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Abstract 

 

Background: The complexity of metabolic networks can make the origin and impact of 

profound changes in central metabolism occurring during disease difficult to understand. 

Computer simulations can help unravel this complexity, and progress has advanced in 

genome-scale metabolic models. However, many current models produce unrealistic results 

when challenged to simulate abnormal metabolism as they include incorrect specification and 

localization of reactions and transport steps, incorrect reaction parameters, and confounding 

of prosthetic groups and free metabolites in reactions. Other common drawbacks are due to 

their scale, such as being difficult to parameterise and simulation results being hard to 

interpret. Therefore, it remains important to develop smaller, manually curated models to 

represent central metabolism accurately.  

 

Results: We present MitoCore, a manually curated constraint-based computer model of 

human metabolism that incorporates the complexity of central metabolism and simulates this 

metabolism successfully under normal and abnormal conditions, including hypoxia and 

mitochondrial diseases. MitoCore describes 324 metabolic reactions, 83 transport steps 

between mitochondrion and cytosol, and 74 metabolite inputs and outputs through the plasma 

membrane, to produce a model of manageable scale for easy data interpretation. Its key 

innovations include accurate partitioning of metabolism between cytosol and mitochondrial 

matrix; correct modelling of connecting transport steps; proper differentiation of prosthetic 

groups and free co-factors in reactions; and a new representation of the respiratory chain and 

the proton motive force. MitoCore’s default parameters simulate normal cardiomyocyte 

metabolism, and to improve usability and allow comparison with other models and types of 

analysis, its reactions and metabolites have extensive annotation, and cross-reference 

identifiers from Virtual Metabolic Human database and KEGG. These innovations—including 

over 100 reactions absent or modified from Recon 2—are essential to model central 

metabolism accurately.  

 

Conclusion: We anticipate MitoCore as a research tool for scientists, from experimentalists 

looking to interpret data and generate further hypotheses, to experienced modellers 

predicting the consequences of disease or using computationally intensive methods that are 

infeasible with larger models, as well as a teaching tool for those new to modelling and 

needing a small manageable model on which to learn and experiment.  

 

 Keywords: Constraint-based model, metabolic network, flux balance analysis, central 

metabolism, mitochondria, mitochondrial metabolism  
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Background 

Human central metabolism is a large and complex system under sensitive homeostatic 

control, and its disturbance is causative or associated with many diseases and responses to 

toxins. However, it is often difficult to relate more than a handful of these changes to their 

underlying origin or their down-stream impact, due to the highly connected nature of the 

reactions of central metabolism. Computer models are widely accepted in many fields as a 

tool to incorporate complexity and simulate changes, allowing predictions to be made and 

providing a unifying framework to interpret empirical data, especially from large, noisy and 

incomplete data sets. Yet modelling is treated with scepticism by many biomedical 

researchers despite their potential broad utility [1]. Simple models of enzyme kinetics (using 

the assumptions of Henri-Michaelis-Menten kinetics [2]) are familiar to biomedical scientists, 

but are impractical for simulations of central metabolism due to every reaction needing 

parameterisation, alongside the computational expense of solving the large set of differential 

equations. However, constraint-based models of metabolism used in conjunction with 

methods such as flux balance analysis [3] are particularly useful for simulating metabolic 

changes in large metabolic networks as they can incorporate flexibility, do not require any 

kinetic parameters and are computationally inexpensive. Many genome-scale constraint-

based models [4-10], representing known enzymes encoded in the human genome, have 

covered central metabolism and used to successfully model some diseases [11,12]. But these 

models do not simulate the realistic production rate of ATP (with one recent exception [10]), a 

crucial element of modelling central metabolism. Furthermore, the interpretation of simulation 

results from thousands of reactions is difficult (especially for new-comers), and erroneous 

“short-circuits” and energy-generating cycles commonly occur without extensive manual 

curation [13]. In addition, attempts to simulate disease can result in the prediction of 

physiologically improbable reaction fluxes. These are caused by several common problems 

including: incorrect parameters for directionality constraints, the assignment of reactions to 

the wrong cellular compartments, or inaccurate representations of pathways, enzymes, 

transport steps, prosthetic groups and metabolites. These errors can introduce unrealistic 

bypasses and shuttles that appear to compensate for a disease state. For example, proton-

coupled mitochondrial transporters running in reverse and thus pumping protons that 

contribute to ATP generation, and the confounding of free co-factors with prosthetic groups, 

especially the FAD of mitochondrial succinate dehydrogenase and electron-transferring 

flavoprotein (ETF), leading to unrealistic fluxes of electrons between isolated complexes. 

These problems are common in genome-scale models that include an initial auto-generation 

of the reaction network from databases that can include incomplete or incorrect annotation. 

These issues are particularly acute for modelling mitochondrial metabolism and metabolite 

transport, as all the current genome-scale models neglect the electrical gradient component 

(ΔΨ) of the proton motive force (PMF) and the correct proton cost of making ATP by ATP 

synthase in animals [14]. It is also sometimes questionable whether the enormous size and 

complexity of these genome-scale models benefits simulations of subsystems of cellular 
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metabolism, such as central metabolism. Furthermore, genome-scale models make some 

techniques computationally infeasible due to their scale, such as elementary mode analysis 

[15]. 

 

By using smaller curated models validated against data from normal and disease metabolism 

these problems can be avoided. A more focussed and carefully defined model also allows the 

user to be confident in each reaction and more clearly elucidate the behaviour of the system, 

including any short-comings, and interpret the results more readily. We previously applied this 

approach for our iAS253 model of the mitochondrion, which we used to simulate metabolic 

diseases of the tricarboxylic acid cycle [16]. This model was then used as a basis to simulate 

other disorders including hypoxia during cardiac ischemia [17], fumarate hydratase deficiency 

[18] and common diseases of the mitochondrial electron transport chain [19]. These 

simulation results were used to generate detailed mechanistic hypotheses for data 

interpretation and to design further experiments. However, we recognised that this model 

could be improved upon by constructing a new model that encompassed more of central 

metabolism and explicitly modelled physiochemical features such as the mitochondrial proton 

motive force. In particular, ease of use would be improved by providing extensive annotation 

of reactions and their parameters.  

 

Here we present MitoCore, a new constraint-based model of central metabolism that 

addresses these issues and comprehensively expands upon and refines our previous 

mitochondrial models. This model has been designed to be easy-to-use, includes extensive 

annotation, has default parameters to simulate human cardiomyocyte metabolism, and is 

encoded in the widely used SBML format [20]. We anticipate the model will be of great use to 

those wishing to interpret empirical data by comparing it to simulations of central metabolism 

and thus investigate predictive models of disease and toxicology. 
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Results  

Building the MitoCore model of human central metabolism 

MitoCore is a constraint-based model of central metabolism with two compartments; one 

representing the cytosol, outer mitochondrial membrane, inter-membrane space and cytosolic 

side of the inner mitochondrial membrane, and the other the mitochondrial side of the inner 

membrane and the mitochondrial matrix. It models 324 reactions of which 157 have been 

assigned to the mitochondrial compartment, and 167 assigned to the cytosolic compartment. 

83 mitochondrial transport steps connect the two compartments, of which 30 are modelled on 

the known transport mechanisms of characterised transport proteins of the inner 

mitochondrial membrane, whereas the other 53 represent known transport capabilities of the 

membrane, such as diffusion of small metabolites. 74 transport steps at the cytosolic 

boundary represent the import and export of metabolites across the plasma membrane, such 

as oxygen, carbon dioxide, glucose, fatty acids and amino acids. For convenience MitoCore 

includes four ‘pseudo’ reactions that summarise aspects of its biological activity and can be 

used by flux balance analysis as objective functions: ATP hydrolysis (representing cellular 

ATP demand), and the biosynthesis of heme, lipids and amino acids (representing the 

anabolism of biomolecules for cellular growth). 

 

To create the MitoCore model of central metabolism, we built a list of candidate reactions to 

include by considering human reactions in the KEGG [21], HumanCyc [22] and BRENDA [23] 

databases that use any metabolites involved in central metabolism, and assigned each 

reaction to the appropriate cellular compartment(s) by assessing the localisation evidence 

collated in the MitoMiner database [24] for its catalysing protein. Reaction directionality was 

assigned by taking the consensus from annotation in metabolic databases, estimates of 

Gibbs free energy [25,26], and general rules of irreversibility [27]. For each reaction extensive 

additional annotation was recorded including the original KEGG identifiers, EC number, 

description, gene mappings (both HUGO gene symbol and Ensembl identifiers), and 

evidence for the gene’s expression in heart and the protein’s mitochondrial localisation.  

 

To enable comparison of results from MitoCore to those of the popular genome-scale models 

such as Recon 2 [5], MitoCore re-used identifiers for metabolites and reactions present in the 

Virtual Metabolic Human database (https://vmh.uni.lu) where possible. However, it was 

necessary to create 105 new reactions for MitoCore (additional file 6) that were either absent 

from the Virtual Metabolic Human database (such as transport steps or compartment specific 

versions), were inaccurately described (such as specifying prosthetic FAD as a free co-

factor), or were needed to represent new features (such as the proton motive force). New 

reaction identifiers were appended with the suffix ‘MitoCore’. Pathways represented in 

MitoCore include glycolysis, pentose phosphate pathway, TCA cycle, electron transport 

chain, synthesis and oxidation of fatty acids, ketone body and amino acid degradation and 

cover all parts of central metabolism involved directly or indirectly with ATP production. 
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Finally, MitoCore was extensively tested to ensure that it contained no erroneous energy-

generating cycles, it was capable of simulating disorders such as ischemia and mitochondrial 

diseases, and that each reaction was capable of having a flux (depending on the constraints 

placed on the cytosolic boundary transport steps) and so ensure it contained no reaction 

dead-ends. MitoCore was encoded in SBML [20] (additional file 1) and a companion 

annotation Excel spreadsheet produced (additional file 2).  

 

Simulating cardiomyocyte metabolism using MitoCore and flux balance analysis 

MitoCore’s default reactions and parameters are optimised for cardiomyocytes and use the 

metabolites available to healthy hearts of glucose, fatty acids, ketone bodies and amino acids 

(references listed in additional file 2). To demonstrate that MitoCore was capable of producing 

physiological relevant results using these parameters, we simulated cardiomyocyte 

metabolism by using flux balance analysis [3]. Flux balance analysis calculates the optimum 

rate of turnover, or flux, of metabolite through each reaction of a network, given a particular 

objective. To reflect the primary role of central metabolism in cardiomyocytes we set the 

simulation’s objective as maximum ATP production (by maximising flux through the pseudo 

reaction of ATP hydrolysis) and calculated the optimum reaction fluxes through central 

metabolism. The resultant reaction fluxes simulated core metabolism correctly with activity of 

all respiratory complexes and the TCA cycle (Fig 1, additional file 2). As metabolic fuels were 

provided in slight excess, the availability of oxygen limited the overall fluxes. Simulated ATP 

production was 100.9 μmol/minute/gram of dry weight. Sources of acetyl-CoA for the TCA 

cycle were fatty acid degradation (55.0%), glucose oxidation (26.4%), lactate oxidation 

(8.4%), ketone body degradation (6.1%), amino acid degradation (3.8%) and glycerol 

oxidation (0.3%). The amino acids degraded and used to produce ATP were histidine, 

isoleucine, leucine, lysine, threonine, valine, arginine, aspartate, cysteine, glycine, proline, 

serine, asparagine, and alanine. Ammonia, produced as a by-product of amino acid 

degradation, was exported from the system.  

 

Metabolite degradation and ATP yields using MitoCore 

To demonstrate how different metabolites are degraded appropriately in the MitoCore model 

and the effect of the implementation of the proton motive force on ATP production, we 

performed a series of simulations using particular ‘fuel’ metabolites in isolation. We simulated 

the oxidation and degradation of glucose, lactate, hexadecanoic acid, hydroxybutanoate, 

acetoacetate and 20 different amino acids in separate simulations. In each simulation, one 

fuel was allowed a maximum uptake of 1 μmol/minute/gram of dry weight while all others 

were set to zero, then the objective function was set to maximise ATP hydrolysis, and the 

optimum reaction fluxes in the metabolic network were calculated by using flux balance 

analysis (additional file 3). The simulations showed unsurprisingly that fatty acids were the 

most energy rich fuels to metabolise (ATP production of 112 μmol/minute/gram of dry weight), 

followed by the amino acids tryptophan (43 μmol/minute/gram of dry weight), isoleucine (38 
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μmol/minute/gram of dry weight), leucine (37 μmol/minute/gram of dry weight) and 

phenylalanine (36 μmol/minute/gram of dry weight) and then glucose (33 μmol/minute/gram 

of dry weight). 

 

The effect of proton leak on the electron transport chain in MitoCore 

To show the MitoCore model can simulate experimentally induced conditions that are directly 

affected by the proton motive force, we performed a series of simulations representing an 

increasing proton leak across the mitochondrial inner membrane. We introduced a flux 

through the transport step that represents the leak of matrix protons to the cytosol through the 

uncoupling protein 2 (UCP2, Reaction ID: HtmB_MitoCore) in cardiomyocytes [28], while 

using the objective function of maximum ATP hydrolysis during flux balance analysis. The 

optimum reaction fluxes (additional file 4) were identical to those under default constraints 

with the exception of the steps involved in mitochondrial ATP synthesis. The flux through ATP 

synthase was progressively reduced as the proton leak increased until it reversed under very 

high leak, using ATP synthesized in the Krebs cycle. At the highest level of proton leak the 

ATP/ADP carrier reversed to provide additional ATP from glycolysis (Reaction ID: 

ATPtmB_MitoCore). Similarly the phosphate carrier also reversed at the highest proton leak 

value.  
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Discussion 

Here we present MitoCore, a curated, constraint-based model of human central metabolism 

(additional file 1) designed as a predictive model of metabolism in disease and toxicology, 

and for use by a wide range of researchers. It covers all major pathways involved in central 

metabolism using 407 reactions and mitochondrial transport steps, and 74 transport steps 

over the plasma membrane. To increase the metabolic flexibility of MitoCore, we included a 

large number of reactions that were not assigned to classical pathways, but could have 

potentially important roles in supporting central metabolism. MitoCore was parameterised and 

annotated for cardiomyocyte metabolism, which is useful for many types of analyses as the 

cardiomyocyte can metabolise a wide range of substrates and has reactions common to 

many other cell types, as well as representing the metabolism of an organ of utmost 

importance in human health, disease and toxicology. This allows the simulation results to be 

generalisable, without having features that are particularly cell specific, such as those found 

only in hepatocytes. However, we have included reactions that are switched off by default in 

the cardiac model, but can be activated to represent the abilities of other cell types, e.g. 

gluconeogenesis, ketogenesis, β-alanine synthesis and folate degradation. Thus, the model 

allows biologically relevant flux distributions to be generated ‘out of the box’ without altering 

the model, while allowing for easy modification to represent other cell types.  

 

MitoCore has several unique features. The first is the accurate partitioning of metabolism 

between the mitochondrion and the cytosol by using extensive localisation data and 

annotation. This partitioning has an important impact on model behaviour as the limited 

transport steps into the mitochondrial matrix result in dramatic differences in metabolite 

availability in the matrix compared to the cytosol. Therefore, it is crucial that reactions are 

assigned to the correct compartment. We achieved this by manually evaluating the 

localisation of each reaction’s catalysing protein by using the mitochondrial localisation 

evidence in the MitoMiner database [24]. MitoMiner collates GFP tagging, large-scale mass-

spectrometry mitochondrial proteomics studies and mitochondrial targeting sequence 

predictions, with detailed annotation from the Gene Ontology and metabolic pathway data 

from KEGG. MitoMiner also contains homology information allowing localisation evidence to 

be shared amongst species. For reactions catalysed by enzymes with a large amount of 

evidence for mitochondrial localisation but lacking specific evidence for being in the 

mitochondrial matrix or matrix side of the inner membrane, we applied the principle of 

metabolite availability—a reaction can only be present in a compartment if all its substrates 

are available and its products can be used by reactions within the same compartment [16]. A 

summary of this localisation evidence is provided in the mitochondrial evidence section of the 

supplementary annotation file (additional file 2, ‘Reaction & Fluxes’ worksheet) and consists 

of confidence scores from the MitoCarta 2 [29] inventory of genes that encode mitochondrial 

proteins. This dataset is derived by using machine learning to evaluate mitochondrial 
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localisation data from training on collections of characterised mitochondrial and non-

mitochondrial genes.  

 

The partitioning of metabolism between the mitochondrion and the cytosol logically led us to 

reconsider the proton motive force (PMF) and the role of protons crossing the inner 

mitochondrial membrane as part of oxidative phosphorylation, as it produces the majority of 

cellular ATP. The PMF is achieved by complexes I, III and IV pumping matrix protons across 

the mitochondrial inner membrane and into the intermembrane space. This proton-pumping 

creates a proton motive force (PMF) across the membrane that has two components: a 

proton gradient (ΔpH) coupled with an electrical membrane potential (ΔΨ). The energy for 

proton-pumping comes from the transfer of electrons down the respiratory chain from NADH 

and ubiquinone to oxygen, to form water. Additional electrons are passed into the respiratory 

chain from the TCA cycle by complex II, and from the degradation of fatty acids and amino 

acids by the electron-transfer flavoprotein (ETF). ATP synthase uses the PMF to power ATP 

synthesis from ADP and phosphate by channelling protons back across the membrane. It is 

thus clear that it is necessary to distinguish as Peter Mitchell did [30], the protons involved in 

chemical reactions taking place in an isolated compartment (“scalar protons”), from the 

protons crossing between compartments (“vectorial protons”).  To better model oxidative 

phosphorylation, we devised a new representation of the PMF and mitochondrial respiratory 

chain—the second unique feature of MitoCore. MitoCore’s representation of the respiratory 

chain differs in many key aspects to other metabolic models, due to how it models vectorial 

protons and accounts for both components of the PMF. MitoCore represents the PMF as a 

metabolite that is co-transported in steps that transport charged metabolites or protons across 

the inner mitochondrial membrane, such as the reactions of the respiratory complexes, and in 

proton-coupled and electrogenic transport steps. As MitoCore’s representation of the PMF 

incorporates both ΔΨ and ΔpH, we reflect their relative contributions to the overall PMF by 

co-transporting 0.82 PMF metabolites for transport steps that affect ΔΨ and 0.18 PMF 

metabolites for transport steps that affect ΔpH. These values are the average of published 

figures of the relative contributions of ΔpH and ΔΨ by several authors (see additional file 5 for 

details and references). Therefore, the reactions that represent complexes I, III and IV of the 

respiratory chain move PMF metabolites that correspond to the number of protons they pump 

from the matrix to the cytosol, as a proton in this case affects both ΔΨ and ΔpH. ATP 

synthase needs to transport 2.7 PMF metabolites back to the matrix to synthesise one 

molecule of ATP (as it uses 2.7 protons per molecule of ATP [14]). Transport steps between 

the two compartments are modelled in the same way; for example the mitochondrial 

ATP/ADP carrier 1 (SLC25A4) requires 0.82 PMF to be co-transported with each imported 

ADP3- nucleotide to reflect the charge difference between ATP4- and ADP3- that affects only 

ΔΨ (equation 1), whereas the proton-coupled phosphate carrier (SLC25A3) imports 0.18 

PMF as overall transport is electro-neutral and so only affects ΔpH (equation 2):  
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M_atp_m + M_adp_c + 0.82 M_PMF_c � M_atp_c + M_adp_m + 0.82 M_PMF_m  (1) 

 
M_h_c + 0.18 M_PMF_c + M_pi_c � M_h_m + 0.18 M_PMF_m + M_pi_m (2) 

 

This separate modelling of vectorial protons using an additional new PMF metabolite enabled 

the impact of electrogenic transporters on the PMF to be accounted for in flux balance 

analysis simulations for the first time and prevented simulation artefacts where (scalar) 

protons generated or removed from other parts of metabolism allow unrealistically high ATP 

production, as can be the case in other models. We have removed FADH from reactions (as 

specified in databases such as KEGG) where it is treated as a redox cofactor (such as for 

complex II and the ETF), and instead directly coupled the reactions to the reduction of 

ubiquinone to ubiquinol. This keeps separate the electrons entering the respiratory chain from 

different sources, which can otherwise become connected via a shared FADH metabolite, 

and is particularly relevant under perturbed conditions where the erroneous connection of free 

co-factor and bound prosthetic FADH can cause unrealistic bypasses to occur. This problem 

is endemic in large-scale models that auto-generate reaction networks directly from metabolic 

databases without manual curation of reactions. We model the generation of reactive oxygen 

species (ROS) at 0.001% of the flux through complex I, to reflect the primary site of ROS 

generation from the respiratory chain and reduce the efficiency of proton pumping as 

electrons escape [31,32]. Further reactions convert ROS to water at the expense of NADPH.  

 

The third unique feature of MitoCore is the modelling of the transport steps that connect the 

cytosolic and mitochondrial compartments. We included four different transport categories. 

First were transport steps based on the characterised mitochondrial transport proteins. Many 

carriers can transport a range of related substrates (although with different affinities) and 

each metabolite combination was modelled as a separate step including counter exchange 

and proton-coupling. In some cases proton-coupled transporters were represented by two 

reactions to model separately the forward and reverse directions, and a proton (plus co-

transported PMF metabolite) only used for movement down the proton gradient. This 

prevented transporters being used in reverse to pump protons artificially (and so transferring 

PMF) and thereby contribute to ATP production by the ATP synthase. The second category 

was for metabolites whose transporters are unidentified. We chose to model these steps as 

uniporters that were not proton coupled. If the metabolite was charged and moving into the 

matrix we assumed this would impact ΔΨ and co-transported 0.82 PMF metabolite 

accordingly. The third category was for metabolites that can diffuse across the inner 

mitochondrial membrane—including oxygen, carbon dioxide and water—and these were 

modelled as reversible uniport transport steps. Finally we modelled the insertion of lipids into 

the mitochondrial inner membrane via the flippases, which was coupled to ATP hydrolysis.  

 

Other improvements to MitoCore included modelling the protein complexes as one reaction 

rather than a series of linked reactions, as can often be found in metabolic pathway 
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databases and other models. This is particularly important for gene knockout simulations 

where a gene deficiency will knock out a protein complex rather than just one of the 

constituent reactions. To facilitate gene-based analyses (such as knock out studies) we 

provide reaction-to-gene mappings with both gene symbols and Ensembl identifiers. To 

summarise the behaviour of MitoCore, we also defined four ‘pseudo’ reactions for 

biosynthesis of biomolecules (amino acids, lipids, DNA) required by cells for growth and ATP 

hydrolysis to reflect the energy demand of the cell. These pseudo reactions are designed to 

be used as objective functions during flux balance analysis.  

 

A weakness of many metabolic models is the lack of provenance about their components. For 

example recording why reactions have been included, why directionality constraints have 

been set, or the origin of reaction parameters. Thus for MitoCore we created a supplementary 

annotation spreadsheet (additional file 2) to record this provenance. For example, the 

directionality evidence section describes why a constraint has been set; a manually evaluated 

consensus of information from the KEGG [21], HumanCyc [22] and BRENDA [23] databases, 

general rules of irreversibility [27], large ΔG values from eQuilibrator [26] or estimated using a 

group contribution method [25], and information from the literature. In cases for which 

reaction directionality was unclear, it was kept reversible. To address why a reaction has 

been included in our cardiomyocyte model, we included a heart expression section consisting 

of RNAseq and immunochemistry expression levels of genes taken from the Human Protein 

Atlas (version 14) [9]. The spreadsheet also includes gene mappings, identifiers from Recon 

2 and KEGG, mitochondrial localisation evidence (as described above) and baseline reaction 

fluxes when the objective function was maximum ATP production under normal conditions. 

The spreadsheet also serves as a useful template to map flux distributions onto, as reaction 

fluxes can be grouped in an intuitive way directly against useful supplementary information. 

When combined with the small size of the model, simulations can be generated extremely 

quickly and then easily interpreted.   

 

To demonstrate that MitoCore functions realistically, we simulated cardiomyocyte metabolism 

using the default parameters with flux balance analysis [3] and the objective of maximum ATP 

production. The reaction fluxes showed central metabolism was modelled correctly, with the 

largest fluxes through the TCA cycle and respiratory chain. Numerous fuel sources (fatty 

acids, glucose, lactate, ketone bodies and amino acids) were imported, degraded and 

entered the TCA cycle at several different points (Figure 1). The sources of acetyl-CoA for the 

TCA cycle were similar to the experimental measurements of well-perfused heart [33]—

experiments report 60-90% of acetyl-CoA derives from fatty acids compared to 55% in the 

MitoCore simulation, whereas glycolysis (including lactate oxidation) accounts for 10-40% of 

acetyl-CoA compared to 34.8% in the MitoCore simulation. These results support the 

biological relevance and parameter choice of the model.  
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To show the importance of explicitly modelling the PMF, we simulated the maximum ATP 

production achievable using 1 μmol/minute/gram of dry weight of common metabolic fuels in 

isolation (effectively calculating their ATP yields) including for glucose and the fatty acid 

hexadecanoic acid (additional file 3). In MitoCore each glucose produced 33 ATP in 

comparison to 32 calculated theoretically [34] and 32 in Recon 2.2 [10]. For the fatty acid 

hexadecanonic acid 112 ATP was produced compared to 108 theoretically [34] and 107 in 

Recon 2.2. A significant difference between the models is the number of protons required by 

ATP synthase to produce one molecule of ATP—MitoCore uses 2.7 (based on the structure 

of the ATP synthase [14]) whereas the theoretical calculations use 2.5 and Recon 2.2 uses 

4.0. Due to also considering additional factors that affect ATP production—including the 

impact of all the transport steps on the PMF as well as ROS production and removal—we 

believe our figure is likely to be more accurate than these other calculations. When comparing 

maximum ATP production using default parameters to the previous iAS253 model [16], ATP 

production was notably lower (101 vs 140 μmol/minute/gram of dry weight) demonstrating 

that the separation between the PMF and protons is an important improvement. These 

simulations also show that the model in each case uses canonical degradation pathways, 

further increasing confidence that the model is capable of producing realistic results using a 

wide range of metabolites. The results from the proton leak simulations (additional file 4) 

show the use of metabolites to represent the PMF enables the model to replicate 

experimental observations under perturbed conditions that would otherwise be impossible, 

such as the reversal of ATP synthase, the ATP/ADP carrier and the phosphate carrier, which 

is well-known behaviour in absence of respiratory chain activity, for instance in ρ0 cells to 

maintain a proton motive force [35,36]. 
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Conclusions: 

MitoCore is a constraint-based model of human central metabolism, provided with default 

parameters that provide physiologically realistic reaction fluxes for cardiomyocytes. The 

model has several innovations including a new representation of the respiratory chain and 

proton motive force, and partitioning of reactions to subcellular compartments based on the 

latest localisation evidence. Each of the 402 reactions was manually evaluated for 

directionality, expression of its gene in heart and subcellular localisation of its protein resulting 

in an accurate depiction of central metabolism. To allow MitoCore to be easily used and to 

make the results directly comparable with other models and compatible with other types of 

analyses, we have used identifiers from the Virtual Metabolic Human database for both 

reactions and metabolites where possible, and recorded KEGG identifiers in the annotation. 

To help ease of use, we also provide an annotation spreadsheet that provides gene 

mappings, localisation and heart expression evidence, and notes on parameter choice. 

MitoCore is provided in SBML format to be compatible with a wide range of software. We 

hope MitoCore will be of use as a research tool to a wide range of biomedical scientists and 

students—from experienced modellers interested in central metabolism or using 

computationally intensive methods that are infeasible on a genome-scale model, to those new 

to modelling who would like begin by using a small manageable model, with application as a 

predictive model of disease.   
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Methods 

Identifying reactions of central metabolism to include in MitoCore  

An updated version of the iAS253 mitochondrial model was the starting point for the MitoCore 

model [19]. The model was expanded by searching for human reactions in KEGG [21], 

HumanCyc [22] and BRENDA [23] that were missing from the iAS253 model and could 

impact central metabolism. Each reaction was reassessed for subcellular localisation and 

directionality (see below), and to ensure the reactions were present in most tissues including 

cardiac, tissue expression of the genes and proteins was verified by using the Human Protein 

Atlas [9].  

 

Partitioning reactions between the cytosol and mitochondrion 

To partition the reactions into either cytosol or mitochondrion, each enzyme was manually 

evaluated using the mitochondrial localisation evidence in the MitoMiner database [24]. All 

available experimental localisation evidence, mitochondrial targeting sequence predictions 

and annotation were considered, including from homologs from mouse, rat and yeasts. For 

reactions with strong evidence for mitochondrial localisation, but where matrix localisation is 

unclear, we used the principal of metabolite availability [16]. Reactions residing in the 

mitochondrial matrix or matrix side of the inner membrane were assigned to the mitochondrial 

compartment. Transport steps were created to connect the cytosol and matrix based on the 

transport properties of the membrane (active transport, diffusion, etc.). Each reaction was 

cross-referenced with the Virtual Metabolic Human database (https://vmh.uni.lu) and used its 

identifiers for reactions and metabolites where possible. 

 

Assigning reaction directionality 

Reaction directionality was manually evaluated for each reaction in MitoCore. The KEGG 

[21], HumanCyc [22] and BRENDA [23] databases were consulted and general rules of 

irreversibility were taken into account (such as most reactions consume ATP rather than 

produce it and carbon dioxide is normally produced not consumed) [27]. We also considered 

the ΔG values for reactions, both calculated by eQuilibrator [26] and estimated using the 

group contribution method [25], and large changes noted. Finally we consulted the literature if 

reaction directionality was conflicted or unclear. If support for irreversibility was poor or a 

consensus could not be found, the reaction was assigned reversible. The information used to 

make each assessment was recorded in the directionality evidence column of the annotation 

spreadsheet (additional file 2). Further refinement of reaction directionality was used to 

eliminate loops that could produce metabolites such as ATP and NADH for ‘free’, and to 

prevent the interconversion of NADH and NADPH unless experimentally verified.  

 

Defining reactions  

To improve modelling of the proton motive force (PMF) across the mitochondrial inner 

membrane, we introduced a pseudo-metabolite to model the effect on the PMF of proton and 
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electrogenic transport steps across the inner mitochondrial membrane. Reactions 

representing respiratory complexes as well as proton-coupled transport steps were rewritten 

to use this new species. To prevent unrealistic bypasses between free and complex-bound 

prosthetic flavin adenine dinucleotides FADH and FAD+ were removed from all reactions and 

replaced with ubiquinone and ubiquinol. Many reactions were rewritten to represent better the 

underlying biology, such as the generation of ROS from complex I and the proton-pumping 

stoichiometry of the respiratory complexes. In some cases the subcellular localisation was 

changed by using mitochondrial metabolite species, or new reactions were written using 

existing metabolite species.  

 

In total 105 MitoCore reactions were different to or absent from Recon 2 (additional file 6). To 

highlight where there are differences between MitoCore reactions and corresponding 

reactions in the Virtual Metabolic Human database, the MitoCore reaction identifiers use the 

suffix ‘MitoCore’ and the same Recon 2 identifier if one exists.  

 

Refining the MitoCore model 

Finally, the model was extensively tested to ensure all reactions were capable of having flux, 

erroneous energy-generating cycles were removed, the model behaved physiologically under 

normal and perturbed conditions, and all the objective functions were feasible. The model 

was encoded in SBML v2.1 and its validity checked with the SBML online validator [37]. 

 

Simulating cardiomyocyte metabolism  

We simulated metabolism in cardiomyocytes with flux balance analysis (FBA) by using 

MitoCore’s default parameters that have been experimentally recorded for heart tissue. FBA 

has been described extensively elsewhere, but can summarised as calculating the reaction 

turnover, or fluxes (flows) of metabolites through a network of biochemical reactions 

assuming a pseudo steady state [3]. The fluxes through the network are constrained by the 

stoichiometry and directionality of the reactions as well as flux capacity and cytosol boundary 

uptake ranges. Cytosol boundary transport steps model the import and export of metabolites 

to the cell, but the overall rate of production and consumption of metabolites is assumed to be 

zero, hence a pseudo steady state. A metabolic objective function is chosen for a simulation, 

and FBA is used to calculate an optimal set of reaction fluxes that maximises this function. 

For this simulation we use maximum ATP production as the objective function because 

energy generation is one of the primary purposes of central metabolism in cardiomyocytes.  

 

For simulations of ATP yield, all cytosol boundary uptake fluxes for metabolites that could be 

degraded to produce ATP were set to zero, oxygen was increased to 50 μmol/minute/gram of 

dry weight (so that limited oxygen availability would not affect the results), while other cytosol 

boundary conditions were unaltered. The uptake flux of each metabolite of interest was then 

increased to 1 μmol/minute/gram of dry weight.  
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For simulations of proton leak, the lower bound of the reaction representing the gene UCP2 

(Reaction ID: HtmB_MitoCore) was increased over a series of simulations, thus forcing a 

minimum flux through the reaction.  

 

All FBA simulations were performed using MATLAB (Math Works, Inc, Natick, MA) and the 

COBRA Toolbox [38], with the linear programming solver GLPK 

(http://www.gnu.org/software/glpk).  

 

Availability of data and material 

All data generated or analysed during this study are included in this published article and its 

supplementary information files. In addition, the model and annotation file will be available at 

the MRC Mitochondrial Biology Unit website (http://www.mrc-mbu.cam.ac.uk/mitocore/). 
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Figure Legend 

Fig 1. Summary of the major active pathways of central metabolism in the flux balance 

analysis simulation using the MitoCore model with its default parameters and the objective 

function of maximum ATP production. Values of all fluxes are reported in additional file 1. 

 

Supporting information captions 

Additional file 1. MitoCore model encoded in the SBML format. (XML 795KB) 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2017. ; https://doi.org/10.1101/141101doi: bioRxiv preprint 

https://doi.org/10.1101/141101
http://creativecommons.org/licenses/by/4.0/


 17

Additional file 2. Companion annotation spreadsheet recording evidence and provenance for 

reactions and parameters used in MitoCore and fluxes using default parameters for 

cardiomyocytes. (XLSX 247 KB) 

Additional file 3. Flux distributions around the MitoCore model for maximum ATP production 

with different metabolic fuels. (XLSX 263 KB)  

Additional file 4. Flux distributions around the MitoCore model for maximum ATP production 

with varying proton leak through reaction representing UCP2. (XLSX 230 KB) 

Additional file 5. Experimental measurements of the relative contributions of ΔpH and ΔΨ to 

the proton motive force. (XLSX 12 KB) 

Additional file 6. Table of 105 new or altered reactions from those in the Virtual Metabolic 

Human database (Recon 2). (XLSX 85 KB) 
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