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Abstract

Nanopore technology provides a novel approach to DNA sequencing
that yields long, label-free reads of constant quality. The first commer-
cial implementation of this approach, the MinION, has shown promise in
various sequencing applications. The presented literature review gives an
up-to-date overview of the MinION’s utility as a de novo sequencing de-
vice. It is argued that the MinION may allow for portable and affordable
de novo sequencing of even complex genomes in the near future, despite
the currently error-prone nature of its reads. Through continuous updates
to the MinION hardware and the development of new assembly pipelines,
both sequencing accuracy and assembly quality have already risen rapidly.
However, this fast pace of development has also lead to a lack of oversight
in the expanding landscape of analysis tools, as performance evaluations
are outdated quickly. Now that the MinION is approaching a state of ma-
turity, a thorough comparative benchmarking effort of de novo assembly
pipelines may be at place.

1 Introduction

The development of novel genome sequencing methods has been a major driving
force behind the rapid advancements in genomics of the last decades. Notably,
the advent of second generation sequencing (SGS) provided researchers with
the required throughput and cost-efficiency to sequence many more genomes
than was previously deemed feasible. Recent years saw the dawn of what can
be perceived as a third generation; one that allows amplification-free reading
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of single DNA molecules in long consecutive stretches [1, review]. Currently,
this new generation is dominated by two methods: nanopore sequencing and
single-molecule real time (SMRT) sequencing, championed by Oxford Nanopore
Technologies (ONT) and Pacific Biosciences (PacBio) respectively.

Conceptually, nanopore sequencing is easier to explain than most other se-
quencing methods. An electrical potential is applied over an insulating mem-
brane in which a single small pore is inserted. A DNA strand is pulled through
the pore and the sequence is inferred from the characteristic way in which the
passing base combinations influence the current. In 1989 David Deamer roughly
sketched this concept as it is applied today, although it took more than two
decades of key innovations to bring the concept to fruition [2]. Since the intro-
duction of the first commercially available nanopore sequencing device, ONT’s
MinION, and the start of the MinION Access program (MAP) in 2014, the field
of nanopore sequencing has been advancing at a rapid pace; both new applica-
tions and improvements to existing ones are published on a regular basis.

The advantages of the MinION over other sequencing devices are numerous.
Both its size, roughly that of a cellphone, and its cost, a thousand dollars for
a starter kit, are a mere fraction of that of competitors. Running the MinION
is also reasonably time- and cost-effective; an 48-hour sequencing run currently
costs around 800 dollars1 and yields about 5 Gbases [3, 4]. Furthermore, the
technique does not rely on any labeling techniques to recognize different bases,
while Sanger, SGS methods and SMRT do require some form of labeling of nu-
cleotides. Amplification by PCR is optional for the MinION, while this step is
mandatory for Sanger and SGS-methods. Not only does omitting these steps
simplify sample preparation for MinION samples; it also helps to avoid errors
and biases (e.g. the CG-bias for PCR) and allows detection of modified bases
[5]. Finally, the maximum read length produced by the MinION is many times
greater than that of both second-generation and Sanger sequencing and only
paralleled by SMRT sequencing, which is highly advantageous in resolving re-
peat sequences.

The most prominent disadvantages of the MinION with respect to its com-
petitors are the lower signal-to-noise ratio, stochasticity introduced by its bio-
logical components and the resulting high error rate of basecalling. Indeed, the
MinION is a product in development and the used materials (i.e. membranes,
nanopores and buffers) are still being optimized. Furthermore, it is thought that
significant improvements are still possible in the software pipelines that trans-
late current signal to DNA sequence, even though recent efforts have increased
the base-calling accuracy dramatically, from around 85% in the first half of 2016
[6–8] to over 95% in March of 2017 [3].

In this literature review, an up-to-date overview of several aspects of
nanopore sequencing is given. First, the physical sequencing process as it takes
place inside the MinION is outlined. Then, the general structure of analysis
pipelines is described, along with currently available software implemented in

1 Estimate based on a purchase of 24 flowcells and a 1D/1D2 sequencing kit, 18th of May
2017
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Figure 1: Sequencing of a DNA strand using nanopores. From left to right,
double-stranded DNA with attached motor protein attaches to a pore protein
in an insulating membrane. The applied potential pulls one strand through the
pore, while the motor protein unzips the DNA in a step-wise fashion. After
the DNA has been unzipped completely and one strand has passed through,
the complex detaches from the pore entrance and the pore is ready to receive
another strand. Taken from [6].

these pipelines and their respective strengths and weaknesses. It should be
noted that nanopore sequencing is a rapidly advancing field. While some work
discussed in this chapter is considered cutting-edge at the moment of writing,
the reader is advised to keep the publication date of said work in mind.

2 Physical basis of DNA sequencing using
nanopores

In a nutshell, the underlying principle of nanopore sequencing can be explained
as follows: a microscopic opening wide enough to allow single-stranded DNA
to pass - the nanopore - is introduced in an insulating membrane between two
compartments filled with saline solution and an electric potential is applied
over it. DNA strands are then added to one compartment and allowed to diffuse
toward the nanopore, where they are captured by the electric field and threaded
through the pore. While a strand is passed through, the characteristic way in
which the bases influence the electric current through the nanopore is measured.
These measurements can then be decoded to retrieve the sequence of the DNA
strand (Figure 1).

In recent years, several key discoveries have brought reliable nanopore se-
quencing closer at a rapid pace. In a step-by-step exploration of the sequencing
process, these discoveries will be discussed next.

Choice of pore: biological versus solid-state Nanopore sequencing efforts
are sub-categorized in two groups based on the choice of nanopore. Most cur-
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Figure 2: Protein structure of the CsgG pore protein complex, a variant of which
(R9) is used in current generation MinION flow cells. Positive and negative
residues are colored blue and red respectively. PDB ID: 4UV3 [10].

rent efforts implement biological nanopores, which are protein polymers derived
from naturally occurring counterparts. Through genetic engineering, biologi-
cal nanopores are modifiable in terms of dimensions and placement of electrical
charge. These properties are also highly reproducible from one pore to the next.
Functionality can be further modified by attaching compatible enzymes to the
pore opening. Like their naturally occurring counterparts however, they need
to be embedded in lipid bilayers, which are generally prone to disruption, par-
ticularly when exposed to varying electrical potentials. In the MinION, this
was partly solved by constructing membranes out of a more stable single layer
of polymers, rather than the traditional bilayer. Solid-state nanopores on the
other hand are made by burning openings in a synthetic membrane using a
focused electron or ion beam [9]. Contrary to biological nanopores, solid-state
nanopores are compatible with a wide range of strong and chemically stable ma-
terials with equally diverse properties. Pores are also more easily parallelized
and integrated in electrical readout circuits. A major disadvantage at the mo-
ment is the reproducibility of the pore dimensions. They also do not combine
as easily with modifying enzymes. As a result, solid-state nanopores currently
produce noisier and less easily interpretable signals than biological nanopores.
In the following, the focus will lie on biological nanopore sequencing and the
term nanopore will refer to the biological kind.

Structure and charge of the nanopore One important structural prop-
erty that makes a biological pore suitable for DNA sequencing is a constriction
site at which the passing strand exerts the most influence on the electrical cur-
rent. The length of the constricting passage largely determines how many bases
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simultaneously influence the electrical current and thus the number of bases k
that is “read” simultaneously at a given time. k should be kept low enough
to allow recognition of a signature current for each different combination of k
bases, or k-mer, and high enough to allow for some overlap between subsequent
k-mers, as this benefits basecalling accuracy by allowing every base to be read
k times. Modified versions of both pore proteins that have seen application
in the MinION, MspA (designated R7 by ONT) and the currently used CsgG
[10] (designated R9, Figure 2), have a constricted passage that allows detec-
tion of manageable k-mer lengths. for the 10Å-long constriction of the CsgG
pore, basecalling models assume that five nucleotides influence the current at
one given time sufficiently to discern all different nucleotide combinations and
thus 5-mers are called.

For sequencing to commence, a DNA strand first needs to diffuse towards
one side of the pore, referred to as the cis-side, where it is captured by the
electric field resulting from the applied potential. It is then threaded through
the pore and extruded at the other end, called the trans-side.

Two forces should be considered. First and most importantly, the elec-
trophoretic force induced by a positive electric potential applied at the trans-
side attracts the negatively charged DNA and pulls it in. As negative particles
leave the cis-side and positive particles simultaneously move in the opposite
direction, a positively charged zone forms around the cis entrance of the pore,
strengthening attraction of DNA strands. Secondly, strand translocation is in-
fluenced by the electro-osmotic flow (EOF), the force induced by the net water
and ion flow through the pore. While a DNA strand is in the pore, the EOF
normally opposes the direction of the electrophoretic force and thus of translo-
cation, however this effect is relatively minor.

Through iterative optimization of internal architecture, it was found that
positive internal surface charges are important for efficient DNA capture [11,
12], while base recognition was found to improve with bulky or hydrophobic
amino acid side chains placed at the constriction site as these direct ion flow
toward the DNA strand [13]. Although the structure of the modified CsgG
pore [10] implemented in the current MinION flow cells (R9-type) has not been
publicly released by ONT, modifications to these properties have likely been
made.

Processive control It should be noted that the processive speed of the strand
is too high without any further modifications (between 2·106 and 10·106 bases/s
in wild-type MspA) [11]. Currently, the most successful way to exert control
over the speed has proven to be the addition of a motor enzyme, phi29 DNA
polymerase (DNAP) [14]. In a preparatory step, a poly-T or ”leader” adapter
is attached to the double-stranded DNA. The DNAP attaches to this adapter,
but due to specialized bases in the adapter sequence (left unspecified by ONT),
cannot unzip it at this stage [15]. Once the complex attaches to the cis-side of
the pore, the blockade is released, presumably due to the force exerted on the
strand as demonstrated by [16]. The DNA is fed through the pore in a step-wise
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Figure 3: Example of a MinION DNA read as raw data (grey line) and the
event data (red lines) extracted from it, corresponding to discrete sets of bases.

fashion (but due to absence of divalent cations and dNTPs, without actually
copying the strand like it would normally do [17]), where it can now be ”read”
at a reasonably regular pace. A modified phi29 DNAP is used in the MinION.
The latest release of this motor protein at the moment of writing (dubbed E8)
maintains an average throughput speed of 450 bases/s [18].

Reading the DNA strand During a MinION sequencing run, the potential
over the membrane is kept stable while the electrical current (in the pA-range) is
sampled at a frequency in the kHz range (Figure 3). This signal is characteristic
for the subsequent bases moving through the pore and will ultimately serve as
the basis for basecalling. As the amount of electrolyte is increasingly depleted
during the run, the applied potential (typically starting at -180mV) is further
decreased by 5 mV per two hours of runtime and increased by 5mV when the
MinION switches to another set of wells filled with fresher buffer (see next
section).

While the MinION can read the first strand of a dsDNA-stretch that is
threaded through the pore - by definition, the template strand - and discard
the complementary strand, it is possible to instead read the complementary
strand immediately after the template, thus performing a second read of the
same stretch (Figure 4). Combining reads of both strands has been shown to
increase sequencing accuracy significantly [6]. So far, ONT has provided two
ways of doing so; 2D-sequencing and its successor 1D2-sequencing (versus 1D
sequencing if only the template strand is read). To enable 2D-reads, an abasic
hairpin sequence (i.e. a bare backbone of DNA) is attached to the dsDNA,
connecting the 3’-end of the template and the 5’-end of its complement. After
the template strand has been read, the hairpin structure is threaded through te
pore, recognizable due to its abasic nature, followed by the complement strand.
The mirroring reads are then decoded jointly so that any sequencing errors may
be corrected. It should be noted however, that decoding 2D-reads currently
comes at a high computational cost [21]. Furthermore, the exact start and
end of the hairpin is not always clear from the signal. The hairpin may also
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Figure 4: The three categories of DNA reading chemistries for the MinION.
(A) When using 1D chemistry, only the template strand (blue) is threaded by
the motor protein (green) and read. The complement strand (red) is discarded
at the cis side of the pore. The tethers (dark-green) allow for selection of prop-
erly ligated complexes during sample preparation and attach to the membrane
to increase the availability of strands near pores during sequencing. (B) The
now-deprecated 2D chemistry connected template and complement strand us-
ing a hairpin, thus allowing sequencing of the complement strand immediately
after the template strand. (C) 1D2 chemistry, the successor of 2D, also allows
sequencing of both strands, but rather than attaching the two, the complement
strand is tethered to the membrane while the template is sequenced. After the
template strand is threaded through, the complement strand is drawn in and
the tether is pulled loose. Based on [19], [20] and [15].
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ligate strands in other ways than the intended one; for example, multiple reads
may be linked together by hairpins into chimeric reads [22]. Lastly, the read of
the complement strand is often threaded through the pore at lower speed [6],
possibly due to the force enacted by the strand rezipping while the complement
strand is still passing through the pore. In May of 2017, 1D2-read chemistry
was introduced as a replacement of 2D-read chemistry [20]. 1D2 chemistry does
not join the two strands, but rather attaches an adapter to the complement
strand, allowing it to attach to the membrane while the template strand is read.
Shortly after the template strand has completely left the pore, the complement
strand is pulled in and sequenced. Without the hairpin connecting the strands,
recognition of its start and end is no longer required and, as the strands are
effectively read as two separate reads, no drop in read quality is observed for
the complement strand.

Channel parallelization Lastly, throughput can be greatly increased by
reading the signal from multiple pores in parallel. The current generation of
the MinION’s disposable cartridges, called flow cells, can read the signal of up
to 512 pores in parallel (Figure 5). The flow cell is equipped with 2048 wells,
which are connected in groups of four to multiplexers (MUXs), the switches
that control which of the four cells per group is controlled and read out by
the circuits. During the initial platform quality check, DNA strands (of unre-
leased source and sequence) present in the buffer with which the flow cells are
shipped is sequenced to discern wells containing precisely one correctly inserted
pore from wells in which correct pore insertion has failed (e.g. no or multiple
pores were inserted) [23]. The latter scenario may occur, as the insertion of
pores is a stochastic process. In a second quality check, the MUX scan, each
MUX chooses three wells in order of signal quality and begins readout in the
best-quality well. As well quality is expected to decline during the run, the stan-
dard protocol switches to the second-best quality pore after eight hours, and
the third-best quality after another eight hours. This way, the best and most
output is expected in the first part of the run. While a run using a group of
wells is in progress, the circuits connected to the MUXs regulate the current in
each selected well individually. This also allows expelling of eventual blockades
from a pore, by temporarily reversing the current in the affected well while the
rest of the wells continue to function normally.
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Figure 5: Layout of a MinION flowcell grid. Large circles denote wells in the
grid, small black circles denote inserted nanopores. Each group of four wells
is controlled by a multiplexer (MUX). During an initial quality check, wells
that are unusable due to erroneous pore insertion are removed (red circles).
Right before sequencing, the wells are tested a second time and three wells per
MUX are ranked on signal quality (if possible). Sequencing of the sample will
then commence, starting read-out from the best-performing well (green) and
switching to second and third best (yellow) after eight hours.

3 Currently available software for MinION se-
quencing data

Following the process in section 2, a current signal is obtained which needs
to be translated into the corresponding DNA sequence. Pipelines used for this
purpose generally subdivide the signal into discrete stretches corresponding to a
particular set of k bases, called events, and then attempt to find the most likely
set of bases for each event [7, 8, 24]. Ideally, the processive control exerted
by the motor protein causes the strand to move one base further through the
pore between each event transition, such that each base in the k-mer is read
k times. Due to irregularity in the motor protein functioning and noise in the
signal, this is not always the case. Three transition scenarios may be observed.
(I) If the strand progresses exactly one base further from one event to the next,
this is called a ”step”. Alternatively, (II) the next event may denote a k-mer
located one or multiple bases further upstream, which is referred to as a ”skip”,
or (III) the segmentation process may incorrectly split up an event in two events
that correspond to the same k-mer, which is called a ”stay”. Steps, skips and
stays may be identified by comparing the bases in the read k-mers, however
this proves more difficult in short tandem repeat regions as subsequent events
would look the same for multiple transition scenarios. More specifically, in a
homopolymer stretch of length k or longer the difference between skips, steps
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and stays may be unclear. Similarly, repeats of m bases may cause problems
in discerning skips of (multiples of) m bases and stays. Such ambiguities have
been shown to be a major cause of deletions in current basecallers [7, 19, 25,
26].

To assess the quality of basecalling performance, a 3.6 kbase calibration
strand derived from the Lambda genome may be added to the sample [15].
The software controlling the MinION (MinKNOW) automatically detects reads
derived from the Lambda genome and separates those from the sample reads.
Some software tools use these strands to parameterize basecall correction alo-
gorithms [27, e.g.].

Once reads have been basecalled, they may serve several purposes. If SGS
reads are available, then those may then be mapped to the MinION reads to
correct sequencing errors pre-assembly [28], or to create large low-error contigs.
The latter goal may be achieved either by using MinION reads as scaffolds to
properly align short reads [29, 30] or by creating short accurate seed regions
from short reads, the gaps between which are then bridged by MinION reads
[26]. Both approaches were shown to result in accurate and highly continuous
de novo assemblies and identification of repeats that were collapsed in SGS-only
assemblies [26, 31]. In MinION-only assembly pipelines, overlaps between the
basecalled sequences are sought to create initial assemblies. Currently, the error-
prone nature of MinION reads necessitates a post-assembly error correction
(”polishing”), in which raw reads are mapped again to the assemblies until a
better consensus is reached [32]. Below, the different tools MinION users have
at their disposal to fill in the steps in this pipeline are discussed, along with
their strengths and weaknesses.

It should be noted that the presented list of tools is not exhaustive; the
focus of this section lies on tools that can be used in de novo MinION sequenc-
ing, without the need for other sequencing methods. Furthermore, only tools
that provide a full solution to their respective step in the assembly pipeline
are reported here. Notably, stand-alone read mapping tools exist which may
be used in combination with the assembly tools described in this section, how-
ever detailed descriptions are omitted for the sake of brevity. Readers with
an interest in these alternatives may want to look into GMAP [33], Graphmap
[34] and MHAP [35]. As current assemblers either include their own error cor-
rection module [36] or work with uncorrected reads [26, 37–39], stand-alone
pre-assembly error correction tools are excluded as well.

3.1 Segmentation and event detection

Before basecalling takes place, current basecalling tools require the continuous
signal to be divided into discrete sections, called events, each supposedly repre-
senting one combination of bases. Furthermore, the poly-T lead preceding the
sequence needs to be removed and, if 2D chemistry is used, the signal derived
from the template strand needs to be separated from that of the hairpin and
the complement strand. The latter process is commonly referred to as segmen-
tation. The order in which segmentation and event detection is executed may
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differ. For example, for ONT’s own analysis pipelines it is noted that segmen-
tation is performed first when basecalling occurs locally, while event detection
took place first if the (now discontinued) cloud-based EPI2ME platform service
was used [24].

For locally basecalled reads, both segmentation and event detection are per-
formed by the MinKNOW software provided by ONT. The software identifies
the hairpin by a characteristic double current spike, while a long poly-T signal
denotes the lead. For event detection, MinKNOW was reported to calculate a
simple t-statistic between sliding adjacent windows of set size [21]. Peaks in
the t-statistic above a certain threshold are then assumed to signify the border
between two segments. Optionally, the raw current signal can also be reported
for further analysis.

3.2 Basecallers

Several dedicated basecalling tools are already available to MinION users. In
this section, the underlying principles and implementation of these tools are
explored, along with their reported subsequent strengths and weaknesses. It
should be noted that an all-inclusive fair comparison, in which all basecallers are
optimized for the latest MinION chemistry and then run on the same dataset, is
currently lacking. Any comparison in this chapter is therefore based on accuracy
reports made by the authors of the open-source basecallers in their publications
(i.e. between the Metrichor basecallers and their own).

Metrichor basecallers Metrichor, a spin-off of ONT and its main devel-
oper of proprietary analysis software, maintains a range of basecallers that have
remained the go-to option for most MinION users. Initially, the Metrichor base-
callers relied on hidden Markov models (HMM) to find the biological sequence
underlying the segmented signal. As of early 2016, this model was replaced by a
more accurate recurrent neural network (RNN)-implementation. Currently sev-
eral RNN-based versions exist under different names; Albacore, Nanonet and
the MinKNOW integrated basecaller. Albacore and the MinKNOW version are
stable versions intended for regular MinION users. As of version 1.0.1, Albacore
was reported to improve homopolymer calling through the implementation of a
transducer, a feature that was transferred from the Scrappie basecaller (see be-
low) [40]. Nanonet is an unsupported version under continuous development and
makes use of the CURENNT library to implement its RNN [41]. A cloud-based
version was previously integrated in the EPI2ME platform, but this service has
been discontinued.

Due to the proprietary nature of the software, the source code of Albacore
and the MinKNOW basecaller is currently only open to developer users, while
that of Nanonet is openly available [42]. The community manual describes the
general procedure followed by all Metrichor basecallers as follows [43]. Long
reads are broken up into partially overlapping stretches, referred to as chunks.
This keeps the Viterbi-decoding process, required after the RNN has determined
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k-mer probabilities, tractable. The RNN then assigns a likelihood for every
possible five-mer to each event in the chunks.

Metrichor basecallers were reported to use a bidirectional long-short term
memory (BLSTM)-RNN [21] (Figure 7A). To calculate a hidden state’s out-
put, or activation, a regular (i.e. ”vanilla”) RNN takes a linear combination
of the activation of the previous hidden state and the current input and then
non-linearly transforms it to a value between -1 and +1 (often using a hyper-
bolic tangent function). A BLSTM-RNN uses a more elaborate structure, the
long short-term memory (LSTM) unit [44], which keeps an additional memory
composed of previously processed signals and modulates the way in which the
memory is updated, forgotten and used in calculating the current activation. A
BLSTM-RNN has several hidden layers of LSTM units, some of which use the
sequence of signals from one direction to form their memory and some from the
opposite direction.

RNNs implementing LSTM units have two advantages over vanilla RNNs.
First, LSTM units are able to use more information of the previous steps to
determine activations in a broader context (in the case of a basecaller, multiple
adjoining k-mers). Second, as depth and size of the network increases, vanilla
RNNs become more difficult to train using back propagation than BLSTM-
RNNs, as any updates to the weights of subsequent nodes are reduced too
quickly in the process. Thus, layers closer to the input nodes are trained much
slower, an issue commonly referred to as the vanishing gradient problem. In
LSTM units however, the memory also serves as a shortcut to propagate the
signal free of modification of the weights and thus of vanishing gradients. As a
result, BLSTM-RNNs do not suffer from the vanishing gradient problem [45].

A softmax function transforms the outputs of the last hidden layer into a
posterior probability per five-mer for each event. Posterior probabilities are used
to estimate basecalling quality scores (i.e. q-scores). Five-mers that would entail
a forbidden move considering the likelihood of surrounding k-mers are removed
at this point. The maximum likelihood sequence is then extracted from the
five-mer likelihoods through Viterbi decoding. Finally, basecalled chunks are
merged again.

The accuracy of the Metrichor basecallers is currently considered to be the
highest of all available basecallers. Before the switch to RNNs, an interna-
tional performance analysis estimated the accuracy at 88% for 2D basecalling
[6]. David et al. reported an accuracy of approximately 68% [7] for 1D basecall-
ing on human data, while Boza et al. reported 77% for 1D and 87% for 2D on
E. coli and K. pneumoniae genomes. After moving to an RNN-implementation
(as well as numerous improvements in used chemistry and hardware) this per-
centage has risen to over 95% [3].

Scrappie A proprietary basecaller by Metrichor and platform for ongoing
development, Scrappie was the first basecaller reported to specifically address
homopolymer basecalling. In previous MinION sequencing efforts, correctly
determining the length of homopolymers proved challenging, as the separation
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between states in a homopolymer stretch was not clear [26, 27, 46]. Scrappie has
been reported to process the raw current signal, rather than the event-detected
data.

As an initial performance assessment, an early-development version of Scrap-
pie was run in parallel to other Metrichor basecallers on reads of the human chro-
mosome 20. It was found that Scrappie indeed called homopolymer stretches
more accurately than the EPI2ME basecaller and Nanonet; homopolymeric
stretches of up to 16 bases were called accurately (although a slight over es-
timation of repeat units was seen between 5 and 15 bases), after which the
accuracy fell. In contrast, the EPI2ME basecaller and Nanonet failed to call
stretches longer than five bases. The effect was also shown in an analysis of
5-mer counts; Of the tested basecallers, Scrappie stayed closest to the reference
genome and did not underrepresent homopolymeric 5-mers [4]. Although these
results are promising, a thorough assessment of Scrappie in a later stage of
development is required to evaluate the true potential of the transducer-based
homopolymer calling.

Nanocall Nanocall [7] was the first open-source basecaller for the MinION
offered as an alternative to the proprietary Metrichor software. It was written
in C++. Nanocall accepts the segmented signal from minKNOW and assigns
k-mers to the events using a hidden Markov model (HMM).

An HMM assumes that, in a sequence of events, the probability of the next
event being of a certain nature - its state - is dependent only on the current
state. This makes sense for the basecalling of subsequent k-mers, as the prefix of
the next k-mer that is called should be the suffix of the previous. The ”hidden”
property of HMMs refers to the fact that the sequence of states - the path - is
not known. Instead, it has to be inferred with some probability from a derived
signal. In the case of a basecaller, this signal consists of electrical current levels
which are derived of a sequence of k-mers. The goal of the HMM is to find the
path that is most likely to have emitted the given signal (for a more thorough
introduction to HMMs, see [47]).

As described by David et al. [7], the HMM underlying Nanocall takes stay,
step and skip scenarios into account at each event transition. Although skips of
more than one base may occur in a sequence, Nanocall only considers one-base
skips to cut down on computational requirements, thus reducing the number
of neighboring states to 21 (i.e. stay, four different steps and sixteen different
one-base skips). During an initial training phase, state transition probabilities
for stays and skips of any number of bases, pstay and pskip respectively, are
estimated using the Baum-Welch algorithm (pstep is derived as 1−pstay−pskip)
[48]. The transition probability for exactly one base pskip1 is then derived as
pskip1 = pskip1/(1 + pskip). Note that all sixteen one-base skips have the same
transition probability (i.e. 1

16 ·pskip1), as do the four step scenarios ( 1
4 ·pstep). To

calculate emission probabilities, Nanocall relies on ONT’s pore models, which
provide mean µk and standard deviation σk of the Gaussian distribution N
modeling the current level that is characteristic for each different k-mer event,
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Figure 6: Example of the most likely path of k-mers, derived by Nanocall from
event data by a hidden Markov model (HMM). The path is chosen by maxi-
mizing the product of transition probabilities pstay, pstep and pskip1 (modified
by fractions in the case of skips and steps, as there are multiple states to which
these transitions could lead) and emission probabilities of k-mers.

as well as mean ηk and standard deviation γk of the inverse Gaussian IG mod-
eling each current level standard deviation. However, these parameters require
fine-tuning to the individual pore and the time passed since the strand entered
the pore i, as pore characteristics and buffer properties vary from one pore to
the next and change during use. To that end several additional parameters
are introduced, which are estimated separately for each read using expectation
maximization. A linear model adapts the mean to the individual pore for every
k-mer using the parameters shift and scale, while drift adjusts it for the time
passed since the strand entered the pore. var and var′ scale σk and γk respec-
tively. Concluding, the emission probability of k-mer k for event i is estimated
by multiplying meani and stdvi, calculated as follows:

meani ∼ N (scale · µk + shift+ drift · starti, (var · σk)2) (1)

stdvi ∼ IG(scale′ · ηk, var′ · γk) (2)

The most probable sequence is obtained through Viterbi decoding.
Performance of Nanocall at the moment of its publication, in March 0f 2016,

was reportedly on par with that of 1D analysis by the Metrichor basecallers, or
around 68% accuracy [7]. However, unlike the Metrichor basecallers, Nanocall
does not support 2D analysis, which allowed for a much higher accuracy in the
comparison by David et al. (around 85%) [7]. Since the Metrichor basecallers
switched to a recurrent neural network-approach, its 1D accuracy proved signif-
icantly higher than that of Nanocall as well. Moreover, Nanocall is incapable of
calling homopolymer stretches longer than its k-mer length, while current Met-
richor basecallers are able to do so. Therefore, as the authors currently state
on the Nanocall Github, it should be seen as a platform for testing out novel
basecalling ideas, rather than a prime choice for basecalling MinION data [49].
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Figure 7: Schematic representation of two types of memory cells used in RNNs.
Each requires a set of pointwise operations (circles) and neural network layers
(rounded squares) to calculate the activation of the next hidden layer. Colored
squares denote named substructures: the forget gate (red), input gate (green)
and output gate (yellow). (A) The long short-term memory (LSTM) unit main-
tains a separate memory stream (Ct) which allows information to be passed on
updated but unmodified otherwise. (B) The gated recurrent unit (GRU) is
simpler in design and does not require a separate memory stream. Note that
the forget gate is no longer a neural network layer. Forget and input gates are
considered fused into a so-called reset or update gate, however for the sake of
comparison elements have been depicted in the same structure as the LSTM.
Adapted from [52].

DeepNano Before Metrichor made its own switch from HMM- to RNN-
basecalling, the open-source basecaller DeepNano [8] already implemented a
form of RNN basecalling, booking a significant improvement in accuracy with
respect to the then-current Metrichor version (corresponding to the SQK-MAP-
006 kit, late 2015). DeepNano was written in Python, using the Theano library
[50].

The RNN employed in DeepNano consists of 3 hidden layers of 100 units per
layer for 1D basecalling and 4 hidden layers of 250 units for 2D. Rather than
LSTM-nodes, as currently used in Metrichor basecallers, DeepNano implements
gated recurrent units (GRUs) [51] to account for the vanishing gradient problem
during parameter training (Figure 7B).

Many slight variations of the GRU exist, but all differ from regular LSTM-
nodes in two aspects [45]. First, the GRU calculates the activation using only
the activation of the previous step and the signal in the current step, omitting
the usage of a separate memory input. Second, the GRU updates the hidden
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state using a single update gate, rather than separate forget and input gates.
The design of GRUs is thus simpler than that of LSTMs, while performance as-
sessments show that GRUs are able to achieve similar or slightly better accuracy
in different learning tasks [45, 53].

DeepNano’s RNN was trained separately for (hairpin-connected) 1D base-
calling and true 2D basecalling. As the exact alignment to the reference may be
uncertain, the algorithm alternately trains the RNN weights for 100 iterations
and then re-aligns the reads to the reference. At the moment of its release in
March of 2016, DeepNano was reported by its authors to make more accurate
calls than the Metrichor agent for both 1D calling (approximately 70% versus
77%) and 2D reads (approximately 88% versus 87%). However, as the Metrichor
agent has since then switched to an RNN-approach as well these comparisons
are outdated.

3.3 Assemblers

In the assembly stage, basecalled sequences are combined to reconstruct con-
tinuous parts of the genome as accurately and completely as possible. Assem-
bly of nanopore reads requires a different approach than that of SGS reads; as
nanopore reads are longer, finding a correct overlap should be easier, yet they are
more error-prone, which increases the uncertainty of overlaps. Because of these
differences a return of interest in overlap layout consensus (OLC) algorithms -
which were at the peak of their popularity in the era of Sanger sequencing -
is seen. De-Bruijn graph (DBG) assemblers, the more popular choice for SGS
reads, were reported to return lower quality assemblies of nanopore reads than
OLC-based methods, but proved faster in some cases [54]. A more detailed
comparison between OLC and DBG assemblers, along with implementations of
both approaches is discussed in this section. Software using traditional greedy
extension algorithms (e.g. SSAKE) was found to perform decidedly less well
in a de novo assembly setting, both in terms of assembly quality and required
computational resources [54], and are therefore omitted here.

Theoretical effect of nanopore read properties on assembly The
Lander-Waterman model for sequence assembly can be used to obtain an in-
sight into how long error-prone reads may affect the quality of the eventual
assembly for OLC and DBG assemblers [55, 56]:

N = G · db
L
· exp

(
−db

(L− T )

L

)
(3)

According to this model, the minimum number of contigs formed, N , is a
function of genome size G, base coverage depth db (i.e. the average number
of times each base has been sequenced), read length L and a minimum over-
lap threshold T , chosen such that the selected overlaps are considered correct
with a given confidence. For a genome of the same size, sequenced with the
same coverage and assembled with the same overlap threshold, the number of
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Figure 8: Theoretically expected number of contigs (N) when assembling a
genome of 3 · 109 bp (about the size of the human genome) with increasing
read length (L) with error-free reads, according to the Lander-Waterman model
[55]. As MinION read length for human reads currently averages at 10kb [4],
an assembly in fewer contigs than the current GRCh38 genome [58] is possible
according to this model, even with a considerable increase in overlap length, as
would be required due to high basecalling error rate.

contigs declines exponentially with increasing read length (Figure 8). On the
other hand, the error-prone nature of nanopore reads will likely require a higher
minimum overlap threshold for the same level of confidence, which causes an
exponential rise in contig number. As DBG assemblers work with k-mers rather
than individual bases, equation 3 does not directly apply in the same way. In-

troducing the k-mer coverage depth dk = db

(
L− k + 1

L

)
and considering that

the minimum overlap between reads should be k (as this is required to establish
a link between vertices), results in a slightly different form [56]2:

N = G · dk
L− k + 1

· exp

(
−dk

(
1− 1

L− k + 1

))
(4)

The implications for the effect of increased error rate and increased read
length on the continuity remain the same; increased k-mer size to account for
higher error rate and increased read length respectively cause an increase and
decrease in the minimum number of contigs.

It should be noted that the Lander-Waterman model only offers an estimate
of the potential minimal number of contigs, given ideal circumstances. It does
not take the effect of remaining assembly errors on continuity into account, or
the fraction of the genome consisting of repetitive elements. As discussed in
the previous section the effect of errors can be severe, and arguably more so

2The form noted here is different from that noted in [56], as k is assumed to be the minimal
overlap required to form an edge, while [56] assumes k+1. The interpretation given here is
thought to be more in line with definitions of DBG methods in other publications (e.g. [57]).
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for DBG-assemblers than for OLC-assemblers. Below several assemblers that
have been developed or adapted for use with nanopore data are discussed to
give a more practical view of how the advantages and disadvantages of long
error-prone reads pan out.

PBcR & Canu Originally developed for the first human genome draft, the
Celera assembly pipeline [59] and its extensions [36, 60, 61, i.a.] have remained
a popular choice in a growing landscape of OLC assemblers. Briefly, the Celera
assembler uses read overlaps to find contigs of which the structure can unam-
biguously be derived from overlap information, referred to as unitigs. It then
separates repetitive unitigs from unique ones and attempts to orient the unique
unitigs with respect to each-other. Where possible, gaps between unique unitigs
are filled with repetitive elements. As a high read error rate is detrimental to
the quality of the assembly [62], two different modifications to the pipeline are
available. The PacBio corrected Reads (PBcR) algorithm, originally developed
for the correction of PacBio reads suffering from similar error rates, uses ac-
curate short reads mapped with high confidence to the long reads to correct
errors. The assembly then proceeds as is usually done by Celera [63]. PBcR’s
successor, Canu [36], provides a solution that is more integrated with Celera
and does not require short accurate reads. The pipeline includes three stages;
correction, trimming and assembly. Overlaps are found using the efficient Min-
Hash alignment process (MHAP) [35], which hashes k-mers using different hash
functions and for each hash function stores the smallest integer to which a k-
mer of the sequence is hashed. Comparing the hashed k-mers per read results
in initial overlap hits, which are then used to perform error correction by con-
sensus seeking. By selecting overlaps for correction on quality but limiting the
number of overlaps a read can contribute to, Canu attempts to prevent masking
of true repeat variants. Shorter reads are used at this stage to improve accuracy
of longer reads. In the trimming step, overlaps are recalculated to locate and
filter out regions of low coverage and high error. Reads are overlapped two more
times to correct specific types of errors (i.e. missed hairpin sections/adapters,
chimeric reads) and adjust error rate per overlap, before the actual assembly
phase starts. With adjustments to account for erroneous alignments and resid-
ual errors, assembly essentially follows the same procedure as CABOG, another
Celera-based pipeline [60].

Due to its thorough yet relatively efficient correction steps, Canu is sig-
nificantly more accurate than both its predecessor Celera/PBcR and Min-
imap/Miniasm [32]. In a benchmarking effort on Enterobacter kobei reads, it
produced an assembly of higher contiguity, with fewer indels and mismatches.
This is in line with the accuracy assessment by its authors [36].

Minimap & Miniasm In terms of speed and computational efficiency, the
OLC-based pipeline consisting of Minimap and Miniasm [39] has a definite ad-
vantage over other existing tools [32]. This efficiency was reached through the
omission of the consensus step and the use of minimizers. Much like the Min-
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Hash algorithm used by Canu [36], a minimizer is a memory-efficient hashed
representation of a sequence. Minimap computes the set of minimizers of a
sequence, the ”sketch”, by finding the k-mers represented by the smallest hash
value within a certain window size of each position of the sequence (Figure
9). The inverse of each k-mer is also considered. Decreasing the window size
will increase the returned number of minimizers and allow for more accurate
alignment at the cost of increased computational requirements. Minimap then
performs all-versus-all mapping by identifying hits between minimizers of differ-
ent sequences. The found overlaps are passed on to Miniasm, which constructs
an assembly graph. First, artefacts are trimmed from each read by removing all
sequences outside the longest stretch with more than 3 times coverage. Then
reads contained within other reads are removed and small bubbles, less than 50
kb in length, are popped (i.e. a consensus is taken in cases where paths split
and later join up again). Finally, sequences can be extracted from stretches of
the graph without multi-edges to form unitigs. The error rate at this point is
practically the same as that in the raw reads, emphasizing that correct basecall-
ing is essential for the eventual quality of the assembly. The graphical fragment
assembly (GFA) output format of miniasm conveniently allows both graphing of
the uncorrected assembly and addition of consensus error correction tools such
as Nanopolish or Racon to the pipeline, though the latter increases walltime
and computational cost severely [32].

In March of 2016, the authors of Minimap and Miniasm reported assembly
of MinION reads of an E. coli genome in a single contig. In May of the same
year Judge et al. assembled an Enterobacter kobei genome in 16 contigs with
an N50 of 662 kb in two minutes, while the next fastest assembler (Canu) took
two hours. However their benchmark showed that the omission of an error cor-
rection step caused the eventual assembly quality of Enterobacter kobei to be
too low to properly assess by the QUAST analysis tool [32]. The inclusion of
the Nanopolish consensus correction tool after Miniasm improved the quality
of the assembly enough to perform a reliable quality analysis. However, the
pipeline was still under-performing compared to other tools. As Nanopolish
dramatically improves Miniasm assemblies primarily by correcting deletions in
homopolymeric stretches [64], it is expected that better basecalling of homopoly-
mer repeat regions beforehand would significantly improve Miniasm assemblies
as well.

TULIP As more reads are required to cover larger genomes and as the time re-
quired for all-vs-all overlapping increases quadratically with an increasing num-
ber of reads, it follows that the overlap step of OLC assemblers may take unfea-
sibly long for very large genomes. To tackle this issue, The Uncorrected Long
read Integration Process (TULIP) takes a different approach to read overlapping
[26]. Instead of all-vs-all alignment, short seed sequences are selected which the
assembler then attempts to align with long reads. This drastically cuts down
the overlapping complexity and makes efficient use of long reads to cover long
stretches of the genome between the seed regions. The resulting graph repre-
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Figure 9: The minimizer sketch procedure, demonstrated on a 15-base read,
using a window size of 5 and a k-mer value of 3. (A) To extract one minimizer
m, all k-mers and their complements are listed and hashed to a distinct integer
using hash function φ. The smallest hash value is then stored with its starting
position and a binary value denoting the strand on which it was found (0 for
forward and 1 for reverse). If a multiple of the smallest hash value is found
within a window, all are stored. (B) The minimizers of all windows in the read
are collected and stored as the sketch, M. As M is a set, double minimizers are
removed.
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sents seeds as vertices and the connecting reads as edges. In a graph cleaning
step, vertices with multiple in- or outgoing edges are revisited. Spurious and
superfluous edges are removed aggressively, thus producing a linear graph. Note
that, as the name implies, TULIP does not perform basecalling error correction.

The success of assembly using TULIP highly depends on proper seed se-
lection. To avoid spurious connections between reads, the seeds need to be
sufficiently unique in the genome and contain few sequencing errors. If avail-
able, SGS reads may be used to construct seeds, although with the increasing
accuracy of MinION reads the ends of long reads may be used as well. Apart
from cutting out the need for SGS methods, the latter approach has the added
advantage that pairs of seeds are connected by at least one long read. Further-
more, as TULIP is not able to assemble regions in which the gap between seeds
is larger than the read length, a proper seed density over the entire genome is
required. If a marker map is available for the genome, this information can be
used to control the distribution of seeds in the selection process.

As a first demonstration of TULIP’s efficiency, Jansen et al. assembled the
genome of the European eel Anquilla anquilla (approximately 850Mbp) with
18x coverage in three hours, requiring only 4.4GB of RAM and four threads
[26]. The resulting assembly was more continuous than the SGS-based refer-
ence genome. As was the case with Minimap/Miniasm however, the current
quality of MinION reads combined with the lack of an error correction step
necessitates post-assembly correction. The authors further showed that missed
seed alignments were the most commonly encountered issue during graph sim-
plification, followed by tangled alignments due to repetitive seeds and spurious
alignments. The seeds, constructed from short SGS reads, only underwent se-
lection by uniqueness which did not lead to an equal distribution over the entire
genome, however density remained high enough for successful assembly. The
authors noted that assembly using the tips of MinION reads as seeds proved suc-
cessful for E. coli genomes, but this has not been attempted for larger genomes
yet (personal communication, May 1, 2017).

HINGE Although long reads provide a definite edge when attempting to
resolve repeat regions, issues may still occur if not all individual repeats are
spanned by at least one whole read. In such cases, HINGE may provide a solu-
tion. Rather than attempting to resolve frayed rope structures in the assembly
graph afterwards, HINGE pre-processes the reads to separate repeat regions
that are entirely spanned by a read (and are thus more easily resolvable) from
those that are not, and collapses the latter beforehand [37].

First, HINGE attempts to identify reads that wholly or partly overlap a
repeat region. It does so by performing all-vs-all alignment and then selecting
those reads of which a stretch aligns to a proportionally larger number of other
reads than other parts. The intuition behind this is that reads from all copies
of a repeat region existing in the genome align to each other, thus causing a
characteristic abrupt increase in alignments for reads that overlap these repeat
regions. Repeat regions covered entirely by at least one read can be easily
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resolved and are omitted from the following procedure. Of the reads lining
the same repeat region, the reads that extend furthest into the repeat region
(regardless of the location of the actual copy), are designated ”hinges”. In
the subsequent greedy extension of the hinges, the path will split at the hinge
regions. Like Miniasm, HINGE outputs its assembly in the form of a graph. As
its authors show, this is particularly useful for circular genomes.

HINGE provides an elegant solution to long repeat resolution, by separating
resolvable regions from unresolvable ones on forehand. Its authors compared
HINGE to Miniasm on PacBio reads of 997 circular bacterial genomes and found
that overall, HINGE produced a completed genome in more cases than Miniasm
could [37]. Whether the precaution taken by HINGE is necessary is dependent
on the genome under consideration and the used reads; if the genome is known
to contain repeats longer than most of the reads, the described approach would
be justified.

Velvet Velvet [65] is one of the older open-source DBG assemblers that are
still maintained. It commences assembly by constructing two databases; one of
unique k-mers per read and one of k-mers occurring multiple times in different
reads. Each uninterrupted set of original k-mers per read is then merged, thus
retaining more long-range information. Jumping from vertex to vertex using
the information on the k-mers occurring multiple times, the edges are created.
Their multiplicities are retained for error correction. Simplification is achieved
by merging sequential nodes that do not branch. If short branches end in tips
and are connected by an edge of lower multiplicity than other branches, they
are removed. Bubbles are resolved by merging the paths if they are deemed
similar enough. Lastly vertices that are covered by few reads at this stage are
considered the product of chimeric reads and are removed.

Velvet’s performance on long error-prone reads has been compared to other
assemblers on one occasion [54]. Although it performed better than the other
DBG-assembler included in that benchmark (ABySS), it only occasionally
provided a slight advantage in computational efficiency over OLC assembler
PBcR/Celera and produced less contiguous assemblies.

ABruijn While more traditional DBG assemblers performed relatively less
well than OLC assemblers on assembling long error-prone reads, the adapted
approach taken by the ABruijn assembler has shown more promise [38]. To
account for the high error rate, ABruijn filters all k-mers occurring in the reads
by their frequency; if a k-mer occurs relatively few times, it is assumed that
it contains basecalling errors and it is removed. Then, k-mers are fused into
so-called ”solid strings”, sequences that contain no other occurring sequences
as substring. The A-Bruijn graph is then drawn by representing solid strings as
vertices and connecting them where connections exist in the reads. The edges
are weighted by the number of positions between the first bases of the connected
solid strings. The assembler consults the weights in this graph to quickly identify
overlaps between reads, allowing to select on a minimum overlap length and
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maximum overhang length. The assembly graph is constructed by starting with
the graph for an arbitrary read and continuously extending it by overlapping it
with other reads. ABruijn also includes an error correction routine, during which
a best consensus between reads is found by identifying low-error stretches and,
in between those stretches, choosing the consensus sequence that maximizes the
likelihood of the read sequences.

Unfortunately, the authors of ABruijn evaluated their assembler only on
E. coli MinION reads of an older and more error-prone chemistry (R7.3), and
compared their assembly to that of a Nanocorrect and Celera pipeline, which
is currently considered obsolete. In this comparison ABruijn performs better,
producing an error rate of 1.1% versus 1.5% for Nanocorrect/Celera, with the
majority of errors being deletions. How ABruijn stacks up against currently
popular assemblers optimized for MinION data on reads produced with up-to-
date chemistries is unclear. The more extensive assessment on PacBio reads
provided by the authors shows a dramatic decrease in error rate in te ABruijn
assembly in comparison to Canu’s, but requiring comparable running time.

3.4 Post-assembly correction tools

A number of tools attempt to improve assemblies by remapping reads to the
assembly and adapting the assembly to increase local resemblance to the reads.
These tools may be essential to use after assemblers that do not include a consen-
sus step themselves, such as Minimap/Miniasm and SMARTdeNovo, but have
also frequently been used to polish assemblies produced by the other assemblers.

Nanopolish Nanopolish attempts to find an optimal consensus between an as-
sembly and the raw current signal output by the MinION, by iteratively propos-
ing and evaluating small adaptations to the assembly based on the original reads
[46]. The proposal mechanism for adaptations works in two steps. First, reads
are aligned to the assembly and the resulting multiple alignment is divided in 50
bp subsequences of the assembly. For each read aligning partly or fully to a sub-
sequence, sections in which 5-mers perfectly align to the assembly are detected.
The consensus sequence between each pair of aligning sections is replaced by
the aligned read subsequence, creating an initial set of alternative candidate
sequences. In the second step, this set is further extended by proposing every
possible one-base deletion, insertion and substitution in the previously gener-
ated candidate sequences. Of this set, the sequence maximizing the likelihood
of observing the raw signal is picked. This process allows Nanopolish to ex-
plore a decent number of likely modifications, while remaining computationally
tractable.

Polishing an assembly with Nanopolish was found to improve assembly qual-
ity, regardless of the assembly tool used. One study on E. coli sequencing data
reported that identity to the reference genome rose from 89% to 99% when Na-
nopolish was applied after Minimap/Miniasm, while improvement after Canu
was more modest (98.2% to 99.6%) [64]. Although it addresses all types of er-
rors, a large part of the increase in accuracy is reached due to the correction
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Figure 10: Needleman-Wunsch alignment of two sequences (left), compared to
alginment of a partial order alignment (POA) graph and a sequence. In the
latter case, the graph dictates which steps in the matrix are allowed. Taken
from [67].

of homopolymeric stretches. Despite its efficient searching heuristic of block
replacement and mutation, running Nanopolish remains a time-consuming step;
on the error-prone assembly produced by the otherwise quick Minimap/Miniasm
pipeline, it may take up to a few extra days of CPU time to finish polishing [32,
64].

Racon Racon corrects MinION assemblies by finding a consensus sequence
between reads and the assembly through the construction of partial order align-
ment (POA) graphs. After alignment of the reads by a mapper of choice (e.g.
Minimap or Graphmap), Racon segments the sequence and finds the best align-
ment between a POA graph of the reads and the assembly. By default, the
alignment is performed using the Needleman-Wunsch algorithm, which can align
sequence and POA graph with little adaptation (Figure 10). The alignment pro-
cess is sped up by parallelization. Racon was reported by its authors to be two
orders of magnitude faster than the popular (yet currently deprecated) Nanocor-
rect after assembly of an E. coli genome by Miniasm, albeit not quite as good
at diminishing the error rate (to 1.31% versus 0.62% for Nanocorrect). Com-
pared to consensus steps in Falcon [66] and Canu [36] on that same assembly,
Racon remains an order of magnitude faster while producing similar error rates.
A closer look at the error rate reveals that the majority of errors are indels,
validating the need for homopolymer and tandem repeat corrections even in a
pipeline containing a polishing step with Racon. Finally, the total genome size
estimate following application of Racon was closer to the reference genome size
than the estimates of Canu, Falcon and Nanocorrect.
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4 Assessing MinION basecalling software

In order to select the appropriate analysis tool from the mentioned options
for a genome with a given set of characteristics, it is important that tools are
rigorously benchmarked on several datasets bearing different characteristics.
However, existing basecaller tools have not been evaluated as such. For some
MinION-compatible assemblers, a benchmarking effort has been made [32, 54,
68], however these investigations were done using older and multiple MinION
chemistries and basecaller tools, included relatively few assemblers and assessed
performances mostly on bacterial genomes. Indeed, the image they sketch of
assemblers may not provide today’s MinION users with the information required
to make an informed choice for their user case.

Alternatively, users may want to perform their own performance analysis,
using either their own data or the growing amount of freely available MinION
data on the web [3, 69]. To aid such investigations, a recommendation of several
appropriate metrics is given here, along with analysis tools that implement them
where possible.

Basecalling performance metrics In general, an evaluation of the ability
of a basecalling pipeline to make correct calls entails a comparison against a
reference sequence. This reference may be acquired using Sanger or SGS meth-
ods and thorough curation. MinION Reads are mapped to the reference to
obtain the sequence that is presumably underlying the read. It should be noted
that the correctness of the reference sequence may not be guaranteed, yet it
is assumed as the ground truth in basecalling performance assessments. The
NanoOK benchmarking tool automates this process and outputs many of the
metrics discussed below [70].

Plain basecalling accuracy, the fraction of correctly called bases in mapped
reads, is an easy to understand metric and often used in basecaller quality
comparisons [7, 8, 46]. A breakdown of misclassifications per type of error
- insertion, deletion and substitution - and, in the case of a substitution, the
involved base type, gives valuable added insight in any bias towards certain types
of errors. The Phred-score [71] is a related often-reported quality metric for
basecallers [72, 73] and is defined as −10 log10(Accuracy). Correlation graphs
between counts of k-mers, directly after basecalling or after assembly, and the
reference may further characterize basecaller biases for calling certain k-mers
[26, 46]. As a change in the basecalling routine is bound to have an effect on
computing efficiency, the call time per base and memory should be reported as
well.

Assembler benchmarks Drawing from Sanger and SGS assembly bench-
marking efforts, a plethora of metrics is available for the evaluation of assembly
quality. Many of these are implemented in QUAST [74], an often used assem-
bler benchmarking tool [32, 46]. A selection of included metrics relevant in this
work, i.e. those characterizing the size of constructed contigs and the correct-
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ness of the assemblies, is discussed here. In QUAST, a misassembly is defined
as a point in a contig that is either mapped to a different chromosome, to the
opposite strand or to a position of which the left end is more than 1 kb removed
from the correct position in the reference. QUAST reports differences between
the assembly and the reference in mismatches and indels per 100 kb. It should
be noted that these are not the same metrics as those calculated in a basecalling
performance benchmark; the used assembler or a post-assembly correction step
may attempt to find a consensus between reads and as such diminish the error
rate.

As noted previously, the long reads produced by the MinION are exception-
ally suitable to construct larger, fewer contigs than possible using only SGS
reads [32]. Thus, contig size and number are valuable metrics to assess this
strength of MinION-based assemblies. QUAST reports these values and addi-
tionally provides several variants of the Nx metric to further characterize contigs
in relation to the assembly and genome size. More precisely, the Nx value de-
notes the maximum contig length L, for which contigs of length larger than or
equal to L cover x percent of all bases in the assembly [74]. The N50 value is
most commonly reported. In a similar fashion, the NG50 denotes the maximum
contig length for which contigs larger than or equal to this value cover half of the
considered genome. As these scores characterize contig length without taking
the actual quality of the assembly into account, Gurevich et al. [74] introduced
the NA50 and NGA50 values, denoting the same metric calculated over contigs
that are split at points of misassembly. Additionally QUAST can construct
graphs showing how these Nx values change with increasing minimum contig
length.

QUAST also provides two metrics to characterize how the assembler covers
the genome with the given reads, regardless of contig size. The genome fraction
is defined as the number of bases covered by at least one mapped contig divided
by the total length of the reference genome. The duplication ratio is defined
as the total number of bases in aligned contigs divided by the number of bases
covered in the reference. Thus, if many aligned contigs correspond to the same
regions or overlaps are large, this value may be greater than 1.

Several additional metrics of interest were listed by Chu et al. [68]. Defining
an overlap between reads as correct if found in a mapping of the reads to a
reference, classic metrics of accuracy such as sensitivity, precision and false dis-
covery rate (FDR) characterize how well an assembler was able to find correct
overlaps, thus giving a lower-level indication of assembler performance. These
metrics can be displayed in a receiver operator (ROC)-like curve, in which sensi-
tivity is offset against FDR. Sensitivity and precision can also be combined into
a single metric by taking their harmonic mean, which is commonly reported as
the F1-score.

Lastly, an improvement in basecalling may have an effect on the compu-
tational efficiency of the assembler. Thus, it may prove insightful to compare
CPU time and memory usage before and after a correction step in basecalling.
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5 Discussion

Nanopore sequencing is a promising new venue in biology research. Inexpensive,
small, capable of producing long reads and freed from the need for nucleotide
labeling or amplification, it is conceivable that the MinION will make cost-
effective, fast and portable de novo whole genome sequencing of even complex
genomes possible in the future. In this review, an attempt was made to give an
updated overview of the progress in this field, focusing in particular on de novo
whole genome sequencing.

Available basecaller tools have been improving rapidly in accuracy. A no-
table recent improvement was made through the application of RNNs. For the
next step in a typical sequencing routine, assembly, OLC-assemblers are cur-
rently considered the best option for accurate nanopore-based assembly. The
choice of assembler should be adapted to the characteristics of the genome and
the priorities of the user. Canu is a complete and accurate solution, while main-
taining reasonable CPU times. However, for an assembler without included
error correction, Minimap/Miniasm is able to produce a decent assembly and,
without any post-assembly correction, is the fastest option available on smaller
genomes. For large complex genomes, TULIP may be the more tractable al-
ternative. Lastly, consensus error correction tools are currently highly useful.
Notably, Racon provides a computationally more attractive alternative to the
often-used Nanopolish.

Currently, the most prominent obstacle for de novo sequencing using the
MinION is the high error rate of the reads. Improving basecalling accuracy
would not only improve assembly quality in a direct manner, but may also
allow more computationally efficient assembly.

The active research community surrounding the MinION has booked great
progress in both the development of new applications and improvements on
accuracy of existing ones. ONT also continuously works on improvements for
both its hardware and software platforms, and regularly updates its users on
this.

Although these updates often entail welcome new features or some form of
accuracy improvement, it should be noted that this policy has also lead to some
difficulties. Developers of tools may not be able to keep pace with ONT when
evaluating, updating or calibrating their tools, and users may not always know
which tool is suited best to their needs. As a result, most published studies,
including tool benchmarking efforts, were conducted using older or multiple
chemistries. Although such growing pains are to be expected for a novel fast-
developing field of research, the MinION’s current state of development may
allow for some increase in stability, thus giving the user community the time for
proper evaluation.
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