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Abstract 

Technological advances have enabled low-input RNA-sequencing, paving the way for assaying           
transcriptome variation in spatial contexts, including in tissue systems. While the generation of spatially              
resolved transcriptome maps is increasingly feasible, computational methods for analysing the resulting            
data are not established. Existing analysis strategies either ignore the spatial component of gene expression               
variation, or require discretization. 

To address this, we have developed SpatialDE, a computational framework for identifying and characterizing              
spatially variable genes. Our method generalizes variable gene selection, as used in population- and              
single-cell studies, to spatial expression profiles. We apply SpatialDE to Spatial Transcriptomics and to data               
from single cells expression profiles using multiplexed In Situ Hybridisation (SeqFISH and MERFISH),             
demonstrating its general use. SpatialDE identifies genes with expression patterns that are associated with              
histology in breast cancer tissue, several of which have known disease implications and are not detected by                 
variable gene selection. Additionally, our model can be used to classify genes with distinct spatial patterns,                
including periodic expression profiles, linear trends and general spatial variation 

Main text 

Technological advances have helped to miniaturize and             
parallelize genomics, thereby enabling high-throughput         
transcriptome profiling from low quantities of starting             
material, including in single cells. Increased experimental             
throughput has also fostered new experimental designs,             
where in particular the spatial context of gene expression                 
variation can nowbe directly assayed,which is critical for                   
decoding complex tissues from multicellular organisms.           
The spatial context of gene expression is crucial in                 
determining functions and phenotypes of cells ​1,2​. In             
many cases a gene’s expression is determined by cellular                 
communication, and in other cases cells migrate to               
specific locations in tissue to perform their functions. 

Several experimental methods to measure gene           
expression levels in a spatial context have been               
established, which differ in resolution, accuracy and             
throughput. These include the computational         
assignment of transcriptome-profiles from dissociated         
cells to a spatial reference​3,4​, parallel profiling of mRNA                 
using barcodes on a grid of known spatial locations​5–7​,                 
and methods based on multiplexed ​insitu ​hybridization ​8,9               
or sequencing​10–12 ​. 

A first critical step in the analysis of the resulting datasets                     
is to identify the genes that exhibit spatial variation                 
across the tissue. However, existing approaches designed             
to identify highly variable genes ​13,14​, used in e.g.               
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single-cell RNA-sequencing (scRNA-seq) studies, ignore         
the spatial location and hence do not measure ​spatial                 

variability. Alternatively, researchers have applied         
ANOVA to test for differential expression between             
groups of cells, either derived using ​a priori defined                 
(discrete) cell annotations, or based on clustering​3,4,7,8,10​,             
with some clustering strategies incorporating spatial           
information​15 ​. Importantly, such strategies fall short in             
detecting variation that is not well captured by discrete                 
groups, including linear and nonlinear trends, periodic             
expression patterns and other complex patterns of             
expression variation.  

To address this, we here propose a computational               
approach termed ​SpatialDE for identifying and           
characterizing ​spatially variable genes (SV genes). Our             
method builds on Gaussian Process Regression, a class of                 
models that is widely used in geostatistics, also known as                   
Kriging​16​. For each gene, our model decomposes the               
expression variability into a spatial and non-spatial             
component (​Figure 1A​). Significant SV genes can then               
be identified by comparing this fullmodel to amodel that                     
assumes no spatial dependency of expression variation             
(​Figure 1B​, ​Methods​). 

In addition to identifying spatially variable genes,             
SpatialDE also allows for classifying the spatial patterns               
of individual genes, differentiating between linear           
trends, periodic expression profiles or general spatial             
dependencies (​Figure 1C​). By interpreting the fitted             
model parameters it is possible to identify the length scale                   
(the expected number of changes in direction in a unit                   
interval​16​) or the period length of spatial patterns for                 
individual genes (​Figure 1B​). Finally, SpatialDE achieves             
unprecedented computational efficiency by leveraging         1

computational tricks for efficient inference in linear             
mixed models​18 and precomputing operations where           
possible (​Methods​, ​Figure 1C​). Taken         
together,SpatialDE is a widely applicable tool for the               
initialanalysis of spatial transcriptomics datasets. 

1 Comparison made with implementation of the same        
model in ​Stan​17 
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First, we applied our method to Spatial Transcriptomics               
(ST) data from breast cancer tissue​7​. Briefly, ST gene                 
expression levels are derived from thin tissue sections of                 
frozen material, placed on an arraywith poly(dT) probes                 
and spatially resolved DNA barcodes in a grid of “spots”.                   
Following permeabilization, the mRNA is captured by             
the probes, and the spatial location can be recovered from                   
sequenced barcodes. The resulting gene expression           
profiles can be analysed in contextwith hematoxylin and                 
eosin (HE) stained microscopic images of the tissue               
(​Figure 2A​). 

SpatialDE identified 115 SV genes (FDR< 0.05). Notably,                 
seven highly ranking genes were also included in a set of                     
14 genes with known roles in the disease that were                   
highlighted in the primary analysis of the data (​Figure                 

2C, ​red text). Significantly SV genes were enriched for                 
collagens, which distinguish tissue substructure​19         
(Reactome term “Collagen formation”, P < 5 * 10​-14 using                   
gProfiler​20​, ​Supp. Table 1​). Additionally, we identified             
the autophagy related gene, ​TP53INP2, surrounding the             
fatty tissue (Q = 0.022, ​Figure 2B, ​extended examples                 
Supp. Fig. 1​). Interestingly, the set of SV genes also                   
included the cytokines ​CXCL9 (Q = 5.4 * 10​-4​) and                   
CXCL13 (Q = 1.3 * 10​-4​), both of which are expressed in a                         
visually distinct region (​Figure 2A​, black arrow),             
together with the IL12 receptor subunit gene ​IL12RB1 (Q                 
= 2.8 * 10​-4​), indicating a potential tumour related                 
immune response in the tissue. Notably, neither of these                 
genes (and N=29 others), were identified as differentially               
expressed when applying clustering in conjunction with             
an ANOVA test between the identified groups of cells                 
(​Supp. Fig. 2​). Nor did they have high rank based on                     
conventional Highly Variable Genes measures (such as             
the mean - CV2 relation​13 or mean - dropout rate                   
relation​21​), measures that do not take the spatial context                 
into account (​Supp. Fig. 3​). Generally, we observed that                 
variable genes detected by SpatialDE are complementary             
to existingmethods, where in particular spatially variable               
genes with localized expression patterns, as indicated by               
small fitted length scales, or periodic patterns, are not                 
detected by methods that ignore spatial contexts (​Supp.               

Fig. 2E​). Finally, we confirmed the statistical calibration               
and the robustness of SpatialDE using randomization             
experiments (​Supp. Fig. 4​). 

As a second application, we considered a study ofmouse                   
olfactory bulb​7​, profiled using the same ST protocol.               
Again, SpatialDE identified SV genes with clear spatial               
sub-structure, consistent with the matched HE stained             
image (​Supp. Fig. 5A-B​). These included canonical             
marker genes highlighted in Stahl et al, such as ​PENK​,                   
DOC2G​, and ​KCTD12​, but also additional genes that               
define the granule cell layer (GCL) of the bulb. Genes in                     
the latter set were classified as periodically variable with                 
period lengths corresponding to the distance between             
the centers of the hemispheres (including ​KCNH3​, ​NRGN ​,               
or ​MBP with 1.8 mm period length, ​Supp. Fig. 5C​).                   
Other genes with periodic patterns, such as the vesicular                 
glutamate transporter ​SLC17A7​, were identified with           
shorter periods (1.1 mm), and inspection revealed             
regularly dispersed regions, potentially identifying a           
pattern of regions with higher neuron density​22​. This               
suggests that periodic expression patterns in tissue             
contexts are a biological feature of interest to understand                 
tissue biology.  

Taken together, these results demonstrate that SpatialDE             
can be used to characterize clinically relevant features in                 
spatial tissue samples in the absence of ​a priori                 
histological annotation. 

SpatialDE is not limited to sequencing technologies, and               
can be applied to any expression datatype with spatial                 
and/or temporal resolution. To explore this, we applied               
the method to data generated using multiplexed is single                 
molecule FISH (smFISH), a recent technological           
development that allows for quantifying gene expression             
with subcellular resolution for larger numbers of target               
genes in parallel. Briefly, probes are hybridized to RNA                 
while carrying barcodes of fluorophores, which allows             
for quantifying gene expression of up to several               
thousands of probes​23 ​ using high-content imaging. 
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We applied SpatialDE to Multiplexed smFISH data of               
cells from mouse hippocampus, generated using           
SeqFISH​8​. This study considered 249 genes that were               
chosen to investigate the cell type composition along               
dorsal and ventral axes of the hippocampus (​Figure 2D​).                 
SpatialDE identified 32 SV genes (FDR<0.05), with the               
three highest ranking genes, ​MOG ​(Q= 10​-14​), ​MYL14​, (Q                   
= 10​-14​) and ​NDNF (Q = 2 * 10​-12​) displaying a distinct                       
region of lower expression (​Figure 2E​, black arrows).               
Again, SpatialDE identified genes with different types of               
spatial variation, including linear trends (N=5) and             
periodic patterns (N=8, ​Figure 2F​, extended examples in               
Supp. Fig. 6​). 

SpatialDE can also be used to test for spatial expression                   
variation in cell culture systems, where spatial variation               
may not be expected ​a priori​. We explored this, and                   
considered data from another recent multiplexed           
smFISH dataset generated using MERFISH with 140             
probes from a human osteosarcoma cell culture​9 (​Supp.               

Fig. 7A-B​). Interestingly, the model revealed that a               

substantial proportion of the genes assayedwere spatially               
variable (N=92, 65%, FDR < 0.05). This reconstitutes               
results from the primary analysis, where the authors               
noted spatially restricted populations of cells with higher               
proliferation rates. Indeed, six of the seven genes               
highlighted as differential between proliferation         
subpopulations were identified as SV genes (e.g. ​THBS1               
and ​CENPF1​, ​Supp Fig. 7C)​. This result is also consistent                 
with previous studies which observed that high             
confluence in cell culture, promoting cell-to-cell           
communication and crowding, leads to spatial           
dependency in gene expression​24​. We also considered             
negative control probes in the data, which were not                 
detected as spatially variable,thereby confirming the           
statistical calibration of SpatialDE (​Supp Fig. 7D​).

Herein, we have presented a method for identifying               
spatially variable genes. The commoditization of           
high-throughput experiments, including spatially       
resolved RNA-seq, means that there will be a growing                 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 28, 2017. ; https://doi.org/10.1101/143321doi: bioRxiv preprint 

https://paperpile.com/c/YCL9CQ/2UJj
https://paperpile.com/c/YCL9CQ/zh9M
https://paperpile.com/c/YCL9CQ/vCtY
https://doi.org/10.1101/143321
http://creativecommons.org/licenses/by/4.0/


 

need for methods that account for this newdimension of                   
expression variation, such as SpatialDE. 

We applied our model to data from multiple different                 
protocols, from Spatial Transcriptomics to multiplexed           
single-molecule FISH, considering both tissue systems           
and cell lines. The extent of spatial variationwe observed                   
in cell lines may be surprising, a result that is consistent                     
with recent studies that have reported coordinated             
expression changes across neighbouring cells ​24​. The           
method is also applicable to temporal data from               
time-course experiments ( ​Supp. Fig. 8 ​), and it can be                 
appliedwithoutmodification to 3-dimensional data from             
e.g. ​in situ sequencing when such technologies             
mature​11,12 ​. 

SpatialDE generalizes previous approaches for the           
detection of highly variable genes,most notablymethods               
designed for conventional scRNA-seq ​13 ​. Our model           

separates spatial variation from non-spatial effects,           
which may include biological and technical variability.             
Underlying this approach is the assumption that             
technical noise is independent across sampling positions,             
which circumvents the need to explicitlymodel technical               
sources of variation, which enables applications to             
virtually any protocol. 

Future extension of SpatialDE could be tailored towards               
specific platforms, for example to make use of spike-in                 
standards or unique molecular identifier, thereby           
explicitly estimating technical variation. Another area of             
future work are extensions for incorporating           
information about the tissue makeup or local differences               
in cell density. Our framework also opens up the                 
possibility for future work to define spatial patterns that                 
are common to groups of genes, using clustering               
combined with the spatial Gaussian Process framework ​25 

 

Availability of code and data​. ​SpatialDE is implemented in Python 3.5. The open source implementation is available from                  
https://github.com/Teichlab/SpatialDE together with a Stan version, and can be installed from PyPI using the command ‘pip install                 
spatialde’. An R-based Bioconductor implementation is in preparation. Tutorials and example vignettes for reproducing the               
presented analyses can be obtained here. The pre-processed datasets from the public studies we have considered can be                  
obtained from the same repository. 
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Figure Legends 

Figure 1 

Overview of SpatialDE for the identification of spatially variable genes. ​(​A​) ​In spatial gene              

expression studies, expression levels vary in ways that depend on spatial coordinates. SpatialDE defines              

spatial dependence for a given gene using a non-parametric approach, testing whether gene expression              

levels at different locations covary in a manner that depends on their relative location. (​B​) SpatialDE                

partitions the expression variation into a spatial component (using functional dependencies f(x,y)),            

characterized by alternative spatial covariances, and observation noise (Psi). Alternative spatial           
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covariance models considered by SpatialDE: no spatial effect (null model), general spatial, periodic spatial              

patterns and linear trends. Example expression patterns with the covariances plotted below corresponding             

matrix. (​C​) Computational efficiency of SpatialDE compared to a Stan​17 implementation of the same              

model. Caching operations and linear algebra speedups are used where possible, enabling genome-wide             

analyses with thousands of samples. Benchmarks performed on a late 2013 iMac with 3.2 GHz Intel Core                 

i5 processor. 

Figure 2 

Applications of SpatialDE to Spatial Transcriptomics and data generated using SeqFISH. ​(​A​)            

Correlated image of breast cancer tissue from Spatial Transcriptomics​7​. (​B​) Visualization of nine selected              

spatially variable genes (out of 115, FDR<0.05). The black scale bar corresponds to 1 mm. For genes                 

identified with periodic dependencies, the orange bar shows the fitted period length on the same scale.                

Analogously, the blue bar shows the fitted length scale for genes with general spatial trends. 2D plots                 

show the relative expression level for genes across the tissue section coded in color. Stars next to gene                  

names denote significance levels (* Q < 0.05 , ** Q < 0.01, *** Q < 0.001) of spatial variation. Insets in                      

lower left show the posterior probability of these three function classes for each gene. (​C​) Proportion of                 

variance (x-axis) explained by spatial variation (FSV) versus adj. P-value (y-axis, FDR adjusted​26​) for              

12,856 genes. Dashed line corresponds to the FDR=0.05 significance level (N=115 genes). Genes             

classified as periodically variable are shown in orange (N=22), genes with a general spatial dependency in                

blue (N=93). Disease-implicated genes annotated based on prior knowledge (Stahl et al.​7​) are indicated              

with red labels, and are significantly enriched in SpatialDE results (P=10​-11​, Fisher exact test). Other               

representative genes selected by stratifying over function periods / length scales are annotated with black               

labels. Size of of points indicate certainty in the estimate of Fraction Spatial Variance (FSV), larger points                 

have smaller standard deviation. The X symbol show the result of running SpatialDE on the estimated                

total RNA content per spot. (​D​) SeqFISH data from a region of mouse hippocampus from Shah ​et al​8​.                  

Black scale bar correspond to 50 µm, Voronoi tessellation representative of tissue structure. (​E​)              

Expression patterns of six selected SV genes analogous to panel B (out of 32, FDR < 0.05). Shown are                   

genes with linear (​htr3a​), periodic (​foxj1​), and generally spatial models. Black arrows indicate distinct              

region of low expression of ​Mog​, ​Myl14 ​and ​Ndnf​. (​F​) Proportion of variance (x-axis) versus adj. P-value                 

(y-axis, FDR adjusted) for 249 genes, as in (C). Genes with a linear dependency are highlighted in green. 
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Supplementary information 

Supp. Methods 

Full derivation of the SpatialDE model. 

Supp. Fig. 1 

Expanded example of Breast Cancer tissue genes. ​Spatial expression pattern for 37 additional SV              

genes (out of 115), selected to represent patterns from different function periods and length scales to                

illustrate different spatial patterns. 

Supp. Fig. 2 

Comparison to differential expression analysis using clustering. (A) ​Principal Component Analysis of            

individual “spots”, color coded by cluster membership for N=4 clusters (identified by Bayesian Gaussian              

Mixture Modelling). ​(B) Bayesian Gaussian Mixture Model cluster probabilities, the 250 spatial breast             

cancer “spots” can be clustered into four groups when ignoring spatial structure. (​C​) Visualization of               

cluster membership in the original tissue context. (​D​) Comparison of P-values from an ANOVA test               

between clusters (x-axis) with significance from SpatialDE (y-axis). 83 genes are identified as significantly              

variable by both approaches; 32 genes are significant only in the SpatialDE test, among them immune                

genes. (​E) ​Histogram of the fitted length scales for SV genes detected by both approaches (blue) and SV                  

genes detected only by SpatialDE (orange). Genes detected only by SpatialDE have smaller length              

scales, indicating more localized expression patterns. 

Supp. Fig. 3 

Comparison of SpatialDE to other measures of expression heterogeneity. ​(​A​) Comparison of            

P-values from SpatialDE to other commonly used summary statistics - Upper left: Mean, Upper right:               

Variance, Lower left: CV2 (squared coefficient of variation), Lower right: Dropout rate (fraction of samples               

a gene is not detected in). Random selection of significant SV genes highlighted in red for context. (​B​)                  

Comparison with common strategies to define highly variable genes, which are based on regression              

models between summary statistics: Relation with CV2 (Upper) or Variance (Middle), or with dropout              

fraction (Bottom). Model residuals are compared with the SpatialDE significance to the right of the relation.                

Polynomial regression for CV2 and Variance, logistic regression for dropout rate. Significant SV genes as               

identified by SpatialDE are shown in grey. Other, non-significant genes are shown in solid black. 
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Supp. Fig. 4 

Statistical calibration of SpatialDE. ​(​A​) QQ-plot of expected P-values (Chi2 distribution with 1 degree of               

freedom) compared to observed P-values derived using the log likelihood ratio test in SpatialDE. (​B​) To                

simulate data from an empirical null, without spatial structure, expression values were shuffled among the               

sampled coordinates. Shown is ​COL3A1 expression as an example. (​C​) Adj. P-values for genes on               

shuffled data, which are generally below the FDR = 0.05 threshold. (​D​) Analogous QQ-plot as in A on                  

shuffled expression values. P-values follows the null distribution, indicating that the model is calibrated. 

Supp. Fig. 5 

Application to Mouse Olfactory Bulb tissue. (​A​) The corresponding image for mouse olfactory bulb              

data from Stahl et al. (​B​) SpatialDE identified 67 spatially variable genes (SV genes, FDR < 0.05). Of                  

these, 19 were assigned to periodic functions. Genes highlighted in Stahl et al are displayed in red,                 

representative examples of SV genes are annotated with black text (Colors and sizes as in Figure 2). (​C​)                  

Representative examples of SV gene with different periods and length scales (indicated in orange and               

blue bars, respectively, relative to scale bar). Black scale bar correspond to 1 mm. Colors and significance                 

levels as described in Figure 2. 

Supp. Fig. 6 

Expanded examples of significant spatially variable genes for the mouse hippocampus dataset.            
Visualization of 24 SV genes with from the mouse hippocampus SeqFISH data, showing selected genes               

with periodic, linear, and general spatial dependencies with different estimated length scales. Black scale              

bar correspond to 50 µm. 

Supp. Fig. 7 

Application to MERFISH data. (​A​) In MERFISH study of an osteosarcoma cell culture from Moffitt et al​9                 

the majority of genes are found spatially variable. 21 of 92 significant SV genes were assigned to a                  

periodic function by the model, and 9 genes had linear functions. Negative control probes are indicated                

with red labels. Genes indicated as enriched in proliferating cells in the original study marked in green,                 

and depleted genes in blue. (​B​) Visualization of the MERFISH data by plotting general RNA probes in pink                  

and MALAT1 probes in blue on two 512 x 512 virtual pixel grids at different scales. The original imaged                   

region was 5.2 mm wide and 8.2 mm high totalling 38,594 cells (upper). We analysed a region of 1 mm x                     

1 mm in the middle of the cell culture with 1,056 cells (lower). (​C​) Expression levels in the cell culture                    

region visualised for selected SV genes with various fitted periods and length scales (Significance levels               
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and colors as in Figure 2). Black scale bar correspond to 200 µm. (​D​) Fraction of gene probes and control                    

probes detected as significant SV genes as a function of the family-wise error rate (FWER). The number                 

of significant control probes was in line with the FWER. 

Supp. Fig. 8 

Application to expression time-course data. ​(​A​) When applying SpatialDE to developmental time            

course data from Owens et al​27​, the majority of genes were found differentially expressed (21,009 out of                 

22,256 genes, FDR < 0.05). Of these, 241 were assigned to periodic patterns, and 269 were detected with                  

linear trends. Colors and point sizes as in Figure 2. The X marks indicates result of running test on ERCC                    

content and number of detected genes. (​B​) Examples of temporally DE genes of various periods and                

length scales. Black scale bar corresponds to 12 hours in the time-course, periods and length scales of                 

functions are indicated relative to this. Collection time in units of hours post fertilization (hpf) (​C​) The                 

expression patterns of the top 400 significantly SV genes are visualised, ordered by the time they reach                 

their highest expression value. Example genes from ​B​ are annotated. 

Online Methods 
The method section is attached as supplementary file (Supplementary methods). 
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SPATIALDE - METHODS

VALENTINE SVENSSON, SARAH A TEICHMANN, OLIVER STEGLE

1. SpatialDE model

SpatialDE builds on the Gaussian process framework, thereby assessing the
evidence that the gene expression patterns of individual genes are explained by
functions with different spatio-temporal dependencies.

In the following we assume that y = (y1, . . . , yN ) corresponds to a vector of
expression values at N spatial locations X = (x1, . . . ,xN ) for a given gene. The
coordinates of the spatial locations are typically two-dimensional, i.e. xi = (xi1 , xi2),
however the model is general and can also be applied to any dimensionality such as
three-dimensional or uni-dimensional (e.g. time-series) data.

1.1. Gaussian Processes regression. A Gaussian Process (GP) is a probability
distribution over functions y = f(x),

f ∼ GP(k (x,x′ |θ)).(1)

A Gaussian process model HGP is defined by the covariance function k(x,x′ |θ),
which parameterizes the dependency between any pair of function values based on
their inputs x and x′; and θ denotes a vector of additional hyperparameters of the
covariance (see below).

Any finite representation of a GP for an observed dataset can be obtained by
marginalizing over all unobserved function values, resulting in a finite realisation of
joint Gaussian distribution:

p(y |HGP) = N
(
y
∣∣∣µ1, σ2

s ·
(
Σk(x,x′ |θ) + δ · I

))
.(2)

Here, µ1 account for mean effects (bias term) and the scaling parameter σ2
s deter-

mines the proportion of variance explained by the spatial covariance. The term
σ2
sδI explains iid observation noise, i.e. variation in the data does not follow the

spatial pattern.
The covariance matrix is derived by evaluating the covariance function for all

pairs of observed datums Σk(x,x′ |θ)i,j
= k(xi,xj |θ), for which the parameters θ

can be determined using maximum likelihood (see Secion 1.4).

θ̂ = argmax
θ

LL(HGP,θ)(3)

= argmax
θ

log p(y |HGP,θ),

where LL(HGP,θ) denotes the log marginal likelihood.

Date: May 28, 2017.
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2 VALENTINE SVENSSON, SARAH A TEICHMANN, OLIVER STEGLE

1.2. Covariance functions. To test and compare between alternative hypothesis of
spatial variation of expression patterns, we asses GP model with different covariance
functions.

• Null model
knull(x,x

′) ∝ 0

• General spatial pattern (known as the RBF or Gaussian kernel)

kspatial(x,x
′ |θ) ∝ e−

1
2L2 |x−x

′|2

• Linear trend
klin(x,x′ |θ) ∝ xx′

T

• Periodic pattern (known as the cosine kernel)
kperiodic(x,x

′ |θ) ∝ cos( 1
p |x− x′|)

Interpretation of model parameters. As the scale is parameterized using σ2
s in Eq. 2,

the proportionality factors does not change the marginal likelihood. However, in
order to be able to interpret the parameter σ2

s as the proportion of variance explained
we use Gower’s transformation to correct the σ2

s parameter for the structure in the
covariance matrix Σ [Kostem and Eskin, 2013]:

g =
Tr(PΣP )

n− 1
,

where

P = I − 1

n
11T.

This allows for defining the Fraction of Spatial Variance, FSV =
σ2
s ·g

σ2
s ·g+σ2

s ·δ
,

which corresponds to the proportion of varaince explained by the spatial variance
component compared to the total variance.

1.3. Statistical significance and classification of spatially variable genes.

P-values from hypothesis testing. Significant spatial variance component are tested
via mode comparison:

p(y |H1) = N
(
y
∣∣∣µ1, σ2

s ·
(
Σk(x,x′ |θ) + δ · I

))
,

p(y |H0) = N
(
y
∣∣µ1, σ2

s · I
)
.

Here, H1 denotes the alternative model that includes both a spatial and non-
spatial component and H0 denotes the null model, motting a spatial variance
component.

The parameters of both models are optimised using maximum likelihood (see
Section 1.4). Significance of the spatial variance component is then assessed using a
likelihood ratio (LLR) test between the alternative and the null model. P-values
can be estimated in closed form, assuming that the LLR’s under the null model are
χ2 distributed with one degree of freedom.

To correct for multiple testing, we use the FDR based strategy
by [Storey and Tibshirani, 2003] yielding Q-values. Unless stated otherwise, we
report genes at Q-Value < 0.05 as significant spatially variable.
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SPATIALDE - METHODS 3

Calibration of the P-values was investigated through negative control probes
in the MERFISH experiment. The fraction of significant negative control probes
behave as expected with regards to the family-wise error rate (Supp. Fig. 7D).

Classification of spatial patterns using model comparison. In order to identify in-
terpretable spatial trends, we can compare the spatial model to alternative models
that make stronger assumptions about the spatial dependency. Specifically, for sig-
nificant spatially variable genes (e.g. Q-value < 0.05), we compare GP models with
alternative prior covariances: the general spatial model using an RBF kernel, a GP
priors with periodic covariance functions, using the cosine kernel (See Section 1.2),
and a GP prior with linear covariance function.

As these models differ in their number of parameters, we employ the Bayesian
Information Criterion (BIC), which has been shown to be effective for model
comparisons of alternative GP models [Lloyd et al., 2014]. The BIC penalises the
maximum log-likelihood by the number of effective parameters in the model, thereby
accounting for differences in model complexity:

BIC = log(n) ·M − 2 · L̂L.

Here, L̂L denotes the log marginal likelihood (Eq. 3), M corresponds to the number
of observations and n denotes the number of hyperparameters of a given model.
Each gene is then classified into different spatial trends by selecting the GP model
that minimises the BIC.

We also use the BIC to estimate posterior probabilities of specifi models. Briefly,
the BIC is an estimate of − log p(x,y|Hi), which allows for deriving an approximate
form of the marginal likelihood of the model Hi,

p(Hi|X,y) =
1

Z
· p(X,y|Hi) · p(Hi) =

1

Z
·
∫
θ

p(X,y|Hi, θ)dθ ≈ −
1

Z
·BICi,

where

Z =
∑
i

p(X,y|Hi) · p(Hi) ≈
∑
i

−BICi.

We consider the models {Hspatial,Hlinear,Hperiodic} described above (Section 1.2),
deriving posterior probabilities of these models given the data.

1.4. Parameter inference. Maximum likelihood inference (Eq. 3), requires de-
termining µ, σ2

s , δ and, depending on the model, additional hyperparameters of
the selected covariance function (e.g. the length-scale l, see Section 1.2). The log
likelihood is

LL(y,X, θ) = −1

2

(
n log(2π)

+ log(|σ2
s · (Σ` + δ · I)|) + (y − µ)T (σ2

s · (Σ` + δ · I))−1(y − µ)
)

Evaluation of the likelihood requires inverting the covariance matrix Σ` which
depend on the parameter `, this makes gradient based optimisation of ` a key
bottleneck in inference. We comment on this later, but for now, assumes ` is
known. To circumvent inverting the entire matrix σ2

s · (Σ` + δ · I), we follow
[Lippert et al., 2011] and factor the matrix by spectral decomposition:

σ2
s · (Σ` + δ · I) = σ2

s · (USUT + δ · I) = σ2
s · U(S + δ · I)UT
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4 VALENTINE SVENSSON, SARAH A TEICHMANN, OLIVER STEGLE

Now if we write the log likelihood as a function of δ, σ2
s and µ, we obtain

LL(δ, σ2
s , µ) =−1

2
(n log(2πσ2

s) + log(|Σ`+ δ · I|) +
1

σ2
s

(y−µ)T (Σ`+ δ · I)−1(y−µ))

= −1

2
(n log(2πσ2

s) + log(|U(S + δI)UT |) 1

σ2
s

(y − µ)T (U(S + δ · I)UT )−1(y − µ))

= −1

2
(n log(2πσ2

s) + log(|U ||S + δ · I||UT |) +
1

σ2
s

(y − µ)TU(S + δI)−1UT (y − µ))

=−1

2
(n log(2πσ2

s)+log(|S+δ ·I|)+
1

σ2
s

((UTy)−(UT 1)µ)T (S+δ ·I)−1((UTy)−(UT 1)µ))

= −1

2
(n log(2πσ2

s) +
n∑
i=1

log(Si,i + δ) +
1

σ2
s

n∑
i=1

([UTy]i − [UT 1]iµ)2

Si,i + δ
)

The key features used is that |U |= |UT |= 1, and S + δ · I is diagonal, so both the
determinant and inverse are trivial to compute. The expression UT 1 only depends
on the coordinates X and can be precomputed for every gene. The expression UTy
will need to be re-computed for each gene, however, it can be re-used for inference
evaluations.

We make use of the constraint that for the optimal µ = µ̂ we must have

∂LL(δ, σ2
s , µ)

∂µ
= 0,

and so
1

σ2
s

((UT 1)T (S+δ ·I)−1(UTy)−(UT 1)T (S+δ ·I)−1(UT 1)µ̂) = 0

⇒ (UT 1)T (S + δ · I)−1(UT 1)µ̂

= (UT 1)T (S + δ · I)−1(UTy)

⇒ µ̂

= ((UT 1)T (S + δ · I)−1(UT 1))−1(UT 1)T (S + δ · I)−1(UTy)

=
(

n∑
i=1

1

Si,i + δ
[U
T
1]
T
i [U

T
y]i

)
/
(

n∑
i=1

1

Si,i + δ
[U
T
1]
T
i [U

T
1]i

)
.

When data is given, this expression only depends on δ and we write this as µ̂(δ).
The same procedure for σ2

s gives us

σ̂2
s(δ) =

1

n

n∑
i=1

([UTy]i − [UT 1]iµ̂(δ))2

Si,i + δ
,

which also depend only on δ. So the entire expression for the log likelihood can be
written as

LL(δ) = −1

2
(n log(2π) + S1(δ) + n+ n log(

1

n
S2(δ))),

S1(δ) =
n∑
i=1

log(Si,i + δ),

S2(δ) =
n∑
i=1

([UTy]i − [UT 1]iµ̂)2

Si,i + δ
.

To optimise LL(δ) with respect to δ we use gradient based optimisation with
l-bfgs-b and numerically approximated gradient. Empirically, we observed that an
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SPATIALDE - METHODS 5

analytically calculated gradient would require more floating point operations per
iteration step with no gain in performance.

To avoid gradient based optimization of the length scale `, we precalculate a grid
of covariance matrices Σ` and factorise them. The number of grid points can be
specified by the user, but our default settings put 10 grid points logratihmically
spaced between half shortest and twice the longest distance observed in the data.
We have found to give sufficient sensitivity. After factoring the Σ`’s, the U and S
matrices can be reused for each gene. We only need to do as many O(n3) matrix
inversions as we have grid points. Each gene under investigation will have a O(n2)
step for each grid point to calculate the UTy factor. All other calculations, including
each optimisation iteration, will be O(n). Since our aim to investigate data where
G >> 10, this greatly reduces computational burden, as illustrated in Figure 1C of
the main text.

Estimation of standard errors. The only optimised parameter in our model is δ, the
uncertainty of the maximum likelihood estimate of this parameter is the inverse

of ∂2LL(δ)
∂δ2 evaluated at δ̂. We use rules of uncertainty propagation to estimate

uncertainty of FSV since this can be expressed as a function of δ,

FSV(δ) =
σ̂2
s(δ) · g

σ̂2
s(δ) · g + δ · σ̂2

s(δ)
,

where g is the Gower factor for covariance matrix Σ` for a given grid point. So, the
standard error of FSV is

s2FSV =

(
∂FSV(δ)

∂δ

∣∣∣
δ=δ̂

)2

· s2δ ,

where

s2δ = 1/
(
∂2LL(δ)

∂δ2

∣∣∣
δ=δ̂

)2

.

To evaluate the two derivatives, we use finite difference approximation on the
LL and FSV functions.

2. Data normalisation

The presented Gaussian process model is based on the assumption of normally
distributed residual noise and independent observations across cells. To meet these
requirements, we have identified two necessary normalisation steps.

First, both spatial transcriptomics and in-situ hybridisation data produces counts
of transcripts. Spatial Transcriptomics uses Unique Molecular Identifiers (UMI’s) to
count amplified transcript tags from next generation sequencing reads, while smFISH
counts fluorescent probes inside cell boundaries. By investigating the mean-variance
relation for all genes in multiple data sets from all spatial technologies we note that
the data empirically correspond to negative binomial (NB) noise.

To stabilise the variance, we use the approximate Anscombe’s transform for NB
data on the observed counts ŷg, yg = log(ŷg + 1

φ ), where φ is the overdispersion

parameter, so that Var(y) = E(y) + φ · E(y)2, and φ is estimated by curve fitting
across all genes in a study [Anscombe, 1948].

Second, we note that in all the data we investigated, every gene’s expression
correlates with the total count in the cells. In particular, for MERFISH data the
area of cells is provided, and we note that the total count correlates strongly with the
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6 VALENTINE SVENSSON, SARAH A TEICHMANN, OLIVER STEGLE

cytoplasmic area. This relation has previously been described by Paravan-Medhar et
al. [Padovan-Merhar et al., 2015], who showed that cells compensate mRNA content
in response to the cytoplasmic volume of a cell. The total count thus correspond to
the size of cells.

While there are many cases where cells grow for biologically interesting reasons,
cell size assays are easier than gene expression assays, and here we focus on regulation
of gene expression. In particular, if the distribution of relative cell sizes show spatial
dependencies, every gene will be considered spatially variable.

Consequently, we consider expression levels that are adjusted for variation in
cell size, using linear regression to account for this dependence, regressing out the
log total count from the Anscombe transformed expression values before fitting the
spatial models.

For context, we also perform the spatial variation test on the total count in
each data set. In all data sets the variation is significant, with between 30% and
80% FSV (results marked as X’s in figures and supplementary figures). In the
frog development data, proxies for cell size (ERCC expression and number of genes
detected) are over 95% spatially variable.

3. Data sets and specific processing steps

The analysis presented in this study is based on a number of publicly available
datasets. Some of these data were however not available in typical data repositories
owing to their novel nature.

3.1. Spatial Transcriptomics data. The count tables from Stahl et al were down-
loaded from the website http://www.spatialtranscriptomicsresearch.org/

datasets/doi-10-1126science-aaf2403, linked from the publication. For the
breast cancer data, we used the file annotated as ”Layer 2” with the corresponding
HE image. For the mouse olfactory bulb, we used the file named ”Replicate 11”
with corresponding HE image. Images included in figures were cropped, down-scaled
and converted to grey scale to conserve file sizes.

3.2. SeqFISH data. We downloaded the expression table from the supplementary
material of Shah et al, and extracted cell counts from the region annotated with
number 43 in the 249 gene experiment (Table S8 in the original publication). The
shape of the data suggested this corresponded to a region in the lower left part of
the corresponding supplementary figure, informing our sketch in Fig. 2D (this was
only relevant for illustration, and not used for analysis or results).

3.3. MERFISH data. From the website http://zhuang.harvard.edu/merfish

we downloaded the file ”data for release.zip” which contain data from Moffitt et al.
We used the files in the folder called ”Replicate 6”, as these had the larges number
of cells and highest confluency. Jeffrey Moffitt helped us understand the data format
through personal communication.

3.4. Frog development RNA-seq data. We downloaded the TPM expression
table for Clutch A from GEO accession GSE65785.
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4. Computational Performance Benchmark

Data for 10,000 genes were simulated according to the SpatialDE model with
various effect magnitudes for multiple sample sizes. For SpatialDE, the test was
run on these data and timed according to wall clock. For the Stan implementation,
100 random genes were sampled for each sample size, and timing was extrapolated
by multplying the time by 100. It should be noted that this problems is trivially
parallelizable over the genes, and neither of the implementations make use of this
fact. The benchmarks were performed on a Late 2013 iMac with a 3.2 GHz Intel
Core i5 processor and 32 GB of DDR3 RAM, a typical consumer level PC.

5. Software availability

The primary implementation of SpatialDE is a Python 3 package, which can
be installed from PyPI using pip. Development is public on Github1. A Stan
implementation is also provided in the same repository, as well as all analysis
presented in this paper, and additional tutorials and notebooks illustrating how to
use the package. All data used in our analysis is also available in preprocessed form
the Github repository using git-lfs.
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