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Abstract

Objectives: Sepsis affects nearly 1 million people in the United States per year, has a mortality rate of
28-50% and requires more than $20 billion a year in hospital costs. Over a quarter century of research
has not yielded a single reliable diagnostic test or a directed therapeutic agent for sepsis. Central to this
insufficiency is the fact that sepsis remains a clinical/physiological diagnosis representing a multitude of
molecularly heterogeneous pathological trajectories. Advances in computational capabilities offered by
High Performance Computing (HPC) platforms call for an evolution in the investigation of sepsis to
attempt to define the boundaries of traditional research (bench, clinical and computational) through the
use of computational proxy models. We present a novel investigatory and analytical approach, derived
from how HPC resources and simulation are used in the physical sciences, to identify the epistemic
boundary conditions of the study of clinical sepsis via the use of a proxy agent-based model of systemic
inflammation. Design: Current predictive models for sepsis use correlative methods are limited by patient
heterogeneity and data sparseness. We address this issue by using an HPC version of a system-level
validated agent-based model of sepsis, the Innate Immune Response ABM (ITRBM), as a proxy system
in order to identify boundary conditions for the possible behavioral space for sepsis. We then apply
advanced analysis derived from the study of Random Dynamical Systems (RDS) to identify novel means
for characterizing system behavior and providing insight into the tractability of traditional investigatory
methods. Results: The behavior space of the IIRABM was examined by simulating over 70 million sepsis
patients for up to 90 days for the following parameters: cardio-respiratory-metabolic resilience; microbial
invasiveness; microbial toxigenesis; and degree of nosocomial exposure. In addition to using established
methods for describing parameter space, we developed two novel methods for characterizing the behavior
of a RDS: Probabilistic Basins of Attraction (PBoA) and Stochastic Trajectory Analysis (STA).
Computationally generated behavioral landscapes demonstrated attractor structures around stochastic
regions of behavior that could be described in a complementary fashion through use of PBoA and STA.
The stochasticity of the boundaries of the attractors highlights the challenge for correlative attempts to
characterize and classify clinical sepsis. Conclusions: HPC simulations of models like the IIRABM can
be used to generate approximations of the behavior space of sepsis to both establish “boundaries of
futility” with respect to existing investigatory approaches and apply system engineering principles to
investigate the general dynamic properties of sepsis to provide a pathway for developing control
strategies. The issues that bedevil the study and treatment of sepsis, namely clinical data sparseness and
inadequate experimental sampling of system behavior space, are fundamental to nearly all biomedical
research, manifesting in the “Crisis of Reproducibility” at all levels. HPC-augmented simulation-based
research offers an investigatory strategy more consistent with that seen in the physical sciences (which
combine experiment, theory and simulation), and an opportunity to utilize the leading advances in HPC,
namely deep machine learning and evolutionary computing, to form the basis of an iterative scientific
process to meet the full promise of Precision Medicine (right drug, right patient, right time).
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Introduction )

There are nearly 1 million cases of sepsis in the United States each year, with a mortality rate between
28-50% [1] While operational care process improvements in the last 20 years that have led to reduction in s
mortality [2] therapeutic options for sepsis remain variations of anti-microbial and physiological support 4

dating back nearly a quarter century, and, crucially, there remains no FDA approved biologically 5
targeted therapeutic for the treatment of sepsis. In an era where the overall goal of medical care is to 6
provide personalized /precision medicine, which should mean “right drug for the right patient at the right -
time,” achieving this goal in sepsis is significantly hampered by the lack of success in translating basic 8
science knowledge into robust and effective therapeutics - a problem pervasive across the biomedical 0
spectrum [3]. Over a quarter century of failed attempts to modulate sepsis raises a key question: how 10
tractable are current investigatory strategies, namely increasing granular clinical data collection and 1
analysis coupled with pre-clinical experimental investigations, aimed at achieving this goal? Is there a 12
fundamental limitation of the capabilities of the current approaches to attempting to characterize and 13
control sepsis? This question of the epistemic limits of traditional research methodology is not limited to 1
sepsis, but is arising across the biomedical research spectrum. For example, a recent paper examines 15
such methodological limits by applying current analytical approaches used in neuroscience to a known, 1
simpler proxy information processing system, a microprocessor, and finds those approaches insufficient 17
for meaningful characterization of the behavior of the microprocessor [4]. We propose that a similar 18
approach can be used to evaluate the tractability of increasing reductionist attempts to define and 19

characterize clinical sepsis. We use a known computational model, a previously developed agent-based 2
model of sepsis recognized to be vastly simpler than the real world system, and apply to it the types of =«

data extraction and system state characterization possible with respect to clinical biomarker analysis. 2
This use of computational/simulation models as proxy systems has a long history in systems engineering, 2
and has been described specifically in the use of biomedical agent-based models (ABMs) [5]. The 2
rationale for using a simulation proxy model to establish analytical boundary conditions is based on the
fact that there is complete knowledge of the computational model, i.e. there are no “hidden variables,”
and therefore it has an internally consistent ground truth. As a computer program, every component 27

and interaction of the model is known, including probabilities associated with stochastic events inputted  2s
into the model’s code. Given that the ABM is vastly simpler than the real world system, we assert that 2
if complete knowledge of the behavioral output of the simpler proxy model is insufficient to meaningfully
predict its behavior, attempts to do so in the real world will be similarly futile. We propose that an 31
iterative process utilizing large-scale simulation of sufficiently complex proxy models and advanced 32
analysis of simulation data can establish “boundaries of futility” with respect to what can or cannot be 33
known about clinical sepsis utilizing data-centric methods. This approach is only made possible by the
exponential growth of computing power seen in leadership-class high performance computing (HPC) that
now makes tractable the ability to near comprehensively characterize the behavioral landscape of an 3
ABM. We utilize an HPC implementation of a previously developed system/population-level validated 37
ABM of the innate immune response [6] (the Innate Immune Response ABM or IIRABM) to generate a s

first approximation behavioral landscape of sepsis to guide the development of suitable metrics with 30
which to characterize that behavioral landscape. Though developed over 15 years ago, the IIRABM 40
remains valid insomuch it reproduces the overall dynamics of the acute inflammatory response, a

producing recognizable system level outcomes (healing, pro-inflammatory death, hypo-immune death and  «
overwhelming initial infection) using a knowledge-based rule system that, while admittedly incomplete,
has not been demonstrated to be incorrect in its represented behaviors by accumulated discoveries since 4
its development. In fact, some of the behaviors generated by the IIRABM presaged their general 15
recognition within the sepsis community, specifically the temporal concurrence of pro- and 4
anti-inflammatory cytokine responses (as opposed to sequential pro- and compensatory responses) [7,8]  «
and the importance of the immuno-incompetent/attenuated recovery phase of sepsis, particularly with a8

respect to its prolonged duration [9H11]. For the current investigations, we acknowledge the 49
incompleteness of the ITIRABM, considering it an abstract, substantially less complex representation of s
the human innate immune response. As such, we further pose that the multi-dimensional behavioral 51
landscape of the ITIRABM is less complex than can be expected of the real world system, and that 52
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characterization of the behavioral landscape of the IIRABM represents a lower bound, first 53
approximation of the ability to characterize the real world system. The investigations presented here are s
divided into two distinct but related tasks: 1) identification of the region of parameter space of the 55

ITRABM that corresponds to biologically /clinically plausible behavior, and 2) the development of novel s
metrics and dynamical systems analysis to characterize the behavior of the IIRABM and provide insight s

into the tractability and viability of current pathways toward precision medicine for sepsis. 58
Materials and Methods "
For our investigations we use a previously validated agent-based model (ABM) of sepsis, the Innate 60
Immune Response ABM (IIRABM) [6]. The IIRABM was ported from NetLogo |12| to C++ and o1

implemented using MPI (Message Passing Interface) 2.0 for the parallelization and distribution of the 62
model. The ITRABM utilizes cells as its agent level. Individuals are represented as an interaction surface
between endothelial cells and circulating inflammatory cells and are subjected to variable perturbations e
representing either infectious insult or tissue trauma. Multiple cell types are represented, including 6
endothelial cells, macrophages, neutrophils, THO, TH1, and TH2 cells, as well as precursor cells for these ¢
cell lines. Details for the IIRABM can be seen in Ref [6]. System damage is represented by an aggregate o
measure of individual endothelial cell damage; the death threshold is set at 80%, representing the ability s

of ICU care to render short-term lung, kidney, and cardiac failure to be survivable [6]. The increasing 69
death threshold is important for two reasons: it simulates ICU care in that modern medical techniques 7
allow a human to survive an amount of damage that would not have been survivable before modern n
medicine; and an increasing death threshold allows the model to evolve to states which would have been 7
unreachable if execution were halted earlier [6,/13]. Beyond the components and interactions of the 73
inflammatory response, the IIRABM utilizes 4 “external variables” that describe clinical features that 7
affect, but are not systemically integral to, the clinically-relevant systemic inflammation: environmental
toxicity (recurrent microbial exposure seen in a clinical environment), host resilience (an aggregate 7
variable representing the cardiorespiratory reserve of the patient and manifest as the ability of damaged
tissue to recover its oxygen level), and two measures of microbial virulence, invasiveness (ability to 78
spread in host tissue) and toxigenesis (ability to kill host tissue) (See Supplemental Table 1). Note that
these variables represent factors that clearly influence an individual’s response during sepsis, but that 80

there are currently no clinically accessible, or even identifiable metrics that would allow categorization of &
a particular patient. It is because of this combination of known influence and inability to categorize that s
the entire parameter space needs to be characterized. In total, 8800 environmental parameter sets were s

represented. A set of infectious injuries, the consequences of which ranged from trivial to severe, was 8
applied to each of these parameter sets. This injury was represented by a circular region with a radius s
that varied from 1 to 40 grid-spaces in diameter. The inherent stochasticity built into the IIRABM 8

represents both the real/biological and epistemic variability seen in the immune response to injury and
infection; this allows the model to capture the variability seen in a clinical population. Thus, identical 88
initial injuries can lead to diverging patient trajectories depending on how the immune system of an in s

silico patient responds to the simulated pathogen and injury distribution. The primary basis for the %
behavioral validity of the IIRABM is its ability to reproduce the general dynamics of a system’s o1
inflammatory response to infectious insult resulting in four clinically relevant trajectories: healing, o

hyper-inflammatory system death, immuno-paralyzed late death, and overwhelming infection [6]. These o
validity criteria are conserved from the initial description of the IIRABM, and are based on the common o
sense observation that a biologically plausible system should not be always killed by the smallest insult o
possible, nor should it always completely recover from the largest insult possible. Therefore, a %
biologically plausible parameter set for the model would have a lower threshold of system injury from o7
which it would always recover (i.e. “healed”) as well as an upper threshold of system injury from which o
it would always die (i.e. “overwhelming infection). The additional dynamic classes of behavior become o
evident within this zone of plausible behavior, and arise due to the fundamental purposes of the 100
inflammatory response, namely the eradication of infection by invasive microbes (enhanced by forward 1
feedback processes to increase its efficacy) and facilitation of the recovery from system damage (which 1

319
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mandates negative feedback control to attenuate the initial response). Both of these dynamics result in 103
the effective eradication of invading microbes, but result in subsequent system death due to the 104
disordered internal processes. While each of these dynamic classes represents a different type of control 1
failure (pro-inflammatory death = distorted forward feedback and immune-paralysis = distorted negative 1
feedback) for purposes of this current initial behavioral analysis we classify them together as representing 1o
internal system failure, clinically analogous to multi-organ failure. Future analysis will separate these 108
two dynamics, but within this current paper we define three possible system level outcomes: 1) healing, 10
2) system failure and 3) overwhelming infection. We use these three criteria as the basis of population 10

distribution characterization for the simulated individual cohorts. The work presented in this paper m
describes the outcomes of an initial parameter sweep consisting of 70.4 million simulations (8800 112
parameter sets x 40 injury sizes x 100 stochastic replicates x 2 treatments). Subsequent simulation 13
experiments were performed to refine the development of system-describing metrics and behavioral 114
properties of the IIRABM as described below. Simulations were run on Edison Cray XC30 115
Supercomputer at the National Energy Research Scientific Computing Center and on Beagle Cray XE6 16
Supercomputer at the University of Chicago. The vast data output of these simulations required the 17

development of novel means of characterizing and visualizing data at multiple-scales of analysis; it is not s
technically feasible to represent this information in a single form. Therefore, we have developed as set of 110
nested metrics to emphasize specific perspectives aimed at establishing a baseline behavioral landscape 12
of clinical sepsis. We utilize five primary metrics with which to characterize the behavior of the system: 1
1) population-level outcome distributions for each parameter set 2) multi-dimensional parameter space 1
characterization across the entire range of parameter sets, 3) severity of outcome distribution heatmaps 12
to reify across biologically plausible parameter sets 4) probabilistic basins of attraction (PBoA) and 5) 1
stochastic trajectory analysis. The first 3 metrics are used to identify the region of parameter space of 1

the IIRABM that corresponds to biologically/clinically plausible behavior and confirm the baseline 126
validity of the IIRABM. 127
Results 12
We evaluated the behavioral space of the IIRABM with respect to 10 values of toxigenesis, 4 values of 12
invasiveness, 20 values of host resilience, and 11 values of environmental toxicity (See Supplemental 130
Table 1). Each combination of these parameters was evaluated with N = 100 stochastic replicates for 131
each initial injury represented as a circular injury with a radius ranging from 1 to 40 cell widths. 132
0.1 Metric #1. Population-Level Outcome Distributions 133

The results of the simulations (N = 100) for each parameter set shown as a histogram with injury size as 1
the x-axis, and the count of a specific outcome for the y-axis and is used to examine outcome-severity 1
progression for an individual parameter set as a function of the magnitude of the injury simulated. The 1
three possible outcomes of the IIRABM — healing, system failure (sepsis), or overwhelming infection, are 1
represented using three possible bars for each injury number. This approach was initially described in 13
rudimentary form in [6] and forms the basis by which the biologically/clinically plausible overall 139
parameter space characterization is performed. For the metrics listed below, Metric #2 can be 140
considered to utilize the collapse of Metric #1 into a 0-dimensional point data representation, whereas  1a
Metric #3 can be considered to utilize the collapse of Metric #1 into a 1-dimensional line representation. 1
Figure 1 demonstrates 3 representative population outcome distributions as a function of injury size. 143
Where Figure 1A depicts a non-plausible condition where the system always dies with infection and 144
Figure 1B depicts a non-plausible condition where the system always recovers from infection, Figure 1C s
depicts a plausible, clinically relevant condition where at some level the system heals, at some level the s
system dies from infection, and in between there is the generation of behavior where the system clears 1
the infection yet dies for system failure (i.e. most of clinical sepsis). This parameter set had moderate s
invasiveness (= 2) and toxigenesis (= 4) values, low environmental toxicity (= 1), and average host 149
resilience (= 0.9). With an injury radius of 22 cells, approximately 50% of the in silico patients lived and 15
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Figure 1. Population Outcome Distributions across a range of initial infection numbers. Outcome
counts for a specific injury size are shown on the y-axis. Blue shading indicates complete healing, green
shading indicates death by sepsis, and yellow shading indicates death by infection. Panel A displays
a histogram of outcomes as a function of injury size for simulations run with high bacterial virulence
(invasiveness=4, toxigenesis=10), low host resilience (resilience=0.05), and high environmental toxicity
(environmental toxicity=10); this parameter set is implausible because the system always dies with even
the minimal injury. Panel B displays a histogram of outcomes as a function of injury size for simulations
run with low bacterial virulence (invasiveness=1, toxigenesis=1), high host resilience (resilience=0.9), and
low environmental toxicity (toxicity=1); this parameter set is implausible because the system always heals
despite the maximal injury. In Panel C, the full range of outcomes as a function of initial injury size is
displayed for an infection with moderate toxigenesis (toxigenesis=4) and invasiveness (invasiveness=2), low
environmental toxicity (environmental toxicity=1), and average host resilience (resilience=0.1). Smaller
initial injuries (shown on the left of the figure) more often result in complete healing of the simulated
host (as expected) while the largest initial injury values, which also deliver the highest infectious load,
result in death from overwhelming infection. The central region of this panel shows a region in which the
host is capable of fighting off the applied infection, but is unable to recover from the inflammatory state
that was required to fight the infection.
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50% died due to system failure. We consider the population outcome distribution seen in 1C as an 151
example of a clinically relevant parameter set, since all 3 classes of outcomes (healing, system failure and 1
overwhelming infection) are present. 153
0.2 Metric #2. Multi-dimensional Parameter Space Characterization 154

A multi-dimensional parameter sweep across a range of initial perturbation (initial infection) identifies 15
the upper and lower bounds with respect to clinically plausible behavior, as reflected in Metric #1 above. 15
The lower bound is that defined by parameter combinations where the system cannot be killed by the 15
minimal, least virulent microbes (i.e. always heals); the upper bound is defined by parameter 158
combinations where the system cannot recover from the maximal, most virulent microbes (always 150
overwhelmed by infection). Therefore, biologically plausible/clinically relevant parameter space resides 10
between these two boundaries. The representation of this parameter space is a multi-dimensional grid, e
where each point in the grid represents a classification of the outcomes with respect to Metric #1; points 1
in that space that reflect biologically plausible behavior is then termed Clinically Relevant space. The 16
distribution of population outcome distributions across the entire parameter space investigated can be 16

seen in Figure 2. Each 3-axis graph represents the configuration of parameter space with respect to 165
toxigenesis, invasiveness and host resilience; because of the inability to represent 4 axes, different levels 1
of environmental toxicity are represented by different panels. All parameter space representations 167
demonstrated a qualitatively consistent structure with plausible boundaries reflecting the range of 168
possible human behavior in response to microbial sepsis. Panels A and B display outcome spaces for 169
untreated patients with low environmental toxicity (toxicity=1) and high environmental toxicity 170

(toxicity=10) respectively. Panels C and D display outcome spaces for patients treated with antibiotics
with low environmental toxicity (toxicity=1) and high environmental toxicity (toxicity=10) respectively. 12
Each point represents 4000 in silico patients (40 injury sizes, each with 100 stochastic replicates). Points 173
are color-coded based on the outcomes generated. Blue points represent simulations that healed under 17
all circumstances. These points are distributed in regions of space where host resilience is high and the s
bacterial virulence is low (lower invasiveness and lower toxigenesis). Red points represent simulations 176
that always died from overwhelming infection; these points are distributed in regions of high bacterial 177
virulence (higher values for invasiveness and toxigenesis). Black points represent simulations that either s
died from overwhelming infection or healed completely and mark the boundary between simulations that 17
always heal and simulations always die from infection. Pink points represent simulations which either 180
died from overwhelming infection or hyperinflammatory system failure; these points are found primarily s
in the simulations that were treated with antibiotics and had low values for environmental toxicity and s
host resilience. Globally, the IIRABM behaves as expected; more virulent bacterial infections combined 18
with less resilient hosts more often lead to a negative outcome while a combination of less virulent 184
bacteria and more resilient hosts is more likely to lead to complete healing. Furthermore, the application 1
of antibiotics shifted the outcome space such that the overall probability of death by sepsis or infection 1

was globally reduced (Pink Points in Figure 2). The central region of highest outcome uncertainty, in 187
which the simulation can heal completely, die from overwhelming infection, or die from system failure 188
(SIRS/MOF), corresponds to the critically ill population (Green Points). This region of parameter space 1s
defines the Clinically Relevant space, producing the most diverse model dynamics and as such can 190
provide the greatest insight into the fundamental structure of the model. As previously noted, there is 1
currently no way of knowing where individual real world patients would reside within the Clinically 192
Relevant space: while all 4 of the external variables represent “real” factors determining the severity of 10
sepsis, there is no current way of even qualitatively correlating those rankings with any clinically 104

accessible metric. This means that there is no way to know what the overall distribution is of all sepsis 195
patients across the Clinically Relevant space, and that any attempt to “match” a mortality rate from a 10
particular parameter set to that seen in clinical sepsis (i.e. the 20-50% mortality generally 107
reported [1,|2]) would be a false and misleading attempt at demonstrating “validation.” 108
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Figure 2. Visualization of outcome space for sepsis model. Panels A and B display outcome spaces
for untreated patients with low environmental toxicity (toxicity=1) and high environmental toxicity
(toxicity=10) respectively. Panels C and D display outcome spaces for patients treated with antibiotics
with low environmental toxicity (toxicity=1) and high environmental toxicity (toxicity=10) respectively.
Each point represents 4000 in silico patients (40 injury sizes, each with 100 stochastic replicates). Points
are color-coded based on the outcomes generated. Blue points represent simulations that healed under
all circumstances. These points are distributed in regions of space where host resilience is high and the
bacterial virulence is low (lower invasiveness and lower toxigenesis). Red points represent simulations
that always died from overwhelming infection; these points are distributed in regions of high bacterial
virulence (higher values for invasiveness and toxigenesis). Black points represent simulations that either
died from overwhelming infection or healed completely and mark the boundary between simulations that
always heal and simulations always die from infection. Pink points represent simulations which either
died from overwhelming infection or hyperinflammatory system failure; these points are found primarily
in the simulations that were treated with antibiotics and had low values for environmental toxicity and
host resilience. Green points represent the Clinically Relevant simulations as these parameter sets lead
to all possible outcomes; these points are distributed in regions of low to middle values of the host
resilience parameter and moderately virulent infections. For all classes of simulation, the final outcomes
are primarily dependent on the host resilience and microbial virulence parameters and have a secondary
dependence on environmental toxicity.
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Figure 3. Heatmaps indicating percentage of death as a function of initial injury size for clinically
interesting parameter sets. Patients either went untreated (left) or received antibiotics twice/day for
10 days beginning 6 hours after their injury. Shading indicates the percentage of simulations that lived
or died; areas that are dark blue represent complete healing 100% of the time, and areas shaded yellow
represent death (either from infection or sepsis) 100% of the time. Note that each row of this figures is
essentially a compressed version of Figure 1. Parameter sets are ordered from worst (meaning highest
chance of dying at the lowest injury number) on the top to best on the bottom. There is no clear
structural relationship between parameter sets for the untreated case (left), though the simulations
treated with antibiotics self-stratify based on the host-resilience parameter (with lower host resilience
parameters found towards the top of the figure). This stratification is due to the semi-neutralization of
microbial virulence through the application of antibiotics.

0.3 Metric #3. Severity of Outcome Distribution Heatmaps 100

Though all parameter sets in the CR space can generate all of the three possible model outcomes, there 20
is still significant variation in their behavioral distributions. It is therefore desirable to be able to reify 2

the parameter sets by their outcome distributions in order to visualize the configuration of severity 202
across the entire relevant portion of parameter space. Severity of outcome distribution heatmaps present 20
a simplified view of outcome space for a chosen group of parameter sets, i.e. a condensed form of 204
representing the population distributions seen in Metric #1. Rather than view each element in a 205
parameter set as an individual axis, we assign a ranking to each parameter set (based on the binary 206

outcome of mortality). The set of these rankings then makes up the Y-axis. We use the X-axis to display 207
the range of injury sizes to which an individual parameter set is exposed ala Metric #1. The outcome s
distribution (percentage of in silico patients that ultimately died for a given parameter set and injury 20
size) is then represented by the colors of the heatmap. The representation of a 1-dimensional heatmap of 21w

the population outcome distribution allows the reification of initial parameter sets based on the 211
robustness/fragility of the particular parameter set across biologically/clinically plausible parameter 212
space, and the response of the overall system to a putative therapy (i.e. antibiotic therapy). These 213
visualizations help confirm the plausible structure of the population distributions of the simulated 214

experiments. In Figure 3, outcomes are ordered from “worst” on the top of the figure to “best” on the  as
bottom of the figure. In this case, worst is defined as the parameter set for which death instances within 2
the population begin at the smallest injury size. Each horizontal line in both panels represents 4000 217
simulations of a single parameter set. The shading indicates the percentage of deaths; blue represents no s
deaths at and yellow represents 100% death. Figure 3A and Figure 3B show identical parameter sets but 2.

different ordering, where patients represented in the Figure 3B received antibiotics twice a day for 10 220
days beginning 6 hours after their injury. As expected, the application of antibiotics greatly increases the 2z
survivability of the simulated injuries — the yellow region is moved to the right, indicating improved 2
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survival to higher initial injury numbers when antibiotics are available. The antibiotic parameter set was 23
reordered (again from worst to best) as the application of antibiotics changed the system dynamics. The 2
“stepping” feature that can be seen in Figure 3B is due to an emergent clustering of parameter sets by s
the host-resilience parameter. The most resilient hosts are on the top and the least resilient are on the 2

bottom of each step group. This makes sense because the application of antibiotics significantly 27
decreases the bacterial infection’s influence on the system; the other external parameters, invasiveness, s
toxigenesis, and environmental toxicity, are all directly related to the simulated microbial infection. 229
When antibiotics are applied, the host-side parameters take precedence for outcome determination, a 230

plausible behavior further substantiating the validity of the IIRABM. Following the use of these first 3  »u
metrics to identify the biologically plausible Clinically Relevant regions of parameter space for the model, 2
we then turn to the development of 2 novel data analysis methods in order to evaluate basic properties of 233
the system and how they might impact the investigation of real-world, clinical sepsis. 234

0.4 Metric #4. Probabilistic Basins of Attraction (PBoA) 2

The current approach to disease classification/prognosis/diagnosis is to use some set of measurements 236
(be they biomarkers or physiological signals) taken from the patient at a particular point in time, with 2
the goal that such information, or time series sequences of such information, will be able to distinguish 2
between groups with some threshold of acceptable success. The more general description of this concept 23
is characterizing the relationship between system state and system trajectory, the basis of the study of 20
Dynamical Systems [14] — that is, a system that evolves in time according to some rules in which future a
states evolve from the current state. In dynamical systems theory, an attractor is a state or set of states 2

to which certain states tend to evolve [15]. A basin of attraction is the region of system state space 213
under the influence of a given attractor as it affects given trajectories passing through these points 244
(think analogously of gravitational wells in astronomy). The stochasticity inherent to the IIRABM, and s
the real world system as well, makes it a Random Dynamical System (RDS) [16] as random events 246
influence the system’s evolution. Because this system is not deterministic, a true basin of attraction 247

cannot be mathematically defined. However the concept is still conceptually valid with the addition of a s
“stochastic zone” where the direction of a particular trajectory is uncertain. When this model is viewed 240

as an RDS, it becomes clear that there are two attractors, one leading to an oxygen deficit of 0 or 250
complete healing (referred to as the Life Attractor), and one leading to an oxygen deficit of 8160 or 251
death (referred to as the Death Attractor), with a stochastic zone of uncertain trajectory direction in 250
between. To characterize the multi-dimensional attractor space for the IIRABM as a RDS, we have 253

developed a metric termed the Probabilistic Basin of Attraction (PBoA). The PBoA represents a map of 2
possible states within parameter space available to the model. At each point, the probability that the 255
system evolves to a specific attractor (i.e. system-level outcome) is calculated from the results of a large 2
number of simulations. The PBoA map generated can be used to qualify the interplay between outcomes 257

and measured variables. The full PBoA is a high-dimensional object with one axis for each measured 258
variable; for instance, this model generates a 20-dimensional PBoA. As it is difficult to display such a 250
high-dimensional object, we show 2-dimensional projections of the PBoA along axes of interest. The 260
configuration of the PBoA for a particular set of system measurements will give insight into the utility of
those measurements as predictors of system outcome. The PBoA also addresses the currently stated 262
limits to predictive modeling by providing near comprehensive state space coverage (thereby addressing 23
the data paucity limitation) for a system where all components are known (thereby addressing the 264
“hidden” variable limitation). We focus on the Clinically Relevant portion of parameter space to identify 26
the attractor space across the multiple variables present in the IIRABM, with the goal being to 266
determine the feasibility of using individual or sets of potential biomarkers as predictors of system 267
outcome. We present 2-dimensional “slices” of IIRABM PBoAs in Fig. 4, with the output of 3,016,000 s
simulations represented (those within the Clinically Relevant zone). The blue dots represent 269
circumstances where all simulations recovered, the crimson dots represent conditions where all 270
simulations died, with the intervening heatmap depicting the progressive probability of system death (= o

the stochastic zone). Figure 4, Panels A and B depict the predictive capability of values for IL-10 and  2n
TNF respectively across a range of values of system damage. The large and irregularly shaped stochastic 27
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Figure 4. 2-dimensional Probabilistic Basins of Attraction (BoA). The PBoA is a heatmap of the death
probability for across the system states reachable by the model in parameter space; while this object
can be represented as a function of any number of variables measured in the simulation, we present
2-dimensional slices for simplicity and ease of representation/interpretation. The PBoA’s in this figure
are generated from the following parameter set: invasiveness=2, toxigenesis=4, environmental toxicity=0,
and host resilience=0.1, and have been constructed through the analysis of 1000 trajectories.
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zone without a clear structure across a range of system damage suggests that a particular level of either 2
of these cytokines alone poorly correlates with system outcome and would be an inadequate biomarker s
for outcome (this is consistent with the current understanding of the utility of IL-10 or TNF as a marker 7
of disease severity). Figure 4C shows the probability of death as a joint function of TNF and IL10 levels. 27

Interestingly, the “slope” of the region of greatest mortality is not a constant, but levels off as the 218
concentration of IL10 increases. This suggests that an intervention augmenting systemic IL10 production 27
would be insufficient to significantly alter a patient’s outcome or disease trajectory. Figure 4D, 280
demonstrating the PBoA for population levels of TH1 cells versus system damage, shows a qualitatively o
similar structure as to Figure 4A and B: there appears to be virtually no independent predictive 282
capability for the number of TH1 cells present. Figure 4E displays the PBoA for population levels of TH2 23
cells against system damage, where the “slope” of the region of highest mortality has a slight upward 284
slope, suggesting that higher levels of TH2 cells can be associated with negative outcomes in sepsis. 285

However, the width of the vertical distribution of outcomes is large enough to wash out the predictive 2
capability of this trend. Alternatively, plotting the population of TH1 cells versus the population of TH2 2
cells (Figure 4F) generates a more interesting PBoA that demonstrates the benefits of being able to shift s
between multi-dimensional data projections. Here we see a very poorly bounded stochastic zone for lower s
levels of both T-cell subtypes, likely representing the earlier phases of the disease course as the system 20
evolves, that transitions into a different region of state space with a more defined structure. In this 201
region the predictive capability of the TH1/TH2 ratio becomes more powerful, with an increase in the 20
proportion of TH2 cells associated with adverse outcomes, a finding that is consistent with both existing 20

reports [17] and the negative consequences of later immunoparalysis [9H11]. However, in general, the 204
extent/breadth/width of stochastic zones within the PBoAs point to the insufficiency of snap shots of 205
system state as a predictor of system outcome. We confirm this finding by performing principle 206

component analysis (PCA) on the Clinically Relevant region of the IIRABM using total system state 207
capture at intervals of 6 hours for the first 24 hours post infection, and then every 24 hours for up to 5 2

days; this sequence was chosen to encompass the scope of current investigations into prognostic 209
biomarkers for sepsis [18,/19]. These PCA plots (Supplemental Material 1) show no discrimination at any s
of the time points, consistent with the findings of the PBoAs. Given the predictive insufficiency of 301
system state snapshots, we now turn to more directly evaluating the trajectory space of the IIRABM. 302
0.5 Metric #5. Stochastic Trajectory Analysis (STA) 303
As noted above, biological systems are dynamic systems, in which the behavior of interest is reflected by 30
the trajectory of the system (i.e. disease course). The PBoA provides comprehensive depiction of the 305
predictive capabilities of state space analysis for this model of sepsis; we now turn our attention to 306

providing comprehensive trajectory analysis. As with the other aspects of the investigations presented in o
this paper, the ability to perform HPC-enabled simulations generates system data at a granularity and s

scale not feasible in real world systems, with the goal of empirically generating the geometric and 300
topological produced by mathematical functions that can lead to novel, fundamental insights into the 310
system under study. With Stochastic Trajectory Analysis (STA), we examine the specific dynamics 311

associated with the transitions out of the stochastic zone of the PBoA with the goal of more precisely a1
characterizing “tipping points” with respect to system trajectories both at the population and individual a3
level. These simulation experiments are performed with specifically chosen parameter sets and values for s
initial injury across a set of stochastic replicates (i.e. only differences between runs are the Random 31
Number Seeds). These simulations attempt to characterize the intrinsic stochasticity of the IIRABM and s
establish boundaries for developing predictive metrics for system outcome. The STA therefore consists of a7
a number of trajectories (N = 1000) plotted with respect to system health, with those trajectories 318
subdivided into 3 zones: 1) inevitable healing, 2) inevitable death and 3) uncertain outcome. Thus the s
tipping points into inevitable healing and inevitable death are defined for the particular population of s
stochastic replicates; the robustness of these boundaries are further evaluated by a series of simulations
that stop the simulation at or near the boundary, perform re-seeding of the Random Number Generator, s
and proceed with the simulation run from that point. This accomplishes a means of evaluating the 323
stochastic range around the initially described “tipping boundary,” and serves to provide a 324
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Figure 5. 1000 trajectories of the model using the parameter values (invasiveness=2, toxigenesis=4,
environmental toxicity=0, and host resilience=0.1) with an injury size of 22. Oxygen Deficit, the
simulation’s primary measure of health, is plotted as a function of time. Trajectories colored in red end
in death of the patient; trajectories colored in blue end with complete healing of the simulated patient;
trajectories in green had not reached a final outcome by 84 simulated days. The black bars represent the
boundary of the stochastic zone (the zone in which stochastic noise is (or can be) more powerful than the
influence of either attractor). Each bar is a boundary which, once crossed, ultimately determines the
simulation’s fate; if an in silico patient’s health worsens to the point that it crosses the top black bar,
then that patient is sure to die and vice-versa.

representation of trajectory space distribution that corresponds to the stochastic zone of the PBoA. The s
internal stochasticity of the IIRABM for a particular parameter set is demonstrated Fig. 5 plots 1000 326

patient trajectories for oxygen deficit (the simulation’s primary metric for patient health) are plotted 307
against time for up to 84 days. All but two of the cases have resolved by this time. The black bars on 3
this plot bound the stochastic region of the simulation — that for which the outcome cannot be 329

definitively predicted. The region of space above the top black bar is under the influence of the Death 33
Attractor and will certainly die. The region of space below the lower black bar is under the influence of 3z
the Life Attractor and will certainly heal completely. We should note that these bars are not definitive s

and their convergence properties are poorly understood at present. This is because the stochastic 333
boundaries in Fig. 5 are derived from 1000 simulations; one can imagine that there would be some 334
shifting and expansion of these boundaries if the number of simulations were increased to 10,000, 335

100,000, or even 1,000,000, though this would not continue indefinitely — there is 0 probability that a 336
system would be in a position of 99.99% health and spontaneously begin a decay to death. Conversely, s
there is 0 probability that a system would be in a state of 79.99% damage and spontaneously reverse 338
course and heal completely. The gradient nature of these boundaries are further illustrated in Fig. 6, 330
which displays the health trajectories for a single parameter set with a single initial random number seed 340
(trajectory shown in red). The simulation is then reseeded 100 times (trajectories shown in blue) when  sa
the oxygen deficit reaches values of 3000 (Figure 6A), 3500 (Figure 6B), and 4000 (Figure6C). As the s
simulation moves closer to the Death Attractor, the probability of a positive outcome diminishes. Panel s
6A displays a simulation that was reseeded near the center of the stochastic zone; at this point, the 344
outcome far from certain and the primary driver for final outcome is stochastic noise. Panel 6B shows s
re-seeding when the original simulation was in a more unhealthy state (higher oxygen deficit) and this s
has significantly skewed the range of outcomes to the point that there is only a 1% chance of survival. At s«

this point, stochastic noise is still an important component of the simulation and has the ability to 348
overpower the influence of the Death Attractor, though it is unlikely. In Panel 6C, the simulation was 3w
reseeded at an even unhealthier state; stochastic noise is no longer a relevant simulation for this 350

simulation as death is a certainty. The series of trajectories displayed in Figure 6C show a system that s
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Figure 6. This figure displays patient trajectories for a single parameter set (invasiveness=2, toxigene-
sis=4, environmental toxicity=0, and host resilience=0.1) and single initial random number seed. The
random number generator was re-seeded 100 times at at oxygen deficit=3000 (top), 3500 (middle) and
4000 (bottom). The original trajectory is shown in red and the trajectories generated from reseeding
the random number generator are shown in blue.This image further reinforces the identification of a
“stochastic zone” (a region of parameter space in which stochastic noise is (or can be) more powerful
than the influence of either attractor).
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has crossed out of the stochastic zone and into the basin of attraction for the Death Attractor. 352

Discussion 353

The use of proxy models is ubiquitous and essential to the practice of science. Every laboratory model 35
(in vitro or in vivo) represents a proxy system for the real system being investigated. An essential aspect s
of all proxy models is that they represent some degree of abstraction or divergence of detail with respect s
to the real world system; in fact the breadth of their explanatory power is directly related to their 357
generalizability. However, for highly-engineered biological experimental models abstractions/limitations s
are impossible to characterize formally, with a consequent impact on the ability to extrapolate findings  sso

from those models to their reference systems and manifesting in the persistence of the Translational 360
Dilemma [3,/201/21]. To address this dilemma, we propose an alternative approach that uses an abstract, s
yet sufficiently complex computational proxy model of systemic inflammation/sepsis to establish 362
boundary conditions with respect to the scope of inflammation’s possible behavior. This use of 363

simulation relies on leveraging the benefits of abstraction to increase the generality of conclusions derived e
through examination of the model, thereby expanding the potential applicability of those results. As 365

opposed to fitting a specific set of experimental /empirical data, we propose utilizing the ability of 366
simulation to vastly increase the “data coverage” of possible states and trajectories of the target system, s
allowing a more comprehensive representation of the behavior of that system [20}21]. 368

In Ref [22] the authors undertake the near monumental task of compiling the list of randomized 369
clinical trials that form the basis for current critical care practice (see Online Supplement to [22]). 370

However, as daunting (and depressing) as this list is, the sum total of the represented patients, and the
data extracted from them, represents only a miniscule fraction and sampling of the possible states and s

behaviors collected from a model as simplified and abstract as the IIRABM. Visualization of 373
near-comprehensive landscape of the system’s behavior in the current paper illustrates how 374
under-sampling of this landscape can give a skewed view of potential ”driving” factors or processes, and s
lead to overestimation of the general predictive capacity of any algorithm derived from such a sparse 376
sample. The under-sampling problem has been long recognized in the field of signal processing, first 377
described by Nyquist in 1928, and later formalized by Claude Shannon with the Nyquist-Shannon 378
signaling theorem [23,|24], which set lower bounds for a sufficient sampling criterion to discretize a 379

continuous signal. For example, if one were to try to reconstruct the signal y = sin(t) by sampling every s
7 seconds starting at ¢ = 0, the reconstructed signal would simply be y = 0; all of the interesting features ze
of the function would be washed out by under-sampling. While the Nyquist-Shannon theorem deals with s

1 dimensional functions we can extrapolate to the current sepsis work, and biomedical research in 383
general. In fact, the ”Crisis of Reproducibility” noted in the biomedical arena [25] can be at least 384
partially attributed to the perpetual under-sampling of the total space of possible outcomes, with the 385
consequence that a misleading statistical significance for one particular study will become evident as 386
subsequent studies add to the portions of behavior space sampled [26]. 387

If the sampling is perpetually temporally sparse (as will be the case for the foreseeable future due to  sss
the logistical challenges of obtaining good quality clinical data), multiplication of dimensions across 389

which each time point is evaluated only increases the dimensions in which information becomes lost. As 30
we cannot derive a theoretically optimal sampling criterion (the model has no explicit functional form), sa

we instead perform a sufficiently large parameter sweep to bound the region of interest in parameter 302
space — in this specific case that region was the Clinically Relevant region in which any outcome was 303
possible - and provide a reference point by which the degree of under-sampling can be quantified. 304
Without some concept of the overall system behavior space that can approximate the scope of the 305
denominator problem in induction, the danger moving forward is that, given a specific data set, “some” 30
best fit function can be found for that specific data set, but will intrinsically be limited in it’s 307

applicability to the more general condition. This explains why, in terms of clinical decision support as a s
path towards precision medicine, physiology-based clinical screening tools [27H29] perform essentially as 30
well as multiplexed biomarker/-omics assays [30-33] for their respective predictive targets (onset of sepsis 40
and sepsis outcome). We assert that the perpetual under-sampling of sepsis behavior space places an 401
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upper bound on the predictive capacity of any algorithm based on the under-representative data set 402
(which is a pragmatically fixed constraint). The methodology employed for the development of all these 40
scoring systems all assume that the data sets utilized sufficiently represent the overall set of behaviors
possible, which the current study demonstrates is not the case. In fact, given the “bowtie structure” of s

biological signaling and regulatory networks [34], dynamic physiology-based prediction 406
systems [29] [35] [36] likely have a greater chance of success in refining individual patient trajectories, but s
at the cost of not providing insight into the mechanistic drivers that would be potential targets for 408
therapeutic control. Future work with simulation-based characterization of sepsis will likely involve 409
mapping between computationally-generated behavioral landscapes and finer-grained temporal clinical 410
phenotype characterization using advanced physiological metrics to guide discovery of mechanistic a
determinants of individual patient trajectories. The importance of identifying general properties of a2

patient trajectories, particularly with respect to the concept of attractors influencing those trajectories,
has a long history in the study of sepsis |37,/38]. However, moving this recognition beyond the conceptual s

level has been a challenge over the ensuing decades, due in main part to the fact that the concept of a1
“attractors” derive from dynamical systems theory, which is based on the assumption of deterministic 416
functions (even the study of stochastic dynamical systems primarily involve the addition of a noise term a7
to an existing deterministic function). It is readily clear that biological systems are not deterministic 418

(due to both real and epistemic stochasticity), and are more accurately described as Random Dynamical 40
Systems (RDS) [16]. As noted above, this recognition requires the modification of the classical attractor s
concept to our Probabilistic Basins of Attraction (PBoA). The concept of the PBoA is predicated on the
fact that a “master equation” for the dynamical system is not known; the PBoA can only be derived a
empirically. And since real-world biological data is too sparse, this requires the use of large-scale 23
simulation experiments to generate the landscapes of the PBoAs, which in turn is only possible with the
employment of HPC platforms. In time, for a sufficiently validated model, one can imagine the PBoA as 4
a valuable clinical diagnostic tool. Chemokine levels and their time-derivatives would be used as input s
coordinates to a high-dimensional matrix containing outcome probabilities. These probabilities would 27

then inform future treatment paths. Since they are derived from mechanistic simulations, PBoAs can 28
also be used to generate targets and hypotheses for therapy discovery, e.g., if it were shown that the 429
death outcome is strongly associated with a specific signal configuration, this would suggest control 430
strategies aimed at that particular set of signals, subsequently evaluated by examining the change to the 4
distribution of the PBoA. Additionally, Stochastic Trajectory Analysis (STA) can further parse the e
dynamics and distribution of the trajectory space in the transition zones between stochastic 433
indeterminant behavior and movement towards the probabilistic attractors. This will help guide the 434
“right time” component of Precision Medicine that is all too often overlooked, as well help define the 435
generalizability of putative control strategies by evaluation across STAs for individual parameter 436
conditions (i.e. patient types). We have already begun investigation of the use of deep reinforcement 437
learning and evolutionary computing/genetic programming to search across the space of possible 438
interventions/control strategies guided by PBoAs and STAs to first determine controllability of the 430
overall system, and subsequently attempt to determine the robustness/scalability of control 440
strategies/policies identified. We propose that proxy simulation models, such as the IIRABM, can be aa1
refined with an iterative loop between simulation and empiric plausibility evaluation (just as a2
meteorological simulations are constantly being refined), and during this process can be used to help 443
establish boundaries for plausible and implausible investigatory strategies, define expectations for 444
possible success and potentially eliminate futile approaches [41]. Absent this approach, currently, a5
prospective analysis of putative stratification systems (to say nothing of potential therapeutic 446

interventions) cannot be done from a pure real-world empirical, data-centric fashion: such failures will — a
only become evident ex post facto, with the consequent loss of time, money, resources and lives [42H50]. s
Akin to the current use of HPC resources in physics and meteorology, the approach demonstrated in this 40
paper, the use of extremely large scale simulation and simulated data, provides the only demonstrated s
effective scientific strategy to prospectively identify the boundaries of fruitful investigation. The use of s
large-scale simulation based science for sepsis specifically, and biomedicine in general, represents a 452
potential path towards the full-scale application of engineering and control principles to the care of 453
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individuals in terms of personalized/precision medicine and truly rational design of effective therapeutics. 44
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