMs), since for both types of motifs, the dynamics of their
memory variables take the leaky integration form dz/dt = k(u−x)−γz. Dilution of controller species
significantly hinders the capabilities of these motifs to achieve set-point regulation and adaptation
(Figure 1D, blue dash-dot lines).

While LICM do not have the ability to achieve set-point regulation and adaptation, an ε-
parameterized time-scale separation between dilution and controller reactions can suppress the effect
of leaky integration. We call motifs with such a property ε-qICMs. These motifs are shown in the
right column in Figure 1C. By picking a small ε, the time-scale of the controller dynamics, captured
by the z variables, becomes much faster than dilution dynamics. As shown in Figure 1D (red solid
line), for ε small, the ε-qICMs recover the ability to achieve set-point regulation and adaptation. The
theoretical underpinning of type I and II qICMs is based on a general fast controller structure that
satisfies mild well-posedness and easy-to-check conditions, which we introduce in the next section.
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Figure 1: Quasi-integral control mitigates the effect of leaky integration due to dilution. (A)
Schematic of an integral control system. With reference to (1), the controller integrates the error between
set-point u and output y with gain k. The steady state output is independent of disturbance input d.
(B) Schematic diagram of an ε-quasi-integral control system, where the controller species dilute due to
cell growth. Variable z2 represents the memory variable that integrates the error in the controller, and
z1 represents the remaining controller states, if any (see equations (3)-(4)). There is an ε-parameterized
time-scale separation between dilution and the rest of the controller dynamics. (C) Two types of integral
control motifs. The IICMs neglect dilution of the controller species, which are boxed in pink. When dilution
of controller species is considered, the integral structure breaks and the motifs become LICMs. The ε-qICMs
mitigate the leaky integration effect by introducing an ε-parameterized time-scale separation between dilution
and all controller reactions. (D) Simulations of type I and type II IICMs, LICMs and ε-qICMs. Simulation
parameters for both motifs: α = γ = k = 1 hr−1, θ = 1 nM−1·hr−1, ε = 0.02, u = 10 nM and d = 5
nM·hr−1. Set-point input u is applied at time 0 and disturbance input d is applied at 15 hr.
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2.2 Sufficient conditions for ε-quasi-integral control

In this section, we show that a general controller structure can capture the key design principles of
type I and type II ε-qICMs, which offers a broad framework useful to uncover additional ε-qICMs.

We consider a biomolecular process to be controlled Σp, with dynamics that can be written as:

Σp :
d

dt
x = f(x, v, d), y = h(x), (3)

where x represents process states (i.e. the concentration of species x forming the biomoelcular
process). Their dynamics are described by f(·). The process takes two inputs: v is the control input,
and d is a constant external disturbance input, which could also represent a constant uncertainty in
process parameters. The output of the process y is determined by a function h(x).

The process Σp is connected to an ε-parameterized biomolecular controller Σεc, which contains
a leaky integral action due to dilution. We study the case where all controller reactions have an
ε-parameterized time-scale separation with dilution. To this end, we write the controller in the
general form:

Σεc : ε
d

dt
z1 = g(z, u, y, ε) ε

d

dt
z2 = k(u− y)− εγz2, v = Θ(z), (4)

where z := [z1, z2]T represents the controller states and ε is a small positive parameter. Specifically,
z2 is the memory variable that carries out the leaky integration, z1 represents concentrations of
additional controller species, if any. In Figure 1C, for the type I ε-qICM, z2 := z and there is no
z1, while for the type II ε-qICM, we set z2 := z̃. The controller takes the output of the process y
as input and compares it with a constant external set-point input u. The error is amplified by gain
k/ε. The closed loop system Σε is therefore a feedback interconnection of Σp and Σεc (Figure 1B).

We would like the steady state output ȳ of Σε to approach the set-point u as parameter ε
decreases, regardless of d. This formulation has similarities with existing mathematical formulation
of approximate adaptation developed in the control theory literature [19]. However, since the results
in [19] require an integrator to appear in the controller dynamics when ε = 0, they are inapplicable
to our model (4). Assuming that Σε has a unique locally asymptotically stable steady state (x̄, z̄),
we define ε-quasi-integral control as follows.

Definition 1. System Σε realizes ε-quasi-integral control in an admissible input set U×D if for all
(u, d) ∈ U× D, the system’s steady state output ȳ is such that

lim
ε→0

ȳ(u, d, ε) = u. (5)

The unique steady state (x̄, z̄) of Σε can be computed from the following algebraic equations:

F (x̄, z̄, d) := f(x̄,Θ(z̄), d) = 0, G(x̄, z̄, u, ε) := g(z̄, u, h(x̄), ε) = 0, k[u− h(x̄)] = εγz̄2, (6)

in which we assume that functions F (·), G(·) and h(·) are sufficiently smooth in their arguments
(see SI Section S1 for precise mathematical requirements). The following claim provides sufficient
conditions for the steady state of Σε to satisfy (5).

Claim 1. Let (x̄, z̄) be the unique locally asymptotically stable steady state of Σε, system Σε realizes
ε-quasi-integral control in U× D if the following conditions are satisfied for all (u, d) ∈ U× D:

(C1) There exists a unique solution (x∗, z∗) to (6) when ε = 0, that is,

F (x∗, z∗, d) = 0, G(x∗, z∗, u, 0) = 0, u− h(x∗) = 0.

(C2) The matrix  ∂F/∂x ∂F/∂z1 ∂F/∂z2
∂G/∂x ∂G/∂z1 ∂G/∂z2
−k · ∂h/∂x 0 0

∣∣∣∣∣∣
(x=x∗,z=z∗,ε=0)

is nonsingular.
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The proof of this claim is a direct application of the Implicit Function Theorem [20] (see SI
Section S1). Condition (C1) ensures the existence of a unique closed loop steady state (x∗, z∗) that
allows the output to reach u and adapt to d in the limit ε = 0. Condition (C2) further guarantees
that for nonzero ε, the steady state (x̄, z̄) is close to (x∗, z∗).

We can apply Claim 1 to the ε-qICMs in Figure 1C and verify that (C1) and (C2) are indeed
satisfied for both motifs (see SI Section S1.2). From an engineering perspective, as long as (C1) and
(C2) are satisfied, one may consider increasing the rate constants of all controller reactions in any
IICM by a factor of 1/ε to realize an ε-qICM in the presence of dilution. In the next section, we
propose two physical implementations of type I and II ε-qICMs.

3 Two biomolecular implementations

In this section, we propose physical implementations of an sRNA-based quasi-integral controller and
a phosphorylation-based quasi-integral controller. They can be viewed as realizations of the type II
and type I qICMs, respectively. We intend to use these controllers to mitigate the effect of cellular
resource competition on gene expression, which can create significant unintended interactions among
genes [21, 22].

3.1 sRNA-based quasi-integral controller

With reference to Figure 2A, the sRNA-based quasi-integral controller regulates translation of pro-
tein p to adapt to a disturbance input d. The disturbance input d ∈ [0, 1) models a reduction in
the translation rate constant arising from, for example, reduced amount of ribosomes translating p
as more ribosomes are sequestered to produce other proteins in the host cell [21, 22]. The controller
consists of p transcriptionally activating production of an sRNA (s) that is complementary to the
mRNA (m) of the regulated protein p. The sRNA and mRNA can bind and degrade together rapidly
[23, 24, 25]. The mRNA concentration m is the control input to the translation process. A constant
upstream transcription factor regulates mRNA production as a set-point input u to the controller.
Based on the chemical reactions in SI Section S2, a simplified ODE model of this system is:

d

dt
m = Tu− δm− θms/β,

d

dt
s = Ts

p/ks
1 + p/ks

− δs− θms/β,

d

dt
p = R(1− d)m− γp,

(7)

where T and Ts are the transcription rate constants to produce mRNA and sRNA, respectively. They
are respectively proportional to the copy numbers of the regulated gene and the sRNA. Parameter ks
is the binding dissociation constant between protein p and the sRNA promoter, β is the dissociation
constant of mRNA-sRNA binding, θ is the degradation rate constant of the mRNA-sRNA complexes,
and R is the translation rate constant per mRNA copy. In addition to dilution due to cell growth,
characterized by rate constant γ, uncoupled mRNA and sRNA are degraded by RNAse [26, 27].
Therefore, we model decay (i.e. dilution and degradation) of uncoupled RNAs by a lumped rate
constant δ such that δ ≥ γ, and assume that this rate constant is the same for mRNA and sRNA
without loss of generality.

When decay of uncoupled RNAs is neglected (δ ≡ 0), dynamics of the memory variable z2 := m−s
is an integration of the error (u−y). In particular, we can find dz2/dt = dm/dt−ds/dt = T (u−y),
in which we take

y :=
Ts
T

p/ks
1 + p/ks

, (8)
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to be the output of the system. In this case, system (7) is an ideal integral control system that
guarantees the steady state output to satisfy ȳ = u regardless of d. According to (8), since protein
concentration p is uniquely determined by y according to p = Tyks/(Ts−Ty), p adapts to d. However,
this integration structure breaks in the presence of nonzero δ, in which case, the z2 dynamics become

d

dt
z2 = T

(
u− Ts

T

p/ks
1 + p/k2

)
− δz2 = T (u− y)− δz2. (9)

Due to the fact that mRNA-sRNA complexes are degraded much more rapidly than uncoupled
RNAs [25], the effect of leaky integration in this controller can be attenuated. In particular, we
leverage this time-scale separation property to put (7) into the general form of ε-quasi-integral
control in (3)-(4). We use ε := δ/θ � 1 to characterize the rate difference between mRNA-sRNA
complex degradation and uncoupled RNA decay, and simultaneously increase DNA copy numbers
of the controller species m and s by a factor of 1/ε to increase their production rates. Consequently,
the transcription rate constants of mRNA and sRNA become T/ε and Ts/ε, respectively. Under the
coordinate transformation x := p, z1 := m and z2 := m− s, system (7) can be re-written as:

d

dt
x = R(1− d)z1 − γx, (10a)

ε
d

dt
z1 = Tu− εδz1 − δz1(z1 − z2)/β, (10b)

ε
d

dt
z2 = T

(
u− Ts

T

x/ks
1 + x/k2

)
− εδz2 = T (u− y)− εδz2. (10c)

Since system (10) takes the form of (3)-(4), we apply Claim 1 to determine whether the steady state
output ȳ is close to u when ε is small. We find that when u ∈ U := (0, Ts/T ), conditions (C1) and
(C2) are satisfied, and the steady state is unique and locally asymptotically stable for all positive ε
(see SI Section S2). Therefore, the sRNA-based controller (10) can achieve quasi-integral control for
all u ∈ U and d ∈ [0, 1). Condition (C1) breaks when u ≥ Ts/T , corresponding to a situation where
the set-point input is larger than the maximum output the system can reach, due to the saturation
of the Hill function in equation (8).

We can decrease the effect of leaky integration by simultaneously (i) increasing the mRNA-sRNA
degradation rate constant θ to decrease ε, and (ii) increasing the DNA copy numbers of the regulated
gene and the sRNA such that their transcription rate constants become T/ε and Ts/ε. While directly
increasing θ may be difficult to implement in practice, since the parameters θ and β are clustered
together in model (7), we can achieve the same effect by increasing the affinity between sRNA and
mRNA (1/β) [28]. We confirm the above results by simulations in Figure 2B and Figure S4 in SI
using biologically relevant parameters from bacteria E. coli.

As a final remark, note that according to the leaky integration dynamics (9), the integral action
can be made faster by simultaneously increasing the DNA copy numbers of the gene and the sRNA
to increase T and Ts. However, as we demonstrate numerically in SI Figure S1, unless removal rate
(θ/β) of the mRNA-sRNA complex is also increased simultaneously, increasing DNA copy numbers
alone does not decrease the effect of leaky integration. This is in contrary to previous hypothesis that
increasing the speed of integral action is sufficient to suppress the leaky integration effect [6, 9, 10].
In fact, conditions (C1) and (C2) are violated if the complex removal rate is small (see discussion in
SI Section 1.3).

3.2 Physphorylation-based quasi-integral controller

A diagram of the phosphorylation-based quasi-integral controller is shown in Figure 2C. The con-
troller is intended to regulate the production (i.e. transcription and translation) of protein p to
adapt to a disturbance d ∈ [0, 1), which models a reduction in protein production rate due to, for
example, depletion of transcriptional and/or translational resources in the host cell by other genes
[21, 22]. In this system, the integral action is accomplished by a phosphorylation cycle, in which
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Figure 2: Two physical realizations of ε-qICMs. (A) Genetic circuit diagram of the sRNA-based
quasi-integral controller. Chemical reactions realizing the controller are boxed in pink. (B) Simulation of
the circuit’s response according to (7). A set-point input u = 1 is applied at time 0 and a disturbance input
d = 0.5 is applied at 30 hr. The vertical axis represents the ratio between output y, defined in (8), and
set-point input u. The dashed black line represents response of an ideal integral control system, where RNA
decay rate δ is set to 0. The dotted blue line, the thin green line with square markers and the solid red line
represent circuit’s responses in the presence of nonzero RNA decay rate (δ = 3 hr−1, corresponding to half-
life of about 13 mins) and decreasing ε. Parameter ε is decreased by increasing the mRNA-sRNA removal
rate (θ/β). The DNA copy numbers of the regulated gene and the sRNA are increased simultaneously
by a factor of 1/ε as ε decreases. (C) Genetic circuit diagram of the phosphorylation-based quasi-integral
controller. (D) Simulation of the circuit’s response according to (11). A set-point input u = 20 nM is applied
at time 0 and a disturbance input d = 0.5 is applied at 20 hr. The vertical axis represents the ratio between
output y, defined to be proportional to p (y = σp), and set-point input u. The dashed black line is the
response of the phosphorylation-based control system assuming no dilution of the active substrate b∗. The
dotted blue line, the thin green line with square markers and the solid red line represent circuit’s response in
the presence of nonzero substrate dilution (γ = 1 hr−1) and decreasing ε, realized by increasing the catalytic
rates (ki, i = 1, 2). Simulation parameters are listed in SI Section S4.
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both the kinase and the phosphatase are saturated by their substrates. The regulated protein p is
co-expressed with a phosphatase and the set-point input u represents the concentration of a kinase.
The substrate b is expressed constitutively. When b is phosphorylated by kinase u to become active
substrate b∗, it transcriptionally activates production of p. A simplified mathematical model of this
system is (see SI Section S3 for derivation):

d

dt
b∗ = k1

ub

b+K1
− k2

pb∗

b∗ +K2
− γb∗, d

dt
p = R(1− d)

b∗

λ+ b∗
− γp, (11)

where k1 and k2 are the catalytic rate constants of the phosphorylation and dephosphorylation
reactions, respectively, K1 and K2 are the Michaelis-Menten constants that characterize the binding
affinity between u and b, and between p and b∗, respectively, R is the protein production rate
constant, and λ is the dissociation constant between b∗ and the promoter of the regulated gene.

Phosphorylation and dephosphorayltion reactions are often much faster than dilution. For ex-
ample, ki/γ ≈ 103 (i = 1, 2) in bacteria [29]. Therefore, a natural choice of ε is to let ε := γ/k1.
System (11) can be taken to the form of an ε-quasi-integral control system (3)-(4) if both the kinase
and the phosphatase are saturated (i.e. b � K1 and b∗ � K2). In particular, in SI Section S3.3,
we find that when (I) the Michaelis-Menten constant between p and b∗ (K2) is small compared to
the dissociation constant λ between b∗ and the regulated gene, (II) the set-point input u is not too
small, and (III) the production rate of b is sufficiently large, both the kinase and the phosphatase
can be saturated by their substrates at steady state. These design constraints are inherited from
the mechanism of type I IICMs and can be satisfied through proper engineering of binding affinities
(in particular, λ) and DNA copy numbers (see SI Section S3.3 for a detailed discussion).

Assuming that both the kinase and the phosphatase are saturated, by setting x := p, z2 := b∗

and σ := k2/k1, we can approximate (11) to become

d

dt
x = R(1− d)

z2
λ+ z2

− γx, ε
d

dt
z2 = γ(u− σx)− εγz2 = γ(u− y)− εγz2, (12)

where we defined the output to be y := σx = σp. System (12) is in the form of (3)-(4). When
u < σR(1− d)/γ, conditions (C1) and (C2) in Claim 1 are satisfied, and the steady state is unique
and locally asymptotically stable for all positive ε (see SI Section S3). We therefore conclude that
system (12) can achieve ε-quasi-integral control with steady state output ȳ = u. This is supported
by simulation results in Figure 2D and Figure S5 in SI, in which the steady state error due to leaky
integration can be reduced as we decrease ε by increasing the time-scale separation between dilution
and phosphorylation/dephosphorylation.

4 Discussion

Due to their appealing abilities to control a process to achieve set-point regulation regardless of dis-
turbances/uncertainties, integral controllers have many potential applications in the field of synthetic
biology. A well-known challenge to realize integral control in living cells is that the concentration
of controller species dilute as cells grow. In particular, IICMs lose the integral structure once dilu-
tion is taken into account (Figure 1C). In this report, we propose an approach based on time-scale
separation to overcome this obstacle to realize integral control in living cells. We establish a general
mathematical structure of ε-quasi-integral controllers and provide easy-to-check algebraic condi-
tions, under which the effect of leaky integration due to dilution can be made arbitrarily small as
we increase the time-scale separation between dilution and all controller reactions. (A more general
situation where only part of the controller reactions are much faster than dilution is considered in
SI Section S1.) In addition to the two types of ε-qICMs presented here, these mathematical results
can facilitate researchers to uncover/design additional ε-qICMs in the future.

The physical implementations of quasi-integral controllers proposed in Section 3 share common
elements with some well-known adaptive/homeostatic networks in nature. In bacterial chemotaxis
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[3] and yeast osmoregulation [5], integral actions are carried out by the fast methylation and phos-
phorylation processes. Similarly, negative feedback systems involving sRNA have been identified
in iron homeostasis [30], in quorum sensing [31] and in sugar metabolism [32]. Therefore, further
experimental study of the simple synthetic quasi-integral controllers proposed here may enhance our
understanding of their natural counterparts, which are often embedded in more complex biomolec-
ular networks and are therefore more difficult to analyze.

From a classical control-theoretic perspective, integral controllers often operate with low integral
gains (i.e. slow integral actions). This is because with a perfect integrator, steady state set-point
regulation and disturbance adaptation can be achieved regardless of the magnitude of the integral
gain, and a high integral gain often leads to undesirable effects such as higher energy consumption
and tendency to instability [1]. For example, due to the high DNA copy number requirement in
the sRNA-based controller, circuit operation sequesters a significant amount of RNA polymerase for
transcription, which may affect the expression of other genes in the cell [22]. A potential advantage
of increasing integral gain is that it can improve a system’s ability to track (reject) time-varying
references (disturbances). While we demonstrate this capability for the two example systems through
linearization and simulations in SI Section S5, further theoretical assessment of this property may
require us to leverage existing control theoretic results to new contexts [33, 34].
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