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Summary 
Understanding how genetic variation contributes to phenotypic differences is a          
fundamental question in biology. Here, we set to predict fitness defects of an individual              
using mechanistic models of the impact of genetic variants combined with prior            
knowledge of gene function. We assembled a diverse panel of 696 ​Escherichia coli             
strains for which we obtained genomes and measured growth phenotypes in 214            
conditions. We integrated variant effect predictors to derive gene-level probabilities of           
loss of function for every gene across strains. We combined these probabilities with             
information on conditional gene essentiality in the reference K-12 strain to predict the             
strains’ growth defects, providing significant predictions for up to 38% of tested            
conditions. The putative causal variants were validated in complementation assays          
highlighting commonly perturbed pathways in evolution for the emergence of growth           
phenotypes. Altogether, our work illustrates the power of integrating high-throughput          
gene function assays to predict the phenotypes of individuals. 
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Highlights: 

● Assembled a reference panel of ​E. coli​ strains 
● Genotyped and high-throughput phenotyped the ​E. coli​ reference strain panel 
● Reliably predicted the impact of genetic variants in up to 38% of tested conditions 
● Highlighted common genetic pathways for the emergence of deleterious 

phenotypes 
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Introduction 
Understanding the genetic and molecular basis of phenotypic differences among          
individuals is a long-standing problem in biology. Genetic variants responsible for           
observed phenotypes are commonly discovered through statistical approaches,        
collectively termed Genome-Wide Association Studies (GWAS, ​Bush and Moore 2012​),          
which have dominated research in this field for the past decade. While such approaches              
are extremely powerful in elucidating trait heritability and disease associations ​(Yang et            
al. 2010; Welter et al. 2014)​, they often fall short in pinpointing causal variants, either for                
lack of functional annotation or due to lack of power to resolve variants in linkage               
disequilibrium ​(Edwards et al. 2013)​. Furthermore, by definition GWAS studies are           
unable to assess the impact of previously unseen or rare variants, which can often have               
a large effect on phenotype ​(Bodmer and Bonilla 2008)​. Therefore, the development of             
mechanistic models that address the impact of genetic variation on the phenotype can             
bypass the current bottlenecks of GWAS studies ​(Lehner 2013)​. 
In principle, phenotypes could be inferred from the genome sequence of an individual             
by combining molecular variant effect predictions with prior knowledge on a gene’s            
contribution to the phenotype of interest. Such knowledge is now readily available by             
chemical genetics approaches, in which genome-wide knock-out (KO) libraries of          
different organisms are profiled across multiple growth conditions ​(Kamath et al. 2003;            
Dietzl et al. 2007; Hillenmeyer et al. 2008; Nichols et al. 2011; Price et al. 2016)​. One of                  
the outputs of such screens are genes whose function is essential for growth in a given                
condition. Variants negatively affecting the function of those genes should likely be            
associated with individuals displaying a significant growth defect in that same condition.            
As the impact of variants on gene function can be inferred using different approaches              
(Thusberg, Olatubosun, and Vihinen 2011; Kulshreshtha et al. 2016)​, such mechanistic           
models offer straightforward molecular explanations of their impact. As rare or           
previously unseen variants can also be used by this approach, there lies the possibility              
to deliver predictions of phenotypes at the level of the individual. Combining variant             
effector predictors with gene KO information was previously tested with some success            
in the budding yeast Saccharomyces cerevisiae​, but only on a limited number of             
individuals and conditions ​(15 and 20, respectively, Jelier et al. 2011)​. Given the             
growing availability and investment into genome-wide gene functional studies, there is           
an opportunity to apply such an approach more extensively. 
In contrast to eukaryotes, diversity within the same bacterial species can result in two              
individuals differing by as much as half of their genomic content. ​Escherichia coli is not               
only one of the most studied organisms to date ​(Blount 2015)​, but also one of the most                 
genetically diverse bacterial species ​(Lukjancenko, Wassenaar, and Ussery 2010;         
Tenaillon et al. 2010)​. Individuals of this species (termed "strains"), exhibit a diverse             
range of genetic diversity, from highly homologous regions to large differences in gene             
content, collectively termed "pan-genome" ​(Medini et al. 2005)​. Phenotypic variability is           
therefore likely to arise from a combination of single nucleotide variants (SNVs) and             
changes in gene content. Since conditional essentiality has been heavily profiled for the             
reference ​E. coli strain (K-12) ​(Nichols et al. 2011; Price et al. 2016​, Herrera-Dominguez              
et al., unpublished), we set out to systematically test the applicability of such             
genotype-to-phenotype predictive models for this species. We reasoned that it would           
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also test the limits of the underlying assumption of such models, which is that the effect                
of the loss of function of a gene is independent of the genetic background ​(Dowell et al.                 
2010)​. 
We therefore collected a large and diverse panel of E. coli strains (894), for which we                
measured growth across 214 conditions, as well as obtained the genomic sequences            
for the majority of the strains (696). For each gene in each sequenced strain we               
calculated a “gene disruption score” by evaluating the impact of non-synonymous           
variants through conservation and structural analysis. We then applied a model that            
combines the gene disruption scores with the prior knowledge on conditional gene            
essentiality to predict phenotypes across strains in a condition specific manner. The            
model yielded significant predictive power for 38% of conditions having at least 5% of              
strains with growth defects. We independently validated a small number of causal            
variants with complementation assays. Since our predictions did not apply equally well            
for all conditions, we conclude that the set of conditionally essential genes has diverged              
substantially across strains. Overall, we anticipate that this ​E. coli reference panel            
presented here will become a community resource to address the multiple facets of the              
genotype to phenotype research, ultimately enabling the development of         
biotechnological and personalized medical applications. 
 
Results 
 
An ​E. coli ​ strain collection for genotype-to-phenotype analysis 
We have assembled a large genetic reference panel of ​E. coli strains, able to capture               
the genetic and phenotypic diversity of the species. The collection comprises 894 ​E. coli              
strains, broadly divided into natural isolates (527 strains) and strains derived from            
experimental evolution experiments (367 strains). The natural isolates can be further           
divided into laboratory strains (16 strains), commensals (330 strains), pathogens (153           
strains) or others (28 strains). The collection contains widely studied laboratory and            
pathogenic isolates, including BW25113 ​(Datsenko and Wanner 2000) (background of          
the KEIO knockout collection, ​Baba et al. 2006​), ​M ​G1655 and W3110 (classical K-12             
model strains, ​Bachmann 1972​), DH5a (broadly used for cloning) and many model            
pathogenic strains (UPEC, EPEC, EAEC and APEC). The strain collection also includes            
the ECOR ​(72 strains, Ochman and Selander 1984​), IAI ​(82 strains, Picard et al. 1999)               
and NILS ​(82 strains, Bleibtreu et al. 2014​) strain collections, as well as 290 strains from                
the LTEE collection ( ​E. coli Long Term Evolution Experiment) ​(Tenaillon et al. 2016)​.             
The collection additionally includes 15 strains belonging to other species of the            
Escherichia genus. The full list of strains, including name, collection of origin and links              
to relevant databases is provided in Supplementary table 1 and online at            
https://evocellnet.github.io/ecoref. Such a large and diverse collection of strains serve          
as the foundation of the development of phenotypic predictive models. 
Our collection also exhibits a high diversity at the genetic level. We combined already              
available genomic sequences (374) with newly generated ones (322) to obtain the            
genomes of 696 strains, after removing strains whose sequence did not match known             
typing information and duplicate isolates (Figure 1A and Supplementary table 1 and            
Methods). When compared to the reference strain ​E. coli K-12 we observed an             
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expected linear relationship between core genome phylogenetic distance and number of           
nonsynonymous mutations (Supplementary figure 1); we also observed a similar linear           
relationship with the number of reference genes missing in each strain (Supplementary            
figure 1), with up to 587 reference genes missing in strain NR-15878. We found a               
similar behaviour for the number of additional genes present in each strain compared to              
the reference, with strain DE-COMM-4000 having 2178 genes not present in K-12. Such             
genetic plasticity is a known feature of bacterial pan-genomes ​(Medini et al. 2005)​, and              
the so-called accessory genome (i.e. genes present only in a subset of individuals) can              
significantly factor in determining phenotypes ​(Brynildsrud et al. 2016)​. 
 
Functional constraints in the ​E. coli​ proteome 
The first step in predicting the impact of genetic variability is to assess its molecular and                
cellular consequences. It is expected that the majority of variants will be neutral, as              
deleterious mutations should be counter-selected. Moreover, nonsynonymous       
substitutions can be assumed to be the strongest contribution to phenotypic variability,            
particularly in bacteria, where most of the genome encodes for proteins ​(Lynch and             
Conery 2003)​. Such variants can affect a protein either by altering its function or its               
structural stability, leading to a loss of function or cytotoxic effects. We therefore tested              
whether functionally and structurally important residues are under purifying selection in           
this strain collection by measuring the frequency of nonsynonymous variants at these            
important regions compared to a random background. Clear signs of purifying selection            
were evident for sites that are important for protein function and structure. For both              
functional sites (e.g. enzymes active sites, metal binding sites) and residues buried            
inside the protein’s structure we observed a lower density of nonsynonymous           
substitutions when compared to the other sites (Figure 1B and 1C).  
We then asked if variant effect predictors are capable of inferring the importance of              
these functional regions. For this we derived structural models and protein alignments            
covering 60.2% and 94.7% of the ​E. coli K-12 proteome, respectively (or 50.9% and              
95.9% of all protein residues) and used them to compute the impact of all possible               
nonsynonymous variants (see Methods, available at http://mutfunc.com, Wagih et al.,          
unpublished). Reflecting the clear evolutionary constraints acting on the ​E. coli           
proteome, the predicted impact of naturally occurring substitutions in functionally and           
structurally buried residues is significantly lower than for random mutations in the same             
sites (Figure 1D and 1E). Thus, not only important regions in the protein are more               
conserved, but also the impact of substitutions occurring in these regions is more             
benign than the predicted impact of random variants. 
 
Gene level predictions of variant effects 
The impact of all individual variants within a gene can be combined to predict whether               
its function is likely to be affected. We leveraged the approach developed in ​S.              
cerevisiae ​(Jelier et al. 2011)​, where the predicted impact of each nonsynonymous            
substitution is combined into a single likelihood measure of gene disruption (termed            
here “gene disruption score”, Figure 2A and Methods), using a multiplicative model. We             
also included a simple heuristic to account for reference genes missing from specific             
strains, by assuming that their function is completely impaired (maximum gene           
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disruption). The absence of a gene does not exclude the presence of another gene that               
could compensate for the lost function. However, predicting the function of members of             
the accessory genome is a notoriously difficult problem ​(Radivojac et al. 2013)​, and we              
therefore did not consider that part of the pan-genome.  
We then examined if the calculated gene disruption score can be considered as a              
relevant measure of the impact of mutations on gene function by correlating it with              
genetic indicators of high functional importance. Essential and phylogenetically         
conserved genes show a lower average gene disruption score across all strains, as             
compared to less conserved or random ones (Figure 2B). This is expected, as both              
categories are more likely to have stronger evolutionary constraints and should,           
therefore, maintain their function inside the species. 
We also probed whether genes that are predicted to lose their function together across              
all strains are functionally associated. To test this, we used the gene disruption score              
correlation profile across all strains (Figure 2C) as a predictor for known gene functional              
associations, such as operons, protein complexes, functional pathways and         
protein-protein interactions (PPIs). Pairwise gene disruption correlation is indeed         
significantly higher between functionally associated proteins than between random pairs          
of genes (Figure 2D), and therefore it can be used as a predictor of functional modules                
(Supplementary figure 2). 
Some examples of protein complex subunits with highly correlated gene disruption           
scores are provided in Figure 2E. Those include the CRISPR cascade complex            
( ​casABCDE​), a copper/silver transporter ( ​cusABCF​), an autoinducer transporter        
( ​lsrABCD​), a dihydroxyacetone kinase ( ​dhaLKM​), and two phosphotransferase (PTS)         
permeases ( ​gatABC and ​sgcABC​). In some cases, we observed a strong correlation            
among all members of the protein complex, such as ​cusABCF​, while in others the              
correlation is limited to only a few members, such as ​gatABC​, where only ​gatA and ​gatB                
are predicted to be co-affected. The ​sgcC transmembrane subunit of the ​sgcABC            
predicted PTS permease appears to be highly correlated with ​gatA and ​gatB​. As ​sgcC              
is a known homolog to ​gatC​, we could speculate on a putative functional interaction              
between ​gatAB and ​sgcC​. Some of the strongest correlations are driven almost            
exclusively by nonsynonymous variants that are predicted to be deleterious, such as in             
cusABCF​, which is present in ~95% of the strains. In other cases, the correlations are               
driven both by the complex being co-lost or co-mutated, such as ​casABCD​. When             
partitioning the reference genes into “core” (conserved in all strains) and “accessory”            
(present only in a subset of strains), co-mutation patterns are more predictive of             
functional associations in accessory genes, even when computing the gene disruption           
score from nucleotide substitutions only (Supplementary figure 2). This is presumably           
due to stronger evolutionary constraints on core genes, leading to a reduction in the              
correlation signal due to few instances of genes losing their function significantly.            
Altogether, our results point to functional modules being co-mutated or co-lost across            
strains of the same species, suggesting a very fast local adaption to specific conditions,              
similar to that observed in pathogens restricting their niche/host specificity ​(Reuter et al.             
2014)​.  
Taken together, these observations suggest that the gene disruption score is a            
biologically relevant measure of the impact of mutations at the gene level and that it               
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could be used for growth phenotype predictions. 
 
The phenotypic landscape of the ​E. coli​ collection 
To explore the applicability and performance of genotype-to-phenotype predictive         
models we tested the whole strain collection (909 strains) fitness on a large (214)              
variety of conditions. The conditions (Supplementary Table 2 and 3) included chemical            
substances (such as antibiotics), environmental stressors (such as high temperature or           
exposure to UV light), and a variety of nutrient sources and conditioned media (e.g.              
supernatants of other bacteria). To profile all these conditions, we used high-density            
colony arrays and measured colony size as a proxy for fitness, with the same              
experimental setup used before for the ​E. coli K-12 knockout (KO) library ​(Nichols et al.               
2011)​. The majority of the conditions (161 out of 214) were tested at the same time and                 
with the same laboratory conditions as the K-12 KO library (Herrera-Dominguez et al.,             
unpublished), thus reducing experimental variability between the fitness measurements         
for the strains and the K-12 KO collection. 
We used the deviation of each strain’s colony size from itself across all conditions and               
all other strains in the same condition as our final phenotypic measure ​(termed             
“S-score”, Collins et al. 2006)​. Thereby we obtained a list of conditions for which we               
know whether a tested strain has grown significantly more or less than the expectation              
(Figure 3A and Methods). Both biological replicates (Figure 3C) and strains present in             
two distinct plates (Supplementary figure 3) were highly correlated (Pearson’s r 0.693            
and 0.648, respectively), indicating that we measured phenotypes with high confidence.           
The full phenotypic matrix for each strain across all conditions contains 114,004 single             
measurements (Supplementary material 1). 
As opposed to genetic variability, we detected no strong positive correlation between            
phylogenetic and phenotypic distance – both calculated relative to reference K-12 strain            
(r=-0.33, p-value=3E-19, Figure 3D). A very weak positive correlation was evident when            
excluding the highly similar strains from evolutionary experiments (r=0.18,         
p-value=0.0007, Figure 3d). We also did not observe a strong correlation between the             
phylogenetic distance to K-12 and the fraction of growth phenotypes (Supplementary           
figure 3). These findings reinforce the idea that most variants across these stains are              
neutral. For instance, strain ECOR-12, despite being relatively similar in DNA sequence            
to the K-12 reference strain (1,942 nonsynonymous substitutions and 191 reference           
genes missing), grows poorly in 21 conditions, whereas strain ECOR-53, one of the             
strains with the highest distance to K-12 (13,490 nonsynonymous substitutions and 449            
reference genes missing), is able to grow in all tested conditions. 
Of particular interest are those strains derived from evolution experiments, such as the             
members of the LTEE collection ​(Tenaillon et al. 2016)​. While most strains grow in all               
tested conditions (189 strains out of 266 tested), a significant fraction (77) showed at              
least one growth phenotype. Again, the phylogenetic distance from the parental strains            
(REL606 and REL607) is not correlated with the proportion of growth phenotypes            
(Pearson’s r: 0.08), even though hypermutators exhibit a slightly higher number of            
phenotypes (Cohen’s d: 0.513). These results clearly underline the large phenotypic           
space covered by the ​E. coli strain collection and that simple metrics of phylogenetic              
similarity are not predictive of phenotype differences. Instead, few DNA variants are            
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sufficient to cause clear phenotypic differences, indicating the importance of statistical           
or predictive strategies to prioritize those variants.  
We observed a significantly higher sensitivity (Cohen’s d: 0.651) of pathogenic strains            
(N=149) when compared to commensal ones (N=344), as measured by the proportion            
of tested conditions in which each strain shows a growth phenotype (Supplementary            
figure 3). Such observation is consistent with previously observed lower metabolic           
capabilities for virulent strains of ​E. coli​ ​(Durso, Smith, and Hutkins 2004) ​. 
To test the accuracy of the fitness measurements, we used the correlation of phenotypic              
profiles across all strains to derive groups of similarly behaving conditions across the             
strains (Figure 3E). Condition’s clustering was consistent with the conditions          
macro-categories (e.g. stresses ​versus nutrient sources) and with the number of           
sensitive strains. For example, most of the conditions related to alternative nutrient            
sources elicited similar fitness outcomes across strains. The correlation of phenotypic           
profiles also clustered drugs with same mode of action (MoA), as shown by comparing              
the cluster’s purity against those of random clusters (Figure 3G). 
As an additional benchmark for the accuracy of the fitness responses we tested if pairs               
of drugs that have correlated fitness effects across our strain collection also displayed             
correlated profiles in the K-12 knock-out collection of strains. Indeed, those conditions            
that clustered together in our data also had higher correlations in the ​E. coli K-12               
knockout library than random pairs of conditions (Figure 3H). Using principal component            
analysis we concluded that the phenotypic space sampled by the strain collection is             
largely similar to that of the K-12 KO library (Supplementary figure 3). This suggests              
that the phenotypes exhibited by the natural strains are similar to those reached by the               
K-12 gene KO, even if the strains possess much larger genetic variability in gene              
content and nonsynonymous variation.  
We have generated a rich phenotyping resource for our ​E. coli reference strain panel.              
This resource is credible as it recapitulates known biology, and it surveys a rich              
phenotypic space, providing insights into the evolution of phenotypes within the species. 
 
Predictive models of conditional growth defects in the ​E. coli​ strain collection 
To build phenotype prediction models for all strains in the strain collection, we combined              
the gene disruption scores with information on the K-12 conditionally essential genes.            
We then computed a conditional score that would rank the strains according to their              
predicted growth level in the tested condition, from normal growth to the most defective              
growth phenotype. This was done for the 148 conditions which had at least one strain               
displaying growth defects in our screen and had also been tested in the ​E. coli K-12 KO                 
collection. This ranking was then compared to the determined phenotypes for all ​E. coli              
strains and the Area Under the Curve of a Precision-Recall curve (PR-AUC) was used              
for assessing our predictive power (Figure 4A and Methods). Since gene essentiality            
can be influenced by the genetic background, and therefore change between strains            
(Dowell et al. 2010)​, we weighted the contribution of each conditionally essential gene             
according to their level of essentiality and functional importance reasoning that highly            
important genes would more likely have conserved functions across stains (Methods).  
Our predictive score is able to discriminate strains with normal growth from ones with              
growth defects with significantly higher power than randomized scores. Both the           
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predicted impact of single nucleotide variants and gene presence/absence patterns          
contribute to the predictive power of the model (Supplementary figure 4). The predictive             
power increases for conditions in which more strains displayed growth defects (Figure            
4B). We found a significant correlation between predicted and measured growth defects            
for 20% of conditions that have at least 1% of poorly growing strains. The predictive               
capacity is higher for conditions with larger number of strains with growth defects             
(Supplementary figure 4), reaching 38% for all conditions with more than 5% of poorly              
growing strains. No class of condition (antibiotics, stressors, nutrient sources) was           
found to be better predicted by our model. The lack of predictive power for some of the                 
conditions could be due to the perturbation not being strong enough, lack of             
conservation of conditionally essential genes and/or incorrect prediction of deleterious          
effects of variants. It is however unlikely that variant effect predictions are the major              
source of error since our performance for strains that are more phylogenetically distant             
from the K-12 reference is equally good. We even observed a marginal improvement in              
predictive power when restricting the analysis to the 100 most phylogenetically distant            
strains from the reference (Supplementary figure 4). Weighting the contribution of the            
conditionally essential genes to each condition also improved the predictive power,           
especially for well-predicted conditions (Supplementary figure 4). 
To independently validate our predictive models, we carried out a GWAS analysis            
based on genes presence/absence and the growth phenotypes. Consistent with the           
validity of our models, we found that for conditions we predict with higher confidence              
(PR-AUC >= 0.1), there is a significant overlap between the K-12 genes predicted to be               
essential in the condition and the genes associated with poor growth by the association              
analysis (Figure 4C, Fisher’s exact test, p-value 0.005). 
We further examined two well predicted conditions (PR-AUC > 0.35), pseudomonic acid            
2 μg/ml (the antibiotic mupirocin) and minimal media with the addition of aminoacid             
solutions, to inspect our predictive model (Figure 4E-F). Both conditions showed an            
enrichment of strains with growth defects at high predicted scores (GSEA p-values of             
0.001 and < 10 ​-6​, respectively), which is a common property of conditions with higher              
PR-AUC (Supplementary figure 4). The reference K-12 strain harbors many          
conditionally essential genes in minimal media (181), providing an example for which            
growth phenotypes are well predicted from deleterious effects across a large number of             
genes in different strains. In contrast, pseudomonic acid is a condition with few (10)              
conditionally essential genes, thus making it easier to pinpoint single disrupted genes as             
causal for the phenotype. In these examples, the “healthy” strains that have a high              
predicted score, and are therefore incorrectly predicted as “sick” by the model,            
represent examples where conditional gene essentiality may not be conserved, or           
where compensatory mutations might be confounding the computation of the gene           
disruption score. For example, of the 25 strains with highest predicted score in             
pseudomonic acid, 13 have been misclassified by the model, 7 of which had strong              
disruption scores in either ​gmhA or ​rfaE​, two genes that when deleted in K-12 cause a                
strong growth defect under pseudomonic acid. Only 1 of the correctly predicted strains             
showed a mutation in one of those two genes (IAI36), suggesting that these two genes               
might be conditionally essential only in K-12. Another example of incorrect predictions            
involves two strains (ECOR-27 and ECOR-58) that share very similar disruption score            
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profiles for the conditionally essential genes in pseudomonic acid (Figure 4E), but only             
ECOR-27 exhibited a growth defect in this condition. Both strains harbor a single             
nonsynonymous mutation in ​acrB (E414G for ECOR-27 and I466T for ECOR-58),           
which, in both cases, is predicted as highly deleterious by the SIFT algorithm. Changes              
in conditional essentiality or epistatic effects are possible explanations for this           
misclassification, and therefore mapping and incorporating this information in our          
models can significantly benefit predictions in the future. 
 
Experimental validation of predicted causal variants 
Mechanistic models of the impact of genetic variants on the phenotype can be used to               
directly predict the causal variants and implement genetic therapies to correct growth            
phenotypes. We tested this by ranking the mutated conditionally essential genes in            
each condition according to their predicted ability to rescue growth phenotypes (Figure            
5A and Methods). Several genes are predicted to restore growth phenotypes across            
many strains and conditions (Figure 5B). Among them are the components of the             
AcrAB-TolC multidrug efflux pump, which were predicted to restore growth in up to             
~1000 condition-strain pairs, would their disruption be reverted (1012 ​acrB​, 494 ​acrA            
and 517 ​tolC​, respectively); this finding reflects the importance of this efflux system in              
drug resistance ​(Li, Plésiat, and Nikaido 2015)​. We selected 8 genes to experimentally             
verify our predictions, including genes involved in either drug resistance or auxotrophic            
growth: two members of the AcrA-AcrB-TolC multidrug efflux pump ( ​acrA and ​acrB​), the             
peptidoglycan-degrading enzyme Slt, the first two enzymes in the L-proline biosynthetic           
pathway (ProA and ProB), the uridylyl transferase GlnD and the regulatory genes of the              
superoxide response ( ​soxS and ​soxR​). We then selected conditions for which the            
introduction of the reference allele in the target strains is predicted to restore growth,              
and controls where no improvement in phenotype is predicted (Methods). We also            
introduced the plasmid expressing the reference allele in the reference strain as a             
negative control and in the deletion strain from the KEIO collection as a positive control.               
Overall, we observed a high correlation between replicates of this experiment           
(Pearson’s r: 0.94, Supplementary figure 5). In total, we tested 64 strain-condition            
combinations, detecting a significant difference (p-value 8.4E-11, two-sided t-test) in          
colony size between strain-condition pairs in which we had predicted growth will be             
restored (N=14) versus ones we had not (N=50) (Figure 5C and Methods). This             
validated the effectiveness of our predictive models and more generally confirmed that            
genetic variants can be used to predict causal mutations and prioritise strategies for             
reverting/modifying phenotypes. 
We investigated three conditions in more detail: pseudomonic acid 2 μg/ml with an ​acrB              
complementation, pyocyanin 10 μg/ml (a toxic secondary metabolite produced by          
Pseudomonas aeruginosa​) with a ​soxSR complementation and the L-glutamine         
aminoacid as nitrogen source with a ​proAB complementation (Figure 5D-F &           
Supplementary figure 5 for all conditions and strains). In all cases, strains harboring the              
gene(s) predicted to restore the phenotypes grew significantly better than strains           
carrying the empty plasmid (t-test p-value < 0.01). In contrast, none of the strains              
harboring a different complementation gene showed a significant increase in colony           
size. In fact, in two cases a significant, although slight decrease was observed,             
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presumably due to toxic effects of overexpressing the target gene (strain IAI40            
expressing ​glnD in pseudomonic acid and strain IAI39 expressing ​acrB in L-Glutamine).            
In one case we detected an unexpected increase in colony size for one of the strains                
where we hadn’t predicted any change (strain IAI39 expressing ​acrB​, Figure 5D). This             
strain encodes a single nonsynonymous variant in ​acrA (T104A), which is predicted to             
be neutral (SIFT p-value > 0.05 and FoldX ΔΔG < 0.46 kcal/mol). We hypothesize that               
the original growth phenotype is either due to this incorrectly classified variant or due to               
another variant that indirectly acts on the expression of this efflux pump. 
Of the 5 strains expressing the reference allele of ​acrB tested in pseudomonic acid,              
three harbored nonsynonymous variants in their chromosomal copy. One of them           
(IAI30) was predicted to increase its colony size after the complementation, whereas the             
other two (ECOR-42 and ECOR-28) were not predicted to be affected by the             
complementation (Figure 5D). We mapped those nonsynonymous variants to the          
three-dimensional structure of AcrB (PDB entry: 2dr6, ​Murakami et al. 2006​) to inspect             
their potential impact on the protein function (Figure 5G). Both ECOR-42 and ECOR-28             
harbor a single nonsynonymous variant (A915D and T1013I, respectively) in the           
transmembrane domain of the protein; both variants are predicted to be deleterious            
(SIFT, p-value ~0.01). Strain IAI30 on the other hand carries two nonsynonymous            
variants: E567V and H596N, both located in the AcrB “porter” domain, and more             
specifically in the PC1 subdomain, which is involved in the entry of the ligand that will be                 
then extruded by the efflux pump ​(Murakami et al. 2006; Seeger et al. 2006)​. Since the                
E567V variant is predicted to be even more deleterious (SIFT, p-value ~0.001) than the              
variants present in the other two strains, we presume that this variant impairs the              
fundamental drug uptake function of the AcrAB-TolC multidrug efflux pump, while the            
other variants might be less deleterious for the pump’s function. This example shows             
how mechanistic interpretations of the impact of genetic variants can direct insights into             
the emergence of fitness defects and suggest potential gene therapeutic strategies,           
down to the level of the single genetic variant. 
 
Discussion 
We have assembled an ​E. coli strain collection for genotype-to-phenotype studies,           
which, in its current state, comprises joint genetic and phenotypic information for 696             
strains. We observe only weak to no correlation between the genotype and phenotype             
distances. This together with the large diversity of phenotypes detected even for strains             
deriving from evolutionary experiments, signifies that small differences in the genome           
can create large phenotypic variance. 
To quantitatively assess the function of each reference gene in each strain, we             
computed a gene disruption score based on predictions of the impact of            
nonsynonymous substitutions to the protein structure/conservation and to gene loss.          
For this purpose, we used the pre-computed predicted consequences of all possible            
genome variants, using structural and evolutionary information. Those predictions have          
been made available online (http://mutfunc.com, Wagih et al., unpublished) where          
others can query any ​E. coli ​genome variants. 
There are limitations to the disruption score used here. We evaluated the impact of              
individual and independent variants relative to a single reference (the K-12 genome)            
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and we therefore didn’t take into account epistatic mutations within and between each             
gene. Nevertheless, the gene disruption score shows expected properties such as lower            
disruption of essential genes. In addition, genes within the same functional group (e.g.             
protein complex) tend to be co-disrupted across strains. Similar patterns of co-gain/loss            
of genes belonging to a functional unit have been observed when comparing genomes             
of different species ​(Pellegrini et al. 1999)​. This is thought to be due to changes in                
selection pressure whereby the reduced selection for the function carried out by a             
complex would result in the eventual loss of all of the genes of the complex. Our results                 
suggest that the same process occurs at shorter evolutionary timescales and can            
therefore be detected even at the species level. Overall, this finding opens up the door               
for combining sequencing of large bacterial strain cohorts with function prediction           
models as the one presented here in order to map functional complexes. 
We combined the gene disruption scores with the currently available reverse genetic            
screens in the reference individual to predict conditional phenotypes across 148           
conditions. The impact of mutations on conditionally essential genes has an overall            
weak but significant predictive power, with 20-38% of conditions being well predicted by             
this approach. While it is possible that a fraction of the conditions is poorly predicted               
due to technical limitations (e.g. chemical concentration screened) or errors/limitations          
of the gene disruption scores, these results strongly suggest that the relative importance             
of each gene, and therefore gene function itself, may quickly diverge across strains.             
Previous work has shown that gene-specific phenotypes can diverge for around 17% of             
tested gene knock-outs across two very closely related ​S. cerevisiae ​laboratory strains            
(S288C and Σ1278b, ​Ryan et al. 2012)​. More strikingly, only 52% of essential genes              
were found to be conserved across 5 different human cancer cell lines ​(Hart et al.               
2015)​. However, the genetic and cell state differences across the ​E. coli strains cannot              
easily be related to the differences between cancer cell lines or closely related ​S.              
cerevisae strains. Additional studies are required to conclusively demonstrate that gene           
function and conditional essentiality diverges rapidly across ​E. coli​ strains. 
We further demonstrated how the predictive model used here can be used to identify              
the causal variants and suggest genetic strategies for restoring growth defects. These            
models highlighted genes that are very often predicted to restore growth across many             
conditions and strains. In particular, the AcrAB-TolC pump emerged as a complex that             
is often perturbed across evolution and as predicted, restored growth when           
complemented.  
There are several ways by which the predictive approach applied here could be further              
improved. For example, the model can be further expanded to include the impact of              
non-coding variants or accessory genes not present in K-12. Reliable predictors for            
assessing the impact of non-coding variants on gene expression and translation will            
need to be developed and included in the model. A better understanding of the function               
of the accessory genes would also be needed for predicting when gene loss events are               
complemented by the acquisition of new genes, either through recombination or           
horizontal gene transfer (HGT). Finally, additional work will be needed to take into             
account gain-of-function mutations or epistatic interactions, whereby the effect of          
variants depends on the genetic background of the individual. 
Following the example of previous genetic reference panels ​(Ayroles et al. 2009; Liti et              
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al. 2009; Bennett et al. 2010; Atwell et al. 2010; 1001 Genomes Consortium 2016;              
Cancer Genome Atlas Research Network et al. 2013; 1000 Genomes Project           
Consortium et al. 2015)​, we believe that the present strain collection and associated             
data will serve as a growing resource to researchers interested in studying other             
aspects of basic and bacterial biology. Any measurements or models added to these             
strains will amplify the benefit for the entire research community, moving us closer to              
the ultimate goal of understanding of how genetic variation translates to differences            
among individuals.  
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Main figures 
 

 
Figure 1. ​Genetic variability and protein sequence constraints in the ​E. coli strain             
collection. ​(A) Core genome SNP tree of the members of the strain collection; shades of               
blue in the inner ring indicate the number of nonsynonymous substitutions with respect             
to the reference strain ( ​E. coli K-12), shades of green in the middle ring indicate the                
number of reference genes absent from each strain and shades of purple in the outer               
ring indicate the number of additional genes present in each strain when compared to              
reference strain. Black arrow indicates the reference strain. ​(B-C) The nonsynonymous           
substitutions ratio (proportion of observed mutations in selected site over a random            
sample of all other sites) across the collection proteomes is used to highlight the              
presence of evolutionary constraints, through a comparison against shuffled sites          
positions. ​(B) Functional sites in proteins (derived from UniProt ​(UniProt Consortium          
2015) annotations) show a lower density of nonsynonymous substitutions than the rest            
of the protein. ​(C) Residues with lower predicted water accessibility show a lower             
density of nonsynonymous substitutions than residues with higher accessibility to the           
solvent. ​(D-E) ​Comparison of the predicted impact of observed nonsynonymous          
substitutions in constrained sites against all other sites, and comparison with the impact             
of all possible nonsynonymous substitutions (a random set of the same size). (D)             
Predicted impact of nonsynonymous substitutions, as measured by the SIFT ​(Ng and            
Henikoff 2001) algorithm, shows that substitutions in functional constrained sites are           
more benign than expected. ​(E) Predicted impact of nonsynonymous substitutions, as           
measured by the FoldX ​(Guerois, Nielsen, and Serrano 2002) algorithm, shows that            
substitutions in structurally constrained sites are more benign than expected. 
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Figure 2. The “gene disruption score”, a gene-level prediction of the impact of             
nonsynonymous substitutions, and its biological properties. ​(A) Schematic        
representation of how all substitutions affecting a particular gene are combined to            
compute the gene disruption score. With the term “accessory gene” we indicate those             
genes that are present in the reference strain but not in the focal one. ​(B) Average gene                 
disruption score across all strains for four categories of genes conserved in all strains              
(“core genome”). Essential genes are retrieved from the OGEE database ​(Chen et al.             
2012)​, highly (or poorly) conserved genes are defined as those genes found in more (or               
less) than 95% of the bacterial species present in the eggNOG orthology database             
(Huerta-Cepas et al. 2016)​. Statistically significant differences (Cohen’s d value > 0.3)            
are reported. ​(C) Gene-gene correlation profile of gene disruption across all strains            
shows clusters of potentially functionally related proteins. ​(D-E) The gene disruption           
correlation profiles as a predictor of genes functional associations. ​(D) Gene-gene           
pairwise gene disruption correlation inside each annotation set (colored boxes) and           
inside a random set of genes of the same size (grey boxes). ​(E) Gene-gene correlation               
profile of gene disruption in protein complexes with high disruption score correlation. 
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Figure 3. ​The phenotypic landscape of the ​E. coli strain collection. ​(A) Phenotypic             
screening experimental design and data analysis. Three plate replicates (biological) are           
screened per condition, with each strain being present in at least four copies on each               
plate. Colony sizes across all conditions are then used to compute an S-score ​(Collins              
et al. 2006) for each strain in each condition, capturing the strain fitness effect in this                
condition. ​(B) Core genome SNP tree for all strains in our collection. Grey shades in the                
inner ring indicate the number of conditions tested for each strain, red shades in the               
outer ring indicate the proportion of tested conditions in which the strain shows a growth               
phenotype (strain grows significantly less than expected). Black arrow indicates the           
reference strain. ​(C) Phenotypic measurements show good replicability, as measured          
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by pairiwise comparing the S-scores of the three biological replicates and between            
strains present in multiple plates. ​(D) Person’s correlation between phylogenetic and           
phenotypic distance. ​(E) Hierarchical clustering of condition correlation profiles; the          
threshold is defined as the furthest distance at which the minimum average Pearson’s             
correlation inside each cluster is above 0.3. The two colored bands on top indicate the               
number of strains with growth defects for each condition and its category, showing             
consistent clustering. Gray-colored cells in the matrix represent missing values due to            
poor overlap of strains tested in the two conditions. ​(F) Detailed view of three clusters               
highlighted in panel e. ​(G) Clusters purity (computed for drug targets) for each             
hierarchical distance threshold, against that of random clusters (100 repetitions) shows           
that drugs with similar target tend to cluster together. ​(H) Condition pairwise correlation             
in the ​E. coli K-12 chemical genomics data is significantly higher for the condition              
clusters defined by the phenotypic screening than for a random set of condition clusters              
of equal size. 
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Figure 4. ​Prediction of growth-defect phenotypes in the ​E. coli strain collection. ​(A)             
Schematic representation of the computation of the prediction score and its evaluation;            
for each condition the predicted score is computed using the disruption score of the              
conditionally essential genes. The score is then evaluated to the actual phenotypes            
through a Precision-Recall curve. ​(B) Higher predictive power for conditions with higher            
proportion of growth phenotypes. For each condition set, the median and mean            
PR-AUC (area under the curve of the Precision-Recall curve) across conditions is            
compared to three randomisation schemes; one involving shuffling of strains (1’000           
repetitions), one involving shuffling of conditionally essential genes (1’000 repetitions)          
and one using random genes as members of the conditionally essential gene sets             
(1’000 repetitions). The median PR-AUC and mean absolute deviation of the           
randomisations are reported across all conditions. ​(C) Genome-wide gene associations          
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are in agreement with our predictive score; the enrichment (expressed as of a           − log10    
Fisher’s exact test P-value) of conditionally essential genes in the results of the gene              
association analysis is significantly higher in conditions with higher PR-AUC. ​(D-E)           
Detailed example on the computation and evaluation of the predicted score on two             
conditions. ​(D) Precision-Recall curve for the two example conditions. ​(E-F) For each            
condition, the gene disruption score for the conditionally essential gene across all            
strains is reported, together with the resulting predicted conditional score and actual            
binary phenotypes (pale red: healthy and red: growth defect). Strains are sorted            
according to the predicted conditional score, while genes are sorted according to their             
weight in the predictive model; only the top 10 conditionally essential genes are shown.              
The inset reports the disruption score, predicted score and actual phenotypes for the             
top 25 strains. 
  

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2017. ; https://doi.org/10.1101/141879doi: bioRxiv preprint 

https://doi.org/10.1101/141879
http://creativecommons.org/licenses/by/4.0/


 
Figure 5. Experimental confirmation of the predicted phenotype-causing genotypes. ​(A)          
Schematic representation of the experimental approach. For each target condition and           
strain with a growth defect, we introduced a plasmid expressing the reference copy of              
the gene whose deleterious variants are predicted to give rise to the observed             
phenotype. ​(B) Distribution of the number of predicted restored phenotypes per gene;            
red stripes indicate the genes that were experimentally tested. ​(C) Growth change            
between the target strain with the empty plasmid against the one expressing the             
reference copy of the target gene (complementation). Strains for which a change in             
phenotype is predicted are compared to those where no change is predicted. ​(D-F)             
Detailed representation of the results of the complementation experiment in three           
conditions. Mean colony area and the 95% confidence intervals are reported. Significant            
differences (t-test p-value < 0.01) between colony area of the strains with the empty and               
complemented plasmids are reported. “Other complementation” reports strains        
expressing a different gene than the focal one, indicated between parenthesis. ​(G)            
Cartoon representation of AcrB 3D structure (PDB entry: 2dr6). Only one of the three              
monomers is highlighted in blue; colored spheres represent known non-synonymous          
variants in one of the strains complemented experimentally. Variants present in strains            
ECOR-42 and ECOR-28 are in the transmembrane domain, while both variants present            
in IAI30 are in the porter domain.  
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Supplementary figures 

 
Supplementary Figure 1. ​Related to Figure 1. ​Correlation between phylogenetic distance and            
genetic variants of the members of the strain collection. Phylogenetic distance is derived from              
the core genome alignment of all the strains. ​(A) correlation with the number of nonsynonymous               
substitutions. ​(B) correlation with the number missing reference genes. ​(C) Correlation with the             
number of genes present in the target strain and not in the reference. 
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Supplementary Figure 2. Related to Figure 2. ​Additional properties of the disruption score.             
(A) ​Correlation between phylogenetic distance from the reference strain and average disruption            
across all reference genes. ​(B) Significant reduction in correlation after correction of the             
disruption score (see Methods). ​(C-E) Prediction of gene functional associations using           
disruption score profiles. ​(C) ROC curve using disruption score profiles across all genes. ​(D-E)              
Higher predictive power of the gene disruption profile when restricted to accessory genes,             
including ​(D)​ or not ​(E)​ the information about gene presence absence. 
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Supplementary Figure 3. Related to Figure 3. (A-D) ​Phenotypic measurements          
reproducibility. ​(A-C) S-scores for each replicate are compared against each other ​(D) S-scores             
comparison between strains present in multiple 1536 plates. ​(E) Linear correlation between            
phylogenetic and phenotypic distance between each pairwise strain combination. ​(F) Linear           
correlation between phylogenetic distance from the reference strain and proportion of sick            
phenotypes over tested conditions. (G-L) PCA (Principal Component Analysis) of the joint            
phenotypic measures for the chemical genomics and the ​E. coli strain collection. Only the first 6                
principal components and their relationships are reported. ​(l) Proportion of total explained            
variance for the first 6 dimensions. ​(M-N) Differences in the proportion of sick phenotypes              
between commensal and pathogenic strains. ​(M) Core genome SNP tree of the members of the               
strains collection; blue and red boxes indicate commensal and pathogenic strains, respectively.            
(N) Proportion of sick phenotypes over the tested conditions for each strain divided according to               
their broad phenotype (commensal or pathogen), showing a moderately significant difference           
(Cohen’s d: 0.658). 
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Supplementary Figure 4. Related to Figure 4. (A) ​Influence of the different predictors of the               
impact of mutations on each condition PR-AUC. “SNPs” indicates single nucleotide variants            
only, “Accessory genome” gene presence-absence patterns, “All predictors” the combination of           
both. ​(B-C) Proportion of well-predicted conditions (PR-AUC >= 0.1 and Pearson’s           
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FDR-corrected p-value <= 0.01) over total conditions with at least 1% and 5% sick strains.               
Marker’s size is proportional to the of the FDR-corrected p-value. ​(D) Improvement in       − log10        
prediction performance when restricting the analysis to the 100 strains most distant from the              
reference (K-12). ​(E) Conditions with higher predictive power (measured as PR-AUC) also have             
an enrichment of sick strains at the top of the predicted score, as measured by the Gene Set                  
Enrichment Analysis (GSEA); sick strains are used as “gene sets”. A pseudocount of 10 ​-4 has               
been added to the GSEA p-values. ​(F) Prediction performance improves when using the             
weighting scheme to account for conservation of gene essentiality, especially for well-predicted            
conditions. 
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Supplementary Figure 5. Related to Figure 5. (A) ​Replicability in colony size (measured in              
pixels) after outer frame and spatial correction between the two replicates. ​(B) Overview of the               
results of the complementation experiments. Mean colony area and the 95% confidence            
intervals are reported. Significant differences (t-test p-value < 0.01) between colony area of the              
strains with the empty and complemented plasmids are reported. Conditions          
CHIR090.MECILLINAM, MECILLINNAM and OXACILLIN.5UM have been excluded from further         
analysis, as the deletion strain from the KEIO collection (positive control) does not show a sick                
phenotype with an empty plasmid. 
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Materials and methods 
Genome sequencing, assembly and annotation 
Strains whose genome sequence was not yet available were sequenced using various            
Illumina paired-end platforms (Supplementary table 1). The resulting sequencing reads          
were quality checked using FastQC version 0.11.3, and optionally contaminating          
sequencing adapters were removed using seq_crumbs version 0.1.9. Reads were          
assembled with Spades ​(Bankevich et al. 2012) version 3.5.0, using different k-mer            
sizes according to reads length and with the “careful” option to reduce assembly errors;              
contigs below 200 base pairs were excluded. Resulting assembled contigs were           
annotated for coding genes, ribosomal RNAs and tRNAs using Prokka ​(Seemann 2014)            
version 1.11. Strains not belonging to the ​E. coli species were excluded from             
subsequent analysis after being highlighted by Kraken ​(Wood and Salzberg 2014)           
version 0.10.5. When available, typing information was used to spot incorrect genome            
sequences due to culture contaminations or other factors; known strains typing was            
compared to the ones predicted from the genome sequence using mlst version 2.8.             
Strain names were amended when possible (see the “Notes” column in Supplementary            
table 1). The ECOR collection was carefully checked for inconsistencies, as it is well              
known that different “versions” of this collection are circulating in the scientific            
community ​(Johnson et al. 2001; Clermont, Gordon, and Denamur 2015)​. The genome            
sequences were further checked for duplicated genomes: strains with highly similar           
genomes but highly divergent phenotypes (phenotypes S-score correlation below 0.6)          
were removed. Highly similar genomes were defined as those genomes whose distance            
was found to be below 0.001, as measured by mash, version 1.1 ​(Ondov et al. 2016)​. 
 
SNP calling and annotation 
Due to the variability in sequencing technologies or lack of the original reads for the               
already sequenced strains in the collection (373), SNPs were called through a whole             
genome alignment between each strain and the genome of the reference individual            
( ​Escherichia coli str. K-12 substr. MG1655, RefSeq accession: NC_000913.3, strain          
collection identifier NT12001), using ParSNP ​(Treangen et al. 2014) version 1.2.           
Repeated regions in the reference genome were highlighted and masked through           
nucmer ​(Kurtz et al. 2004) version 3.1 and Bedtools ​(Quinlan and Hall 2010) version              
2.26.0. SNPs were then phased, and annotated using SnpEff ​(Cingolani et al. 2012)             
version 4.1g. 
 
Pangenome analysis 
Genes present in the reference individual but absent in each strain were highlighted by              
computing hierarchical orthologous group using OMA ​(Altenhoff et al. 2013) version           
1.0.6. Each strain was re-annotated using Prokka ​(Seemann 2014) version 1.11 to            
harmonize gene calls. 
 
Phylogenetics 
Strains phylogenetic tree was computed using a single ParSNP ​(Treangen et al. 2014)             
analysis, which uses the regions of the reference genome that are sufficiently aligned             
across all strains as an input for FastTree ​(Price, Dehal, and Arkin 2010) version 2.1.7.               
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The tree was visualized using the ete3 library ​(Huerta-Cepas, Serra, and Bork 2016)             
version 3.0.0. 
 
Computation of all possible mutations and their effect 
The impact of all possible nonsynonymous substitutions on the reference individual has            
been precomputed to speed up the lookup process. Functional impact of           
nonsynonymous substitutions has been computed using SIFT ​(Ng and Henikoff 2001)           
version 5.1.1. Structural impact of nonsynonymous substitutions has been computed          
using FoldX ​(Guerois, Nielsen, and Serrano 2002) version 4; both 3-D structures            
present in the PDB database and homology models were used. Homology models were             
created using ModPipe ​(Pieper et al. 2014) version 2.2.0. Water accessibility of all 3-D              
structures was computed using FreeSASA ​(Mitternacht 2016) version 1.1. Conversion          
from PDB to Uniprot residues coordinates was derived from the SIFTS ​(Velankar et al.              
2013) database. All the precomputed impacts of all possible nonsynonymous          
substitutions are available through the mutfunc database (http://mutfunc.com, Wagih et.,          
al, unpublished). 
 
Computation of the disruption score 
For each strain and each protein coding genes we have computed the overall impact of               
all nonsynonymous and nonsense substitutions, in a similar approach as the one used             
for ​Saccharomyces cerevisiae ​(Jelier et al. 2011)​. The output of each predictor (a             
deleterious probability for SIFT and a ΔΔG value for FoldX) has been converted to the               
probability of the substitution being neutral . Mutations with known impact on      (neutral)P       
the reference individual have been downloaded from Uniprot ​(UniProt Consortium 2015)           
(N=3673) and used to derive such conversion; since only 580 mutations are reported to              
have a neutral impact, we added all observed nonsynonymous variants affecting known            
essential genes (as reported in the OGEE database, ​Chen et al. 2016​) to the list of                
tolerated mutations. The distribution of the negative natural logarithm of the SIFT            
probability (plus a pseudocount equivalent to the lowest observed SIFT probability) for            
all the 6460 mutations was binned and the was computed as the proportion        (neutral)P       
of tolerated mutations over the total number of mutations in each bin. A logistic              
regression curve was then fitted to the binned distribution to derive the conversion             
between the SIFT probability and . For FoldX we used a similar approach, but     (neutral)P          
using the computed ΔΔG value. The fitted logistic regression curves resulted in the             
following  functions:(neutral)P  
 

(neutral ) P SIFT =  1
(1 + e )−(0.625 ln(SIFT  + 1.527E ) + 1.971)−4  

 
(neutral ) P FoldX =  1

(1 + e )−(1.465 FoldX  + 1.201)  

 
The value attributed to nonsense mutations was assigned through heuristics: (neutral)P          
if the new stop codon was found within the last 16 residues of the protein it was given a                   

value of 0.99, reflecting its unlikelihood of disrupting the function of the(neutral)P             
protein, 0.01 otherwise. Losing a start or a stop codon was given a value of             (neutral)P   
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0.01, as they are very likely to impair protein function. 
We gave a value of 0.01 to those genes that were found to be present in the   (neutral)P               
reference individual but absent in the target strain, reflecting the fact that their function              
is most likely to be absent from the target strain. 
We inferred the probability that each gene had its function affected by the ensemble of               
the substitutions in each strain by computing a disruption score, equivalent to the             

(probability of the function being affected) used in ​S. cerevisiae ​study ​(Jelier et(AF )P              
al. 2011)​. 

(AF ) 1 (neutral)P =  −  ∏
k

i = 1
P i  

 
Where ​k is the ensemble of nonsynonymous and nonsense substitutions observed in            
each gene. When both FoldX and SIFT predictions were available for a given             
substitution, we used the SIFT prediction only. Variants with relatively high frequency            
(>= 10%) in the strains collection were not considered, as well as those reference genes               
that are absent in a significant number of strains (>= 10%), as we reasoned that they                
are very unlikely to be deleterious given their high observed frequency. Given that many              
strains of the collection are closely related (e.g. strains derived from the LTEE             
collection), we clustered them based on phylogenetic distance before applying the           
filtering. We also didn’t consider variants and absent reference genes shared by all             
members of the LTEE strain collection, as those variants are present in the collection              
founder strain and therefore unlikely to affect the evolved clones phenotypes. Disruption            
scores for all proteins across all strains can be found in Supplementary material 2. 
 
Use of the disruption score as a functional association predictor 
We used the proteins pairwise Pearson’s correlation of disruption scores as a predictor             
of genes functional associations. We used four benchmarking sets: operons, as derived            
from the DOOR database ​(Mao et al. 2014)​, protein complexes and pathways derived             
from the EcoCyc database ​(Keseler et al. 2013)​, and protein-protein interactions derived            
from a recent yeast two-hybrid experiment ​(Rajagopala et al. 2014)​. The distribution of             
the disruption score correlation for each pair of related genes was compared against the              
same number of gene pairs randomly drawn from all reference genes. We also             
assessed the predictive power of the disruption score correlations by drawing a            
receiving operator characteristics curve (ROC) across each correlation threshold, using          
the scikit-learn library ​(Pedregosa et al. 2011)​ version 0.17.1. 
 
Strains phenotyping 
The strains phenotypes were measured in a similar way as the ​E. coli reverse genetic               
screen ​(Nichols et al. 2011)​. The strain collection was plated in three solid agar plates,               
each one containing 1536 single colonies, so that each strain was plated at least four               
times in each plate, each time with different neighboring strains. For each condition we              
prepared three replicates (each one using a different source plate to reduce batch             
effects) with the concentrations indicated in Supplementary table 2 and the addition of             
the so-called Congo-red solution, which contains the Cosmos dye (CAS number           
573-58-0) and Coomasie brilliant blue R-250 (CAS number 6104-59-2). The solution           
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stains colonies when biofilm is being developed. Plates were stored in darkness at room              
temperature, unless otherwise required by the specific condition (i.e. higher          
temperature), and photographs of the plates were taken until colonies were found to be              
overgrowing into each other. Most of the conditions (197) were tested at the same time               
and under the same laboratory conditions as the KEIO KO collection           
(Herrera-Dominguez et al., unpublished). 
A series of colony parameters were extracted from each photograph, using Iris ​(Kritikos             
et al. 2017) version 0.9.4.71: colony size, opacity, roundness and color intensity. The             
most appropriate time point for each condition was determined by imposing a restriction             
on median colony size; between 1900 and 3600 pixels for the first two plates, and               
between 1300 and 3600 for the last plate, which contained the strains derived from              
evolution experiments, which tend to grow less than the natural isolates. The time points              
passing the first threshold were then sorted by the proportion of colonies with high              
roundness (> 0.8), which is indicative of the overall quality of the plate, proportion of               
colonies over the minimum median colony size threshold, the spread of the colony size              
distribution (the lower the better), and mean colony size correlation across replicates. 
A series of additional quality control measures were taken on the colony parameters. In              
order to remove systematic pinning defects, colonies appearing to be missing (colony            
size of zero pixels) in more than 66% of the tested plates were removed, unless all the                 
internal replicates were found to be missing. Colonies with abnormal circularity were            
removed, as they were mostly due to incorrect colony recognition by the software:             
colonies with size below 1000 pixels and circularity below 0.5 and colonies with size              
above 1000 pixels and circularity below 0.3 were removed. Putative contaminations           
were spotted and removed through a variance jackknife approach: first, the size of two              
outermost rows and columns colonies was corrected to match the median of the rest of               
the plate, then for each strain, each of the four replicates inside the plate was tested                
whether it contributed to more than 90% of the total colony size variance. If so, the                
replicate was flagged as a contamination and removed. The same approach was            
repeated using colony circularity, with a variance threshold of 95%. 
The final colony sizes were used as an input for the EMAP algorithm ​(Collins et al.                
2006)​, with default parameters, in order to derive an S-score, which informs on the              
deviation of each strain from the expected growth in each condition. Final S-scores             
were quantile-normalized, and significant phenotypes were highlighted using a 5% FDR           
correction similar to the one used in the ​E. coli reverse genetic screen ​(Nichols et al.                
2011)​, using the statsmodels library version 0.6.1. The phenotypic data is available in             
Supplementary material 1. 
Phenotypic distance between strains was computed using the euclidean distance          
between the S-scores across all conditions, using the nadist library version 0.1.0. 
PCA (Principal Component Analysis) of the joint data from the K-12 chemical genomics             
and the ​E. coli strain collection was carried out by merging the two datasets over the                
shared conditions (conditions tested in both sets), using the scikit-learn library           
(Pedregosa et al. 2011)​, version 0.17.1. Since the PCA method doesn’t allow missing             
values, strains that were not tested in more than 60 conditions (over 161) were              
removed. The remaining missing values were imputed using the mean S-score across            
each condition. 
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Computation of the conditional score and its assessment 
Conditionally essential genes were derived for each condition of the ​E. coli reverse             
genetic screen overlapping with the conditions tested on the natural isolates collection.            
Mutants with a significant growth phenotype were considered to derive the list of             
conditionally essential genes. The conditional score for each strain, indicating the           
growth prediction, was computed as follows: 
 

W log(1 P (AF ))Ss,c =  ∑
l

g = 1

1
Es g,c −  s,g  

 
Where ​s and ​c ​represent the strain and condition, respectively, ​g each conditionally             
essential gene for condition ​c (with size ​l​), and representing a correction term for the         Es        
disruption score, in order to remove the effect of phylogenetic distance (Supplementary            
figure 2). 
 

og(1 P (AF ))Es = n
1 ∑

n

g = 1
l −  s,g  

 
Where ​n represents all the reference genes. The term is used to weight the        W g,c      
contribution of each conditionally essential gene to the conditional score, and it is             
computed as follows: 
 

− (F )W g,c = log10 g,c N c

Cg  
 
Where is the FDR-corrected p-value of gene ​g ​in condition ​c​, is the number of F g,c           Cg     
conditions in the chemical genomics screen where gene ​g shows a significant            
phenotype, and the total number of tested conditions in the chemical genomics  N c           
screen. 
The conditional score was assessed by computing a Precision-Recall curve, whose           
area (PR-AUC) was used as a direct measure of the predictive power of the method;               
the growth phenotypes were considered true positives. The PR curve and AUC were             
computed using the scikit-learn library ​(Pedregosa et al. 2011) version 0.17.1. Three            
randomization approaches were used to generate control conditional scores: one using           
strains shuffling, one using conditionally essential gene sets shuffling, and one using            
random conditionally essential gene sets. Each randomization strategy has been used           
to generate 10,000 randomized scores, which were scaled to the actual one. 
The conditionally essential gene sets, the conditional score and the PR-AUC values are             
available in Supplementary material 2. 
 
Association of accessory genes with phenotypes 
Accessory genes from the strains collection pangenome were computed from the           
harmonized genome annotations made by Prokka ​(Seemann 2014)​, using Roary ​(Page           
et al. 2015) version 3.6.1. The accessory genes were associated to each condition’s             
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phenotypes using Scoary ​(Brynildsrud et al. 2016) version 1.4.0, with default           
parameters. Genes with corrected p-value (Benjamini-Hochberg) of association below         
0.05 were considered significant. The enrichment of conditionally essential genes          
among the significant reference gene hits was assessed through a Fisher’s exact test,             
as implemented in the SciPy library, version 0.17.0. 
 
Systematic ​in-silico​ complementation of conditionally essential genes 
The potential to restore growth phenotypes through the introduction of reference alleles            
was predicted systematically in each strain by changing the disruption score to zero in              
each conditionally essential gene, and reporting the change in the conditional score            

 with respect to the maximum possible conditional score:ΔSs,c  
 

W log(1 P (AF ))Ss, c
max = ∑

l

g = 1

1
Es g,c −  max  

 
Where is the maximum disruption score observed across all genes and (AF )Pmax           
strains. Any higher than 1% of was considered as potentially able to restore a  ΔSs,c      Ss, c

max         
growth phenotype. 
 
Experimental complementation of predicted phenotype-causing genes 
In order to experimentally verify our predictions, we introduced the reference           
(BW25113) gene in a low copy plasmid. For the ​slt gene, we used the available plasmid                
from the TransBac library (H. Dose and H. Mori, unpublished resource, ​Otsuka et al.              
2015​). For ​acrA​, ​acrB and ​glnD​, we used the available plasmid from the mobile plasmid               
library ​(Saka et al. 2005)​. We amplified ​acrAB​, ​soxSR​, ​proAB from BW25113 and             
ligated into pNTR-SD (the backbone plasmid for the mobile plasmid library). Deletions            
of ​acrAB​, ​soxSR​, ​proAB in the reference strain were made using the lambda red              
recombination approach ​(Datsenko and Wanner 2000)​. The resulting 7 plasmids and           
the 2 empty plasmid controls were introduced into BW25113 (negative control), in the             
deletion strains from the Keio collection or constructed by us (positive control) and in the               
targets strains. All resulting strains were pinned using a Singer Rotor robot in 10              
different conditions, on 2 solid agar plates, so that each strain is pinned at least four                
times per plate. The plates were incubated at room temperature and multiple            
photographs were taken until colonies were found to be overgrowing into each other.             
Iris ​(Kritikos et al. 2017) ​ version 0.9.7 was used to extract colony size​ ​from the pictures. 
 
Code, data and strains collection availability 
The source code used to perform the analysis reported here and generate the figures is               
available as Supplementary material 3 and at the following URLs:          
https://github.com/mgalardini/screenings, 
https://github.com/mgalardini/pangenome_variation, 
https://github.com/mgalardini/ecopredict. Code is mostly based on the Python        
programming language, and using the following libraries: Numpy ​(Van Der Walt,           
Colbert, and Varoquaux 2011) version 1.10.4, SciPy version 0.17.0, Pandas ​(McKinney           
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and Others 2010) version 0.18.0, Biopython ​(Cock et al. 2009) version 1.68, scikit-learn             
(Pedregosa et al. 2011) version 0.17.1, fastcluster ​(Müllner 2013) version 1.1.20,           
statsmodels version 0.6.1, PyVCF version 0.6.8, ete3 ​(Huerta-Cepas, Serra, and Bork           
2016) version 3.0.0, Matplotlib ​(Hunter 2007) version 1.5.1, Seaborn ​(Waskom et al.            
2016)​ version 0.7.1 and svgutils version 0.2.0. 
Genomic and phenotypic data, as well as relevant information on how to obtain the              
members of the strain collection is available at the following URL:           
https://evocellnet.github.io/ecoref. 
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