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 11 

Abstract 12 

 13 

When exposed to stress, bacterial cells launch a diverse response to enhance their 14 

chances of survival. This response involves modulation of expression of a large 15 

number of proteins which help the cell counter stress. This modulation is facilitated 16 

by several transcription factors in bacteria and in E. coli three homologous 17 

regulators, MarA, Sox, and Rob are known to launch a coordinated response to 18 

combat various stress environments. MarA and SoxS are known to control multiple 19 

antibiotic resistance and superoxide regulon respectively. Rob has been observed to 20 

control similar downstream targets as MarA and SoxS. However, physiological 21 

relevance of Rob in not understood. We show that Rob along with MarA, in presence 22 

of inducer salicylate, can help cell survive in presence of lethal concentration of wide 23 

range of antibiotics. 24 

 25 

 26 
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Introduction 28 

 29 

Transcriptional regulation of cellular targets like efflux transporters or outer 30 

membrane porins help a bacterial cell combat stress [1-4]. In E. coli, three 31 

homologous transcriptional regulators – MarA (encoded by multiple antibiotic 32 

resistance marRAB operon), SoxS (encoded by superoxide stress soxSR regulon), 33 

and Rob (right origin binding protein), together known as mar/sox/rob regulon, are 34 

known to regulate these processes [1,5-11]. For e.g., the TolC efflux pump is known 35 

to be upregulated by MarA, SoxS, and Rob [4]. Production of porin protein OmpF is 36 

regulated by small RNA micF [1], which is regulated by MarA, Sox, and Rob. Many 37 

of the cellular enzymes mentioned like Zwf, DeoB, SodA, etc. are also known to be 38 

controlled by either of MarA, SoxS, or Rob [12-14]. MarA and SoxS have been 39 

reported to play a role in conferring antibiotic resistance and combating superoxide 40 

stress [5,15-21]. Rob is known to act on an overlapping set of targets as MarA and 41 

SoxS [7,22-24], however, its role in regulating cellular physiology is not clearly 42 

understood [25,26].  43 

The marRAB operon is known to be induced in presence of compounds such as 44 

salicylate, phenolic compounds [4,5,8,27-29]. marRAB system encodes for a 45 

transcriptional activator MarA, repressor MarR, and protein of unknown function 46 

MarB [8,15-17,29,30]. MarR repressor, in absence of inducers, remain bound to 47 

Pmar promoter and represses expression from the Pmar promoter [15-17]. In 48 

presence of inducers, MarR preferentially binds to the inducer molecule, hence 49 

relieving the repression of the Pmar promoter [15-17,23]. Thereafter, MarA binds to 50 

the Pmar and target genes promoters and activates transcription [1,4-6,23,27,28,31].  51 

Rob, (right origin binding protein), was first discovered to bind to a site close to DnaA 52 

binding site to the DNA, [25]. However, its precise role in controlling DNA replication 53 

is not known [25]. Crystal structure of Rob further revealed structural homology with 54 

transcriptional regulators MarA and Sox and has been classified as AraC/XylS type 55 

transcriptional regulator family [7,12,13,22-24,32]. However, unlike MarA and SoxS, 56 

transcription from the rob promoter is constitutive (the protein in its uninduced state 57 

is present in the cell as agglomerate) and the protein amounts are regulated post 58 

translationally, in presence of cognate inducer bile slats [12,13,33,34]. Salicylate is 59 
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also known to control gene expression via Rob, however, the molecular mechanism 60 

for the same is not understood [35,36].  61 

Previous work from our lab demonstrated that in presence of salicylate, MarA and 62 

Rob together control downstream targets like InaA by forming a Feed Forward Loop 63 

[35]. MarA protein is important in altering MIC value of a large number of antibiotics 64 

in gram-negative bacteria. However, physiological significance of Rob in this context 65 

is not well understood. In this work, we show that Rob plays a similar role as MarA in 66 

altering the MIC of antibiotics in bacteria in presence of the canonical inducer 67 

salicylate. Since salicylate is the active molecule of aspirin (acetyl salicylic acid), a 68 

clinically important molecule, it is important to understand the molecular mechanism 69 

of this action and its further impact on antibiotic resistance. 70 

  71 
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Methods 72 

 73 

Growth Kinetics 74 

 75 

Cells were grown in LB media overnight with shaking at 37°C. The overnight cultures 76 

were diluted 1:250 in fresh media. Cells were thereafter allowed to grow till an OD 77 

0.2 upon attaining which and respective inducer was added. Growth dynamics was 78 

captured for – wild type, ∆marA, and ∆rob in induced and uninduced conditions. A 79 

range of inducer, salicylate (Sigma Aldrich) concentration - 1mM, 5mM, and 10mM) 80 

was taken to capture sub-lethal effect by inducers. Experiments were performed for 81 

a range of inducer concentrations to capture their precise physiological effect at 82 

different concentrations. 83 

Minimal Inhibitory Concentration (MIC) determination 84 

 85 

Broth microdilution method was used to determine MIC of an antibiotic. Antibiotic 86 

stocks and the concentration range used were prepared as per the guidelines given 87 

by National Committee for Clinical Laboratory Standards, NCCLS [37]. Antibiotic 88 

concentration range was taken one fold higher than the required range to count for 89 

dilution because of inoculum addition. The inoculum was prepared using an 90 

overnight culture (LB media) by diluting to have 106 cells per ml. A sterile 96 well 91 

plate was taken and 100µL of inoculum was added to the well containing 100µL of 92 

fresh media with appropriate antibiotic concentration. Thus, the final cell density for 93 

the experiment was kept at 5 x 105 cells per ml. Inoculum density was cross checked 94 

every time by counting the colony forming unit (CFU) on LB agar plate. The plate 95 

was sealed using breathe easy membrane (Sigma Aldrich) and incubated at 37°C for 96 

20 hours. The concentration of the lowest antibiotic concentration well showing no 97 

visible growth was interpreted as the MIC for a particular antibiotic.  98 

 99 

Live-Dead Cell Assay using Propidium Iodide (PI) 100 

 101 

Cells were exposed to antibiotics in presence and absence of salicylate to track the 102 

percentage of dead cells using propidium iodide assay (Sigma Aldrich). Propidium 103 

iodide is known to rapidly penetrate cells with compromised membrane or dead cells. 104 
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Once in touch with DNA it fluoresces at 617nm. The reason for choosing this dye is 105 

its minimal interference with inducers or antibiotics used in this study. 106 

An overnight culture of wild type and mutants was sub-cultured in 1:250 dilution. 107 

After 1.5 hours of growth at 37°C with shaking, OD 600 was monitored every 10 108 

minutes using OD density meter. When the OD reached ~0.4, the cells were 109 

exposed to salicylate at a concentration of 7.5mM. After an hour of salicylate 110 

exposure (OD < 0.65), cells were exposed to varying concentration of antibiotics. 111 

The antibiotic range was decided as depending on the MIC values for each 112 

antibiotic. For the purpose of this study, the antibiotic range was chosen to consider 113 

both sub-lethal and lethal concentrations of antibiotics; i.e., both < MIC and > MIC 114 

concentration.  The percentage of dead cells was estimated after three hours of 115 

antibiotic exposure, roughly in mid-exponential phase. Samples were collected and 116 

stored in PBS. Propidium iodide was used at a concentration 10µg/ml.  Samples 117 

were immediately observed at single-cell resolution using a Flow Cytometry 118 

(Millipore Guava System and BD FACS Aria SORP). 50,000 events were recorded 119 

and FSC/SSC were plotted. Care was taken to not expose samples to light after 120 

adding Propidium Iodide. All single-cell expression experiments were repeated thrice 121 

on different days and found to show similar trend. 122 

 123 

 124 

 125 

 126 

  127 
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Results 128 

 129 

mar and rob systems are associated with a phenotype in E. coli. 130 

 131 

To characterize the physiological role of MarA and Rob, growth dynamics were 132 

performed for wild type and mutants (in presence and absence of inducers) and 133 

growth dynamics compared. These downstream targets control several aspects of 134 

cellular physiology and consequently have an effect on growth dynamics of the 135 

bacterium. Previous reports suggest that MarA and Rob control a number of 136 

common downstream cellular targets [4,6,22,23,38-40]. Hence, the changes in 137 

growth phenotype arising due to absence of these systems were explored by 138 

measuring the growth defect associated with deletion of marA or rob. 139 

Kinetic experiments were carried out to see the difference in growth dynamics in 140 

regulatory mutants (∆rob and ∆marA) in presence and absence of salicylate, and 141 

compared to that of wild type. Our results show that, compared to wild-type E. coli, 142 

growth of mutants ∆marA and ∆rob is inhibited in presence of sub-inhibitory 143 

concentrations of salicylate. This effect is especially pronounced at lower 144 

concentrations of salicylate. Defect in growth is calculated as percentage growth 145 

difference in induced cells as compared to uninduced conditions (Figure 1). At low 146 

concentration of salicylate (1mM), the wild-type cells show growth defect of around 147 

10% as compared to 15-20% for mutants ∆rob and ∆marA (Figure 1B and 1C). For 148 

higher concentrations of salicylate (5mM and 10mM), wild type and mutants show 149 

comparable growth defects. Since mar/sox/rob systems are thought to have evolved 150 

to combat sub-lethal stress [28,29,41], it is not surprising that absence of either 151 

regulator leads to growth defect when exposed to low inducer concentration (1mM) 152 

as compared to wild-type.  153 

 154 

Salicylate alters Minimal Inhibitory Concentration (MIC) of antibiotics via both, 155 

MarA and Rob. 156 

 157 

Another approach to analyze the phenotype of mar/rob is to study their role in 158 

changing the Minimal Inhibitory Concentration (MIC) of antibiotics. MIC is defined as 159 

the lowest concentration of the antibiotic at (and beyond) which the organism cannot 160 
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grow. One of the first published reports regarding role of salicylate and other similar 161 

compounds in altering MIC of known antibiotics was by Rosner in 1985 [41]. Since 162 

then a number of reports focus on the role of salicylate and acetyl salicylic acid in 163 

reducing susceptibility of the bacterium to antibiotics like fluroquinolone, 164 

carbenecillin, carbapenem, etc. [42,43]. However, there is no systematic work 165 

establishing role of inducers of Rob in changing MIC.  166 

 167 

To understand the role of salicylate in altering MICs, we selected three antibiotics, 168 

commonly used in clinical practice against gram-negative bacteria. Carbenecillin is a 169 

β-lactam antibiotic having bactericidal activity, generally used against gram-negative 170 

infections. It acts by inhibiting cell wall synthesis process by interfering with the final 171 

transpeptidation step [44-46]. Cefotaxime is a broad spectrum antibiotic belonging to 172 

cephalosporin (third generation β-lactam group) active against both gram-positive 173 

and gram-negative bacteria. The mechanism of action of cefotaxime is similar to that 174 

of carbenecillin [44,45,47]. Ciprofloxacin is a fluroquinolone having bactericidal 175 

activity against gram-negative bacteria, and acts by inhibiting the process of DNA 176 

synthesis by hindering topoisomerase activity [48-51]. In this section, we focus on 177 

understanding the fold changes in MICs of antibiotics Carbenecillin, Cefotaxime, and 178 

Ciprofloxacin when both wild-type and regulatory mutant cells are grown in presence 179 

of inducers of mar/rob systems. We used salicylate as inducer. 180 

Broth microdilution method was used to determine the MIC. Antibiotic stocks and the 181 

concentration range used were prepared as per the guidelines given by National 182 

Committee for Clinical Laboratory Standards, NCCLS [37].  183 

To assess the effect of inducer salicylate, using MIC determination method, we first 184 

determined the sensitivity of E. coli to salicylate. MIC of salicylate was determined to 185 

be 4mg/ml which corresponds to a concentration of 25mM. We found that similar 186 

values of MIC have been reported previously for enterotoxigenic E. coli strain [52].  187 

In our work, while using as an inducer, we have used lower concentration, 7.5mM of 188 

salicylate (represents both salicylate and acetyl salicylic acid) to prevent cell 189 

damage. 190 
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We performed broth microdilution assay for carbenecillin, cefotaxime, and 191 

ciprofloxacin both in absence and presence of inducers salicylate and paraquat to 192 

determine MIC. The concentration range of antibiotic screened and MIC values 193 

obtained are given in Table 1.  194 

For wild-type cells, MIC for carbenecillin, was determined to be 32µg/ml. For 195 

cefotaxime, MIC was determined to be 0.06µg/ml, and for ciprofloxacin 0.032µg/ml. 196 

All three MIC values were found to be in the reported range of MIC for E. coli ATCC 197 

25922 strain. Next, we repeated the same exercise by determining the respective 198 

MICs in presence of 7.5mM salicylate. We observed a two-fold change in MIC of 199 

carbenecillin in presence of salicylate. For cefotaxime and ciprofloxacin there was 200 

more than four-fold change when exposed to salicylate (Table 1). This suggests that 201 

inducer (salicylate) helps the cell survive even when exposed to lethal antibiotic 202 

concentration.  203 

Next, we were interested in determining the MIC of the three antibiotics for single 204 

and double mutants of ΔmarA and Δrob. Deleting either of MarA or Rob did not lead 205 

to significant chance in MIC. Hence, we chose double mutant for further 206 

characterization of the role of salicylate in altering MIC via both MarA and Rob. For 207 

ΔmarA Δrob, for carbenecillin, cefotaxime, and ciprofloxacin, MIC was found to be 208 

half of that of wild type, i.e., 16µg/ml for carbenecillin, 0.016µg/ml for ciprofloxacin, 209 

and 0.032µg/ml for cefotaxime. The deletion of these regulators was observed to 210 

lead to at least 50% decrease in MIC when observed in uninduced condition. This 211 

suggests that the regulators might also be regulated by other metabolic 212 

intermediates as reported by Chubiz and co- workers [28].  213 

We then repeated the same exercise in presence of 7.5mM salicylate. In absence of 214 

both MarA and Rob MIC was observed to be two-four fold less as compared to wild 215 

type MIC in identical conditions. The comparison of uninduced and induced values of 216 

MIC of all three studied antibiotics in ΔmarA Δrob, however, reveals around two-fold 217 

higher MIC in salicylate induced condition as compared to uninduced condition. 218 

Salicylate is known to act via MarA and Rob. The change in MIC in presence of 219 

salicylate and absence of MarA and Rob suggests that other regulators like SoxS 220 

might also be able to play a role in regulating MIC. In fact, closely related species 221 

like Salmonella are known to have another regulator (homologous to MarA), RamA, 222 
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which works together with mar/sox/rob towards conferring resistance [53]. Existence 223 

of such an additional regulator in E. coli is a likely possibility. 224 

This study confirms the role of salicylate in altering the MIC of all three studied 225 

antibiotics via MarA/Rob respectively. We also studied if absence of either of MarA 226 

or Rob has the same effect on cells as absence of both. We observed that MIC in 227 

absence of either of MarA and Rob was same as that of wild-type cells (both in 228 

presence and absence of inducers) suggesting in absence of one, the other 229 

compensates for the loss of one of the regulators. Such redundancy in genetic 230 

network is quite ubiquitous and it is not surprising that it exists for a role as critical as 231 

stress response in bacterium E. coli.   232 

Cell density effect and quantification of cell death using Propidium Iodide (PI) 233 

assay. 234 

 235 

The previous section helped us understand the role of inducers in altering MIC. 236 

However, in absence of only one regulator (either MarA or Rob) it was difficult to 237 

capture any difference in MIC as the inducer salicylate acts via both MarA and Rob. 238 

In the double mutant, ΔmarA Δrob we notice maximum difference in MIC in presence 239 

as well as absence of salicylate. To further confirm the independent role of MarA and 240 

Rob, we quantified in response to exposure to antibiotics (Propidium Iodide 241 

fluoresces when in contact with DNA, thus is used to quantify fraction of cells which 242 

are dead). This will help us in understanding cell density effect in higher antibiotic 243 

exposure and also help quantify the independent roles of MarA and Rob.  244 

Cells at higher densities (around 108 cells per ml) were exposed to antibiotics in 245 

presence and absence of salicylate to track the percentage of dead cells using 246 

propidium iodide assay. We observed that in presence of salicylate, wild-type cells 247 

survive lethal antibiotics dosage for all three antibiotics studied (Figure 2, 3, and 4). 248 

As shown in Figure 2-4, the double mutant ΔmarA Δrob cells are susceptible to 249 

antibiotics even in presence of salicylate. In presence of carbenecillin antibiotic, wild-250 

type cell showed survival in presence of salicylate till 40µg/ml of carbenecillin (Figure 251 

2).  ΔmarA cells were also able to survive exposure of antibiotics with the help of 252 

salicylate.  However, ΔmarA Δrob cells showed ~50% percent dead cells, when 253 

exposed to 10 – 40µg/ml of carbenecillin in both absence and presence of salicylate. 254 

Δrob cells also showed similar behavior as ΔmarA Δrob, however, percentage of 255 
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dead cells was lower (20-30%) as compared to the double mutant. Similar results 256 

were obtained for antibiotics cefotaxime and ciprofloxacin (Figure 3 and 4). When 257 

exposed to 2µg/ml cefotaxime, the percentage of dead cells in absence of MarA/Rob 258 

or MarA and Rob was 20-30%. However, at lower concentration of cefotaxime, 259 

presence of Rob helped in cell survival in absence of MarA (Figure 3) (cell death 260 

>10%). In case of ciprofloxacin, absence of MarA/Rob show similar effect, however, 261 

absence of both together renders cell susceptible to 1µg/ml ciprofloxacin similar to 262 

uninduced condition. Our result suggests that Rob plays an important role (more 263 

than that of MarA) in helping the cells survive antibiotic exposure. 264 

  265 
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Discussion 266 

Our results suggest that Rob, like MarA, is an important player in responding to 267 

inducer salicylate.  We quantify the phenotype associated with MarA and Rob in 268 

three different ways – growth kinetics, MIC, and PI assay. Growth experiments 269 

suggest that these systems are associated with a strong growth phenotype. MICs 270 

assays highlight the importance of chemicals like salicylate in altering the MICs of 271 

wide variety of clinically relevant antibiotics. PI assays help us understand the role of 272 

specific regulator in helping cells survive in an inducer dependent manner. MarA and 273 

Rob seems to act in coordination to help the cells survive wide range antibiotic stress 274 

in presence of salicylate. Rob being constitutively present in cell may enable cell to 275 

launch immediate response to harsh environment. The different mode of regulation 276 

of Rob as compared to MarA might be crucial to cell survival. Role of salicylate in 277 

independently acting via Rob can be of clinical importance as salicylate is the active 278 

component of medicines like aspirin.  279 

Rob is reported to be present in 3-4 loci in cell with number varying from 5000-1000 280 

molecules per cell [25,54]. In a single cell study, however, the number of Rob 281 

molecules in a cell was observed to be very low [55]. The variation in the number of 282 

protein molecules per cell suggest there could be cell-cell variation. Unlike other 283 

members of Arac/XylS regulators, the Prob is known to be regulated at post 284 

translational level [12,13]. It is present as agglomerate and dispersed to single 285 

molecule in presence of bipyridyl salt [34]. The transcriptional regulation of Prob in 286 

presence of salicylate is speculated but molecular mechanism of the same is not 287 

understood [35,36]. Moreover, the mechanism associated with transcriptional 288 

regulation of Prob by MarA, if any, is not understood [56,57].  Role of Rob protein, 289 

along with MarA and SoxS, in regulating cellular targets has been reported 290 

[7,12,13,22-24,32]. It is also speculated to be expressed in stationary phase under 291 

glucose and phosphate starvation [25,26]. What is the physiological relevance of 292 

Rob remains to be understood.  It was first reported as right origin binding protein 293 

[25]. However, till date its role, if any, in DNA replication is not established. Our work 294 

attempts to understand role of Rob in cellular physiology, when exposed to wide 295 

variety of antibiotic stress. Further exploration of the mechanism involved in Rob 296 

mediated control of cellular physiology, in presence of inducers, can give new 297 

insights about intrinsic resistance mechanism.   298 
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Figure Captions 453 

 454 

Figure 1. Growth defect in wild-type E. coli and mutants in presence of varying 455 

concentrations of salicylate. (A) Wild type (B) Δrob, and (C) ΔmarA. Salicylate 456 

concentration used: 0mM, 1mM, 5mM, and 10mM.  457 

Figure 2. Percentage of dead cells in wild-type E. coli and mutants in presence of 458 

varying concentration of carbenecillin, with and without salicylate (A) wild type (B) 459 

ΔmarA Δrob (C) ΔmarA (D) Δrob. Salicylate concentration used is 7.5mM and carbenecillin 460 

concentration used is 10µg/ml, 20µg/ml, and 40µg/ml. 461 

Figure 3. Percentage of dead cells in wild-type E. coli and mutants in presence of 462 

varying concentration of cefotaxime, with and without salicylate (A) Wild type (B) 463 

ΔmarA Δrob (C) ΔmarA (D) Δrob. Salicylate concentration used is 7.5mM and cefotaxime 464 

concentration used is 0.5µg/ml, 1µg/ml, and 2µg/ml.  465 

Figure 4. Percentage of dead cells in wild-type E. coli and mutants in presence of 466 

varying concentration of ciprofloxacin, with and without salicylate (A) Wild type (B) 467 

ΔmarA Δrob (C) ΔmarA (D) Δrob. Salicylate concentration used is 7.5mM and ciprofloxacin 468 

concentration used is 0.01µg/ml, 0.5µg/ml, and 1µg/ml.  469 
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 470 

Table 1. MIC values for wild type and double mutants cells in presence and absence 471 

of inducer salicylate.  472 

 473 

MIC in µg/ml 

Antibiotics 

Range of 

concentration 

checked in µg/ml 

Wild type ΔmarA Δrob 

W/O 

Salicylate 

W/ 

Salicylate 

W/O 

Salicylate 

W/ 

Salicylate 

Carbenecillin .25-128 32 >64 16 64 

Cefotaxime 0.004-128 0.064 0.512 0.032 0.064 

Ciprofloxacin 0.004-128 0.032 0.512 0.016 0.128 

 474 

  475 
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