

Experimenting with reproducibility
in bioinformatics

Yang-Min KIM 1,2,3,4, *, Jean-Baptiste POLINE5 and Guillaume DUMAS 1,2,3,4
1Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France, 2CNRS UMR 3571
Genes, Synapses and Cognition, Institut Pasteur, Paris, France, 3University Paris Diderot, Sorbonne
Paris Cité, Paris, France, 4Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI,
USR 3756 Institut Pasteur and CNRS), Paris, France, 5Henry H. Wheeler Jr. Brain Imaging Center,
Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA

*To whom correspondence should be addressed.

Abstract
Reproducibility or replication has been shown to be limited in many scientific fields. This question is a
fundamental tenet of the scientific activity, but the related issues of reusability of scientific data are
poorly documented. Here, we present a case study of our attempt to reproduce a bioinformatics
method and illustrate the challenges to use a published method for which code and data were availa-
ble. From this example, we address the difficulties that pave the way towards reproducibility and
propose some recommendations to the research community to improve the reusability of the data.
Availability	 and	 implementation:	 last version of StratiPy (Python) is available at GitHub:
https://github.com/GHFC/stratipy
Contact:	yang-min.kim@pasteur.fr

1 Introduction
The collective endeavour of science depends on researchers being able to
replicate the work of others. In a recent interview with 1,576 researchers,
70% of them admitted having difficulty in reproducing experiments
proposed by other scientists (Baker, 2016). For 50%, this reproducibility
issue even concerns with their own experiments. Despite the growing
attention on the replication crisis in science, this controversial subject is
far from being new: already in the 17th century, scientists criticized the
air pump invented by physicist Robert Boyle because it was too compli-
cated and expensive to build (Shapin and Schaffer, 2011).

While reproducibility – here defined as being able to obtain the re-
sults using the same software and same data – or replicability – here
defined as obtaining the same results with different data and software
(Peng, 2011) – are key to the scientific progress, it seems that researchers
are in general not considering these as priorities. Indeed, it takes great
efforts and competence to overcome all the obstacles on the path to
replication. The process is costly in resources, both in time and funding.
In computational science, there are also many technical barriers ranging
from unavailable data to hardware infrastructure. Even when authors
provide data and code, the outcome can vary either marginally or funda-
mentally (Herndon et al., 2014). Tackling irreproducibility in bioinfor-
matics thus requires considerable effort beyond code and data availabil-
ity (Fig 1). Such effort is nevertheless necessary to increase the robust-
ness of the literature and efficiency of the scientific research process.
Indeed, behind reproducibility hides re-usability.

In this case study, we focus on reproducing a promising bioinformat-
ics method (Hofree et al., 2013) and identify and document different
issues related to the reproducibility process. First, we tried to re-run the

analysis with the code and data provided by the authors. Second, we
reimplemented the method in Python to avoid dependency on a
MATLAB licence and ease the execution of the code on HPCC (High-
Performance Computing Cluster). Third, we assessed reusability of our
reimplementation and the quality of our documentation. Then, we exper-
imented with our own software and tested how easy it would be to start
from our implementation to reproduce the results, hence attempting to
estimate the reproducibility of reproducibility. Finally, in a second part,
we propose solutions from this case study and other observations to
improve reproducibility and research efficiency at the individual and
collective level.

2 Reproducibility in bioinformatics: a case
study

2.1 From MATLAB to MATLAB: OS and Environment
Our team studies Autism Spectrum Disorders (ASD), a group of neuro-
developmental disorders well known for its heterogeneity. One of the
current challenges of our research is to uncover homogeneous subgroups
of patients (i.e. stratification) with more precise clinical outcomes,
improving their prognosis and treatment (Bourgeron, 2015; Loth et al.,
2016). An interesting stratification method was recently proposed in the
field of cancer research (Hofree et al., 2013), where the authors proposed
to combine genetic profiles of patients tumors with protein-protein
interaction networks to uncover meaningful homogeneous subgroups, a
method called Network Based Stratification (NBS).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Y.Kim et al.

Fig. 1. Hidden reproducibility issues like underwater iceberg. Scientific journals
readers have the impression that they can almost see the full work of method. But in
reality, articles do not take into account adjustment and configuration for significant
replication in most cases. Therefore, there is a significant gap between apparent executa-
ble work (i.e. above water portion of iceberg) and necessary effort in practice (i.e. full
iceberg).

Before using this NBS method on our data, we studied the method by
reproducing results from the original study. We are very grateful to the
main authors who kindly provided online all the related data and code,
and gave us invaluable input upon request. The authors of this study thus
should not be blamed for the difficulty that we experienced in attempting
to reproduce and replicate their study, as they did more to help replicate
their results than is generally done. Despite their help we experienced a
number of difficulties that we document here, hoping that this report will
help future researchers to improve the reproducibility of results and
reusability of research products.

The first step of our project was to execute the original method code
with the given data. The programming code was written in MATLAB, an
interpreted language originally developed for linear algebra computa-
tions which is easier and faster to write as well as more readable than
compiled language such as C, making our reproducibility attempt easier.
To improve execution speed, the original authors used a library for
MATLAB using executable compiled code MEX file) callable from
MATLAB: MTIMESX (Tursa, 2009), a library with compiled code
allowing acceleration of large matrix multiplication. MEX files however
are specific to the architecture and have to be recompiled for each Oper-
ating System (OS). The original MEX file was initially developed for
Linux. Since our lab was using Mac OS X Sierra, the compilation of this
MEX file into a mac64 binary required a new version of MTIMESX. It
was also necessary to install and to configure properly OpenMP
(http://www.openmp.org/specifications/), a development library for
parallel computing. After this, the original MATLAB code was success-
fully run in our environment.

These issues are classic, but may not be overcome by researchers with
little experience in compilation or installation issues. For these reasons
alone, many individuals may turn down the opportunity of reusing code.

Fig. 2. Analogy between irreproducibility and road transport. The aim is to achieve
same output (i.e. to reach the same location) using published methods (i.e. engine).
Despite the same input data (i.e. gasoline), we obtained different results due to different
programming languages —e.g. MATLAB and Python— (i.e. different roadways) and
environments (i.e. different vehicles).

The next part will focus on code re-implementation, a procedure, which
can help understanding the method, but can be even more costly.

2.2 From MATLAB to Python: Language and Organiza-
tion

To fully master the method, adapt it to our data, and ease its re-use, we
developed a complete open source toolkit of genomic stratification in
Python. Python is also an interpreted programming language, but contra-
ry to MATLAB is free of use and has a GPL-compatible license
(https://docs.python.org/3/license.html). This is particularly interesting
for both replicability and scalability. Re-coding in another language in a
different environment will lead to be some unavoidable problems such as
random initialization, and variation in low level libraries (e.g. glibc): it is
likely that the outcomes will vary even if the same algorithm is imple-
mented. In addition, we rely on Python packages to perform visualization
or linear algebra computations (e.g. Matplotlib, SciPy, NumPy), and
results may depend on these packages versions. Python is currently in a
transitional period between two major versions 2 and 3. We chose to
write the code in Python 3, which is the current recommendation.

2.2.1 Metadata and File formats

Even if the original code could be run, we had to handle several file
formats to check and understand the structure of the original data. For
instance the data on patients with cancer data was provided by The
Cancer Genome (TCGA, https://cancergenome.nih.gov) and made
available in a MATLAB .mat file format. Thanks to SciPy, Python can
load all versions through v7.2 MATLAB files. To read v7.3 .mat files,
we however needed an HDF5 Python library. Moreover, the original
authors had denoted download dates of patients’ data of TCGA, thereby
clarifying source of data. But in the absence of structural metadata, it
was not always obvious how to interpret patients’ dataset variables (e.g.
patient ID, gene ID, phenotype).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Experimenting with reproducibility in bioinformatics

Fig. 3. Normalized confusion matrices between original and replicated results.
Before (a) and after (b) applying appropriate value of graph regularization factor on NBS
method. Each row or column corresponds to a subgroup of patients (here three sub-
groups). The diagonal elements show the frequency of correct classifications for each
subgroup: a high value indicates a correct prediction.

2.2.2 Codes and parameters

Once the environment and file format issues were resolved, the code was
finally executable with genetic data. Unfortunately, several attempts
produced error messages. Alternatively, “unexpected” results were
obtained (Fig 2): e.g. during the application of hierarchical clustering, we
used the clustering tools of SciPy (Eads, 2007)
(https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html).
Both SciPy and MATLAB (MathWorks, http://www.mathworks.com)
functions offer seven linkage methods, however, SciPy’s default option
(single method) differs from MATLAB’s default option (UPGMA
method), which was used in the original study. Another key example is
the value of one of the most important parameters of the method, the
graph regulator factor, which was not clarified in the original paper. We
believed that this factor had a constant value of 1.0 until we found in the
code that during iterations, its value was changing and converged to a
high optimal value (~1800). Therefore, we obtained different results
from the original NBS at the beginning (Fig 3). We observed heteroge-
neous subgroups instead of obtaining homogeneous clusters. No or little
explanation on the parameter choices can explain variability in the
results as we explored the possible parameters. Moreover, while attempt-
ing the original code to understand the causes of the errors, we realized
that some part of the code were not run anymore (e.g. discarded work,
remaining traces of debugging) which made the attempt to understand
the implementation harder.

2.2.3 iPython/Jupyter

During the re-cording process, we used an enhanced Python interpreter
to debug: IPython, an interactive shell supporting both Python 2 and 3.
Since the dataset is large and the execution takes a significant amount of
time, we used IPython to re-run interactively some sub-sections of the
script, which is one of the most helpful features. IPython can be integrat-
ed in the web interface Jupyter Notebook, offering an advanced structure
for mixing code and documentation. For instance, verifying intermediate
results by plotting helped us to better understand the original code. While
the IPython notebook was therefore initially convenient, it does not scale
well and is not well adapted to versioning. However, ability of mixing
code with document text is very useful for tutorials: a user of the code
can read documentation (docstring), text explanations, and see how to
run the code, explore parameters and visualize results in the browser.

2.3 From Python to Python: Replication of Replication
Besides IPython, we used versioning tools like the git code version
control system (VCS) to document the development of our Python code.
Git is arguably one of the most powerful VCS, allowing easy develop-
ment of branches and helping us to work together as a distributed team
(Paris, Berkeley) on the same project. This project, StratiPy, is hosted on
GitHub, a web-based Git repository hosting service
(https://github.com/GHFC/stratipy). While the original code was not
available on GitHub, the main authors shared their code on a website.
This should be sufficient for our purpose, but makes it less easy to
collaborate on code. While working on our GitHub repository, several
researchers from all over the world contacted us about our reproducibil-
ity experiment. Not only GitHub supports a better organization of pro-
jects, it also facilitates the collaboration of open-source software pro-
jects, thanks to several social network functions. We tried to comply
with open source coding standards and to learn how to efficiently use Git
and GitHub. Both required considerable efforts on the short-term but
brought clear benefits on the long-term, especially regarding collabora-
tion and debugging.

We then attempted to re-run and reproduce the results we obtained on
another platform. While the Python code was developed under Mac OS
X Sierra (10.12) we used an Ubuntu 16.04.1 (Xenial) computer to test
the Python implementation. Some additional issues emerged. First, our
initial documentation was not complete enough to know which packages
were required and how to launch the code. Second, the code was very
slow to the extent that it was impractical to run it on a laptop because the
Numpy package had not been compiled with BLAS (Basic Linear Alge-
bra Subprograms), low-level routines performing basic vector and matrix
operations. Last, there was (initially) no easy way to check whether the
results obtained on a different architecture were the expected ones. We
added documentation and tests on the results files md5sum to solve this.
To summarize, although the re-use and reproducibility of the results of
the developed package were improved, these were far from being opti-
mal.

3 Potential solutions: from local to global

3.1 Act locally: simple practices and available tools
Given the observed difficulties, we draw some conclusions on this
reproducibility case study experiment and suggest some practices and
tools.

3.1.1 Environment

Container technologies such as Docker and Vagrant are becoming a
standard solution to installation issues. These rely however on compe-
tencies that we think few biologists possess today. Also, while the con-
tainer will encapsulate everything needed for the software execution, it is
hard to develop in a container, limiting the reusability of the code.

3.1.2 Metadata

Standard metadata are vital for an efficient documentation of both data
and software. In our example, we still lack the standard lexicon to docu-
ment the data as well as documenting the software: e.g. using HDF5 file
instead of .mat file is more suitable to store patient's’ data. We however
aim to follow the recommendations by Stodden et al. (2016): “Software
metadata should include, at a minimum, the title, authors, version,
language, license, Uniform Resource Identifier/DOI, software descrip-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Y.Kim et al.

tion (including purpose, inputs, outputs, dependencies), and execution
requirements.” The more comprehensive is the metadata description, the
more likely the re-use will be both efficient and appropriate.

3.1.3 Write readable code

Anyone who has spent time to understand someone else’s code would
advise some simple basic rules to help make the code readable and
understandable.

First, the structure of the program should be clear and easily accessi-
ble. Second, good concise code documentation and naming convention
will help readability. Third, the code should not contain left-overs of
previously tested solutions. When a solution takes a long time to com-
pute, an option to store it locally can be proposed. Nevertheless, the code
to compute, this variable should be given in any case (e.g. inverse of
large matrix). Using standard coding and documentation conventions
(e.g. PEP 8 and PEP 257 in Python, https://www.python.org/dev/peps)
with detailed comments and references of papers makes the code more
accessible. When an algorithm from another paper is used, any modifica-
tion should be explained and discussed in the paper as well as in the

code. All these remarks are not necessarily obvious especially if the
developer is working on her/his own, and to some extent “writes for
her/himself”. We advocate for researchers to write code “for their col-
leagues”, hence, the opinion and notice of co-working or partner labora-
tories should be very helpful. Furthermore, the collaboration between
researchers working on different environments can more easily isolate
reproducibility problems. In the future, journals may consider review of
code as part of the standard review process.

3.1.4 Test the code

To check if the code is yielding a correct answer, software developers
associate test suites (unit tests or integration tests) with their software.
While we developed only a few tests in this project, we realize that this
has a number of advantages, such as checking if the software installation
seems correct, check if updates in the operating system impact the re-
sults, etc. This does not in general validate the method, but at least
provides a basic check. In our case, we propose to check for the integrity
of the data and for the results of some key processing.

Figure 4: Working principles of Workflow system with private data. Figure 4a shows
a classical workflow: (a.1) Methodologists (M) take private data; (a.2) M publish their
method and corresponding outputs/results; (a.3) Scientists (requesters = R) (e.g. biolo-
gists, doctors) having their own data ask developers (D) (e.g. bioinformaticians) for
handling them; (a.4) D find a relevant paper and will be lost in the labyrinth of reproduci-
bility. Figure 4b shows workflow with standard consensus dataset: (b.1) If Methodolo-
gists (M) work with their own data, they must identify corresponding standard data tag(s)
(e.g. A-2). They can use only standard data at the beginning of the project. If there is no
appropriate data, they have to suggest a new data standard; (b.2) M choose a method
category (e.g. "Classification"); (b.3) Reproducibility profile with several standard data is
progressively built with method upgrade. Color corresponds to method category depend-

ing score and bar length corresponds to progression of replication test. Programming code
with guide should be accessible although M do not publish; (b.4) Publication of the first
version method by M; (b.5) Developers (D) can test proposed method with other data
standards and thus participate to enhancement of the reproducibility profile. D then obtain
automatically credit for this activity of validation; (b.6) Thanks to the collective work on
testing, the method could be optimized and M can upgrade their initial paper (versioning);
(b.7) Requesters (R) can now input corresponding tags (e.g. C-3 and E-6) of their data and
search available methods in the category of their problem (e.g. "Regression"); (b.8)
Following the request, a list of suggested methods and people involved (M, D) is ob-
tained.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Experimenting with reproducibility in bioinformatics

3.2 Think globally: from education to community stand-
ards

3.2.1 Training the new generation of scientists to digital tools
and practices

Unlike theoretical and academic courses and projects, software testing
systems are well developed in industry. For a student, discovering and
learning this core system of reproducibility, possibly during an internship
in cooperation with industry, is a great opportunity for her/his future.
Furthermore, as Internet applications in science are growing, networks of
scientists and developers are forming and provide learning opportunities
on the development practices. For instance, software developers have
recently adopted “agile” practices and fast prototyping, test based devel-
opment, etc. Some of these ideas and practices can —and should— be
adapted to scientific software development.

The training in coding is still too limited for biologists. Often, it is
self-training, from searching answers on Stack Overflow or equivalent.
Despite efforts by organizations such as software (https://software-
carpentry.org) or data carpentry (http://www.datacarpentry.org) and the
growing demand for ‘data scientists’ in life science, university training
on coding practices is not enough generalized. The difficulty to access
and understand code may lead to applying code blindly without checking
the validity of the results: often, scientists may prefer to believe that the
results are correct because of the time that would be needed to check the
validity of the results. Mastering a package such that results are truly
understood can take a long time, as it was the case in our experiment.

3.2.2 Standard consensus dataset and workflow system

We propose here that bioinformatics methods publications are systemati-
cally accompanied with a test dataset, code source and some basic tests.
As the method is tested on new datasets, the number of tests of the
method would increase in number and cover a wider range of applica-
tions. We give a first example with our NBS re-implementation. We
develop below how this could generalize and what would be the benefit
for the scientific community. In a sense, we propose to use the software
development test framework idea but apply it to the scientific context.

A schematic overview of workflow system is shown in Figure 4. The
core of this system would be a standard consensus dataset used to vali-
date methods. Data could be classified in general categories such as
binary, text, image (A, B, C in Fig 4b), and with sub-categories to intro-
duce criteria such as size, quantitative/qualitative, discrete/continuous
using a tagging system (e.g. A-2, B-1, C-5 in Fig 4b). Dataset could be
issued from simulations or from acquisition, and would validate a meth-
od on a particular component. This workflow system will help scientists
that cannot release their data because of privacy issues (although these
can often be overcome) but also give access to data and tests to a wide
community.

Roughly, we divide those who interact with scientific software or
analysis code in three categories. First, the methodologists who propose
a method and need to verify its validity and usefulness with public and/or
their own - often private – data (“M” in Fig 4). Second, the developers or
engineers who need to test and evaluate the proposed methods with other
data (“D” in Fig 4). Third, expert and non-expert users who need to have
a good understanding of the results obtained on various types of data (“R”
as requester in Fig 4).

Each method belongs to a general category of methods (e.g. classifica-
tion, regression) and could have a reproducibility profile, which will
progressively be built by methodologists and developers (Fig 4b.3, 4b.5).

The information of which method does or does not work with a stand-
ard/public data is a crucial information for the scientist. Developers who
test and approve reproducibility on original or new data could be credit-
ed and recognized by the scientific and developer communities (i.e.
Stack Overflow, GitHub). When scientists search about the appropriate
methods according to their type of data (Fig 4b.7), they would also be
interested in obtaining information about the people who invested heavi-
ly in test and optimization of suggested methods (Fig 4b.8). This work-
flow system could facilitate the gathering of diverse users of the science
community.

4 Conclusion and perspective
Across the scientific fields, the reproducibility issue is seen as a grow-

ing concern. Before reusing a published method, we attempted to repro-
duce the initial results and recoded the method to have a deep under-
standing of it. The investment in time to verify a previously published
method can be more important than the work needed to publish a new
paper. Despite the willingness of the authors to share their tool and help
us in our work, we have faced reproducibility problems due to compati-
bility between environments, programming languages and software
versions, choice of parameters, etc. In addition to individual effort to
write well documented and readable code, we recommend to use online
repositories and tools to help other scientists in their exploration of the
method: Docker for environment standardization, GitHub for code
version management, and Jupyter notebooks for demonstration and
tutorial. At the community level, we should enhance the cooperation
between academic education and industry to foster a new generation of
well-trained scientists in software development. We propose a workflow
system where the community uses standard datasets to validate tools.
The proposed method success on data profile will be evaluated continu-
ously with new datasets. Eventually, data and software can be versioned
and cited to give credit to the individuals who have contributed to these
building blocks of Science. This workflow is not merely a reproducibil-
ity validation tool, it is an attempt to make research product more reusa-
ble by the community using an online platform, beyond the publication
process. Some top-down initiatives already provide some incentives for
such a process i.e. Horizon 2020 (H2020,
https://ec.europa.eu/research/press/2016/pdf/opendata-
infographic_072016.pdf) project of the European Commission (EC)
mandates open access of research data, while respecting security and
liability. H2020 supports OpenAIRE
(https://www.openaire.eu/edocman?id=749&task=document.viewdoc), a
technical infrastructure of the open access, which allows the interconnec-
tion between projects, publications, datasets, and author information
across Europe. Thanks to common guidelines, OpenAIRE interoperates
with other web-based generalist scientific data repositories such as
Zenodo, hosted by CERN, which allows combining data and GitHub
repository using digital object identifiers (DOI). The Open Science
Framework also hosts data and software for a given project (Foster and
Deardorff, 2017). Respecting standard guidelines to transparently com-
municate the scientific work is a key step towards tackling irreproduci-
bility and insures a robust scientific endeavor.

References
Baker,M. (2016) 1,500 scientists lift the lid on reproducibility. Nat. News, 533,

452.
Bourgeron,T. (2015) From the genetic architecture to synaptic plasticity in autism

spectrum disorder. Nat. Rev. Neurosci., 16, 551–563.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Y.Kim et al.

Eads (2007) Hierarchical clustering (scipy.cluster.hierarchy) — SciPy v0.19.0
Reference Guide.

Foster,E.D. and Deardorff,A. (2017) Open Science Framework (OSF). J. Med.
Libr. Assoc. JMLA, 105, 203–206.

Herndon,T. et al. (2014) Does high public debt consistently stifle economic
growth? A critique of Reinhart and Rogoff. Camb. J. Econ., 38, 257–279.

Hofree,M. et al. (2013) Network-based stratification of tumor mutations. Nat.
Methods, 10.

Loth,E. et al. (2016) Identification and validation of biomarkers for autism spec-
trum disorders. Nat. Rev. Drug Discov., 15, 70–73.

Peng,R.D. (2011) Reproducible research in computational science. Science, 334,
1226–1227.

Shapin,S. and Schaffer,S. (2011) Leviathan and the Air-Pump: Hobbes, Boyle, and
the Experimental Life (New in Paper) Princeton University Press.

Stodden,V. et al. (2016) Enhancing reproducibility for computational methods.
Science, 354, 1240–1241.

Tursa (2009) MTIMESX - Fast Matrix Multiply with Multi-Dimensional Support -
File Exchange - MATLAB Central.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

