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Abstract 
Reproducibility or replication has been shown to be limited in many scientific fields. This question is a 
fundamental tenet of the scientific activity, but the related issues of reusability of scientific data are 
poorly documented. Here, we present a case study of our attempt to reproduce a bioinformatics 
method and illustrate the challenges to use a published method for which code and data were availa-
ble. From this example, we address the difficulties that pave the way towards reproducibility and 
propose some recommendations to the research community to improve the reusability of the data.  
Availability	 and	 implementation:	 last version of StratiPy (Python) is available at GitHub: 
https://github.com/GHFC/stratipy 
Contact:	yang-min.kim@pasteur.fr 

 
 

1 Introduction  
The collective endeavour of science depends on researchers being able to 
replicate the work of others. In a recent interview with 1,576 researchers, 
70% of them admitted having difficulty in reproducing experiments 
proposed by other scientists (Baker, 2016). For 50%, this reproducibility 
issue even concerns with their own experiments. Despite the growing 
attention on the replication crisis in science, this controversial subject is 
far from being new: already in the 17th century, scientists criticized the 
air pump invented by physicist Robert Boyle because it was too compli-
cated and expensive to build (Shapin and Schaffer, 2011). 

While reproducibility – here defined as being able to obtain the re-
sults using the same software and same data – or replicability – here 
defined as obtaining the same results with different data and software 
(Peng, 2011) – are key to the scientific progress, it seems that researchers 
are in general not considering these as priorities. Indeed, it takes great 
efforts and competence to overcome all the obstacles on the path to 
replication. The process is costly in resources, both in time and funding. 
In computational science, there are also many technical barriers ranging 
from unavailable data to hardware infrastructure. Even when authors 
provide data and code, the outcome can vary either marginally or funda-
mentally (Herndon et al., 2014). Tackling irreproducibility in bioinfor-
matics thus requires considerable effort beyond code and data availabil-
ity (Fig 1). Such effort is nevertheless necessary to increase the robust-
ness of the literature and efficiency of the scientific research process. 
Indeed, behind reproducibility hides re-usability. 

In this case study, we focus on reproducing a promising bioinformat-
ics method (Hofree et al., 2013) and identify and document different 
issues related to the reproducibility process. First, we tried to re-run the 

analysis with the code and data provided by the authors. Second, we 
reimplemented the method in Python to avoid dependency on a 
MATLAB licence and ease the execution of the code on HPCC (High-
Performance Computing Cluster). Third, we assessed reusability of our 
reimplementation and the quality of our documentation. Then, we exper-
imented with our own software and tested how easy it would be to start 
from our implementation to reproduce the results, hence attempting to 
estimate the reproducibility of reproducibility. Finally, in a second part, 
we propose solutions from this case study and other observations to 
improve reproducibility and research efficiency at the individual and 
collective level.  

2 Reproducibility in bioinformatics: a case 
study 

2.1 From MATLAB to MATLAB: OS and Environment 
Our team studies Autism Spectrum Disorders (ASD), a group of neuro-
developmental disorders well known for its heterogeneity. One of the 
current challenges of our research is to uncover homogeneous subgroups 
of patients (i.e. stratification) with more precise clinical outcomes, 
improving their prognosis and treatment (Bourgeron, 2015; Loth et al., 
2016). An interesting stratification method was recently proposed in the 
field of cancer research (Hofree et al., 2013), where the authors proposed 
to combine genetic profiles of patients tumors with protein-protein 
interaction networks to uncover meaningful homogeneous subgroups, a 
method called Network Based Stratification (NBS). 
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Fig. 1. Hidden reproducibility issues like underwater iceberg. Scientific journals 
readers have the impression that they can almost see the full work of method. But in 
reality, articles do not take into account adjustment and configuration for significant 
replication in most cases. Therefore, there is a significant gap between apparent executa-
ble work (i.e. above water portion of iceberg) and necessary effort in practice (i.e. full 
iceberg). 

Before using this NBS method on our data, we studied the method by 
reproducing results from the original study. We are very grateful to the 
main authors who kindly provided online all the related data and code, 
and gave us invaluable input upon request. The authors of this study thus 
should not be blamed for the difficulty that we experienced in attempting 
to reproduce and replicate their study, as they did more to help replicate 
their results than is generally done. Despite their help we experienced a 
number of difficulties that we document here, hoping that this report will 
help future researchers to improve the reproducibility of results and 
reusability of research products. 

The first step of our project was to execute the original method code 
with the given data. The programming code was written in MATLAB, an 
interpreted language originally developed for linear algebra computa-
tions which is easier and faster to write as well as more readable than 
compiled language such as C, making our reproducibility attempt easier. 
To improve execution speed, the original authors used a library for 
MATLAB using executable compiled code MEX file) callable from 
MATLAB: MTIMESX (Tursa, 2009), a library with compiled code 
allowing acceleration of large matrix multiplication. MEX files however 
are specific to the architecture and have to be recompiled for each Oper-
ating System (OS). The original MEX file was initially developed for 
Linux. Since our lab was using Mac OS X Sierra, the compilation of this 
MEX file into a mac64 binary required a new version of MTIMESX. It 
was also necessary to install and to configure properly OpenMP 
(http://www.openmp.org/specifications/), a development library for 
parallel computing. After this, the original MATLAB code was success-
fully run in our environment. 

These issues are classic, but may not be overcome by researchers with 
little experience in compilation or installation issues. For these reasons 
alone, many individuals may turn down the opportunity of reusing code.  

Fig. 2. Analogy between irreproducibility and road transport. The aim is to achieve 
same output (i.e. to reach the same location) using published methods (i.e. engine). 
Despite the same input data (i.e. gasoline), we obtained different results due to different 
programming languages —e.g. MATLAB and Python— (i.e. different roadways) and 
environments (i.e. different vehicles). 

The next part will focus on code re-implementation, a procedure, which 
can help understanding the method, but can be even more costly. 

2.2 From MATLAB to Python: Language and Organiza-
tion 

To fully master the method, adapt it to our data, and ease its re-use, we 
developed a complete open source toolkit of genomic stratification in 
Python. Python is also an interpreted programming language, but contra-
ry to MATLAB is free of use and has a GPL-compatible license 
(https://docs.python.org/3/license.html). This is particularly interesting 
for both replicability and scalability. Re-coding in another language in a 
different environment will lead to be some unavoidable problems such as 
random initialization, and variation in low level libraries (e.g. glibc): it is 
likely that the outcomes will vary even if the same algorithm is imple-
mented. In addition, we rely on Python packages to perform visualization 
or linear algebra computations (e.g. Matplotlib, SciPy, NumPy), and 
results may depend on these packages versions.  Python is currently in a 
transitional period between two major versions 2 and 3. We chose to 
write the code in Python 3, which is the current recommendation. 

2.2.1 Metadata and File formats 

Even if the original code could be run, we had to handle several file 
formats to check and understand the structure of the original data. For 
instance the data on patients with cancer data was provided by The 
Cancer Genome (TCGA, https://cancergenome.nih.gov) and made 
available in a MATLAB .mat file format. Thanks to SciPy, Python can 
load all versions through v7.2 MATLAB files. To read v7.3 .mat files, 
we however needed an HDF5 Python library. Moreover, the original 
authors had denoted download dates of patients’ data of TCGA, thereby 
clarifying source of data. But in the absence of structural metadata, it 
was not always obvious how to interpret patients’ dataset variables (e.g. 
patient ID, gene ID, phenotype).  
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Fig. 3. Normalized confusion matrices between original and replicated results. 
Before (a) and after (b) applying appropriate value of graph regularization factor on NBS 
method. Each row or column corresponds to a subgroup of patients (here three sub-
groups). The diagonal elements show the frequency of correct classifications for each 
subgroup: a high value indicates a correct prediction. 

2.2.2 Codes and parameters 

Once the environment and file format issues were resolved, the code was 
finally executable with genetic data. Unfortunately, several attempts 
produced error messages. Alternatively, “unexpected” results were 
obtained (Fig 2): e.g. during the application of hierarchical clustering, we 
used the clustering tools of SciPy (Eads, 2007) 
(https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html). 
Both SciPy and MATLAB (MathWorks, http://www.mathworks.com) 
functions offer seven linkage methods, however, SciPy’s default option 
(single method) differs from MATLAB’s default option (UPGMA 
method), which was used in the original study. Another key example is 
the value of one of the most important parameters of the method, the 
graph regulator factor, which was not clarified in the original paper. We 
believed that this factor had a constant value of 1.0 until we found in the 
code that during iterations, its value was changing and converged to a 
high optimal value (~1800). Therefore, we obtained different results 
from the original NBS at the beginning (Fig 3). We observed heteroge-
neous subgroups instead of obtaining homogeneous clusters. No or little 
explanation on the parameter choices can explain variability in the 
results as we explored the possible parameters. Moreover, while attempt-
ing the original code to understand the causes of the errors, we realized 
that some part of the code were not run anymore (e.g. discarded work, 
remaining traces of debugging) which made the attempt to understand 
the implementation harder. 

2.2.3 iPython/Jupyter 

During the re-cording process, we used an enhanced Python interpreter 
to debug: IPython, an interactive shell supporting both Python 2 and 3. 
Since the dataset is large and the execution takes a significant amount of 
time, we used IPython to re-run interactively some sub-sections of the 
script, which is one of the most helpful features. IPython can be integrat-
ed in the web interface Jupyter Notebook, offering an advanced structure 
for mixing code and documentation. For instance, verifying intermediate 
results by plotting helped us to better understand the original code. While 
the IPython notebook was therefore initially convenient, it does not scale 
well and is not well adapted to versioning. However, ability of mixing 
code with document text is very useful for tutorials: a user of the code 
can read documentation (docstring), text explanations, and see how to 
run the code, explore parameters and visualize results in the browser. 

2.3 From Python to Python: Replication of Replication 
Besides IPython, we used versioning tools like the git code version 
control system (VCS) to document the development of our Python code. 
Git is arguably one of the most powerful VCS, allowing easy develop-
ment of branches and helping us to work together as a distributed team 
(Paris, Berkeley) on the same project. This project, StratiPy, is hosted on 
GitHub, a web-based Git repository hosting service 
(https://github.com/GHFC/stratipy). While the original code was not 
available on GitHub, the main authors shared their code on a website. 
This should be sufficient for our purpose, but makes it less easy to 
collaborate on code. While working on our GitHub repository, several 
researchers from all over the world contacted us about our reproducibil-
ity experiment. Not only GitHub supports a better organization of pro-
jects, it also facilitates the collaboration of open-source software pro-
jects, thanks to several social network functions. We tried to comply 
with open source coding standards and to learn how to efficiently use Git 
and GitHub. Both required considerable efforts on the short-term but 
brought clear benefits on the long-term, especially regarding collabora-
tion and debugging.  

We then attempted to re-run and reproduce the results we obtained on 
another platform. While the Python code was developed under Mac OS 
X Sierra (10.12) we used an Ubuntu 16.04.1 (Xenial) computer to test 
the Python implementation. Some additional issues emerged. First, our 
initial documentation was not complete enough to know which packages 
were required and how to launch the code. Second, the code was very 
slow to the extent that it was impractical to run it on a laptop because the 
Numpy package had not been compiled with BLAS (Basic Linear Alge-
bra Subprograms), low-level routines performing basic vector and matrix 
operations. Last, there was (initially) no easy way to check whether the 
results obtained on a different architecture were the expected ones. We 
added documentation and tests on the results files md5sum to solve this. 
To summarize, although the re-use and reproducibility of the results of 
the developed package were improved, these were far from being opti-
mal. 

3 Potential solutions: from local to global 

3.1 Act locally: simple practices and available tools 
Given the observed difficulties, we draw some conclusions on this 
reproducibility case study experiment and suggest some practices and 
tools. 

3.1.1 Environment 

Container technologies such as Docker and Vagrant are becoming a 
standard solution to installation issues. These rely however on compe-
tencies that we think few biologists possess today. Also, while the con-
tainer will encapsulate everything needed for the software execution, it is 
hard to develop in a container, limiting the reusability of the code. 

3.1.2 Metadata 

Standard metadata are vital for an efficient documentation of both data 
and software. In our example, we still lack the standard lexicon to docu-
ment the data as well as documenting the software: e.g. using HDF5 file 
instead of .mat file is more suitable to store patient's’ data. We however 
aim to follow the recommendations by Stodden et al. (2016): “Software 
metadata should include, at a minimum, the title, authors, version, 
language, license, Uniform Resource Identifier/DOI, software descrip-
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tion (including purpose, inputs, outputs, dependencies), and execution 
requirements.” The more comprehensive is the metadata description, the 
more likely the re-use will be both efficient and appropriate. 

3.1.3 Write readable code 

Anyone who has spent time to understand someone else’s code would 
advise some simple basic rules to help make the code readable and 
understandable.  

First, the structure of the program should be clear and easily accessi-
ble. Second, good concise code documentation and naming convention 
will help readability. Third, the code should not contain left-overs of 
previously tested solutions. When a solution takes a long time to com-
pute, an option to store it locally can be proposed. Nevertheless, the code 
to compute, this variable should be given in any case (e.g. inverse of 
large matrix). Using standard coding and documentation conventions 
(e.g. PEP 8 and PEP 257 in Python, https://www.python.org/dev/peps) 
with detailed comments and references of papers makes the code more 
accessible. When an algorithm from another paper is used, any modifica-
tion should be explained and discussed in the paper as well as in the 

code. All these remarks are not necessarily obvious especially if the 
developer is working on her/his own, and to some extent “writes for 
her/himself”. We advocate for researchers to write code “for their col-
leagues”, hence, the opinion and notice of co-working or partner labora-
tories should be very helpful. Furthermore, the collaboration between 
researchers working on different environments can more easily isolate 
reproducibility problems. In the future, journals may consider review of 
code as part of the standard review process. 

3.1.4 Test the code 

To check if the code is yielding a correct answer, software developers 
associate test suites (unit tests or integration tests) with their software. 
While we developed only a few tests in this project, we realize that this 
has a number of advantages, such as checking if the software installation 
seems correct, check if updates in the operating system impact the re-
sults, etc. This does not in general validate the method, but at least 
provides a basic check. In our case, we propose to check for the integrity 
of the data and for the results of some key processing.  

Figure 4: Working principles of Workflow system with private data. Figure 4a shows 
a classical workflow: (a.1) Methodologists (M) take private data; (a.2) M publish their 
method and corresponding outputs/results; (a.3) Scientists (requesters = R) (e.g. biolo-
gists, doctors) having their own data ask developers (D) (e.g. bioinformaticians) for 
handling them; (a.4) D find a relevant paper and will be lost in the labyrinth of reproduci-
bility. Figure 4b shows workflow with standard consensus dataset: (b.1) If Methodolo-
gists (M) work with their own data, they must identify corresponding standard data tag(s) 
(e.g. A-2). They can use only standard data at the beginning of the project. If there is no 
appropriate data, they have to suggest a new data standard; (b.2) M choose a method 
category (e.g. "Classification"); (b.3) Reproducibility profile with several standard data is 
progressively built with method upgrade. Color corresponds to method category depend-

ing score and bar length corresponds to progression of replication test. Programming code 
with guide should be accessible although M do not publish; (b.4) Publication of the first 
version method by M; (b.5) Developers (D) can test proposed method with other data 
standards and thus participate to enhancement of the reproducibility profile. D then obtain 
automatically credit for this activity of validation; (b.6) Thanks to the collective work on 
testing, the method could be optimized and M can upgrade their initial paper (versioning); 
(b.7) Requesters (R) can now input corresponding tags (e.g. C-3 and E-6) of their data and 
search available methods in the category of their problem (e.g. "Regression"); (b.8) 
Following the request, a list of suggested methods and people involved (M, D) is ob-
tained. 
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3.2 Think globally: from education to community stand-
ards 

3.2.1 Training the new generation of scientists to digital tools 
and practices 

Unlike theoretical and academic courses and projects, software testing 
systems are well developed in industry. For a student, discovering and 
learning this core system of reproducibility, possibly during an internship 
in cooperation with industry, is a great opportunity for her/his future. 
Furthermore, as Internet applications in science are growing, networks of 
scientists and developers are forming and provide learning opportunities 
on the development practices. For instance, software developers have 
recently adopted “agile” practices and fast prototyping, test based devel-
opment, etc. Some of these ideas and practices can —and should— be 
adapted to scientific software development.    

The training in coding is still too limited for biologists. Often, it is 
self-training, from searching answers on Stack Overflow or equivalent. 
Despite efforts by organizations such as software (https://software-
carpentry.org) or data carpentry (http://www.datacarpentry.org) and the 
growing demand for ‘data scientists’ in life science, university training 
on coding practices is not enough generalized. The difficulty to access 
and understand code may lead to applying code blindly without checking 
the validity of the results: often, scientists may prefer to believe that the 
results are correct because of the time that would be needed to check the 
validity of the results. Mastering a package such that results are truly 
understood can take a long time, as it was the case in our experiment.  

3.2.2 Standard consensus dataset and workflow system 

We propose here that bioinformatics methods publications are systemati-
cally accompanied with a test dataset, code source and some basic tests. 
As the method is tested on new datasets, the number of tests of the 
method would increase in number and cover a wider range of applica-
tions. We give a first example with our NBS re-implementation. We 
develop below how this could generalize and what would be the benefit 
for the scientific community. In a sense, we propose to use the software 
development test framework idea but apply it to the scientific context.  

A schematic overview of workflow system is shown in Figure 4. The 
core of this system would be a standard consensus dataset used to vali-
date methods. Data could be classified in general categories such as 
binary, text, image (A, B, C in Fig 4b), and with sub-categories to intro-
duce criteria such as size, quantitative/qualitative, discrete/continuous 
using a tagging system (e.g. A-2, B-1, C-5 in Fig 4b). Dataset could be 
issued from simulations or from acquisition, and would validate a meth-
od on a particular component. This workflow system will help scientists 
that cannot release their data because of privacy issues (although these 
can often be overcome) but also give access to data and tests to a wide 
community.  

Roughly, we divide those who interact with scientific software or 
analysis code in three categories. First, the methodologists who propose 
a method and need to verify its validity and usefulness with public and/or 
their own - often private – data (“M” in Fig 4). Second, the developers or 
engineers who need to test and evaluate the proposed methods with other 
data (“D” in Fig 4). Third, expert and non-expert users who need to have 
a good understanding of the results obtained on various types of data (“R” 
as requester in Fig 4).   

Each method belongs to a general category of methods (e.g. classifica-
tion, regression) and could have a reproducibility profile, which will 
progressively be built by methodologists and developers (Fig 4b.3, 4b.5). 

The information of which method does or does not work with a stand-
ard/public data is a crucial information for the scientist. Developers who 
test and approve reproducibility on original or new data could be credit-
ed and recognized by the scientific and developer communities (i.e. 
Stack Overflow, GitHub). When scientists search about the appropriate 
methods according to their type of data (Fig 4b.7), they would also be 
interested in obtaining information about the people who invested heavi-
ly in test and optimization of suggested methods (Fig 4b.8). This work-
flow system could facilitate the gathering of diverse users of the science 
community.  

4 Conclusion and perspective 
Across the scientific fields, the reproducibility issue is seen as a grow-

ing concern. Before reusing a published method, we attempted to repro-
duce the initial results and recoded the method to have a deep under-
standing of it. The investment in time to verify a previously published 
method can be more important than the work needed to publish a new 
paper. Despite the willingness of the authors to share their tool and help 
us in our work, we have faced reproducibility problems due to compati-
bility between environments, programming languages and software 
versions, choice of parameters, etc. In addition to individual effort to 
write well documented and readable code, we recommend to use online 
repositories and tools to help other scientists in their exploration of the 
method: Docker for environment standardization, GitHub for code 
version management, and Jupyter notebooks for demonstration and 
tutorial. At the community level, we should enhance the cooperation 
between academic education and industry to foster a new generation of 
well-trained scientists in software development. We propose a workflow 
system where the community uses standard datasets to validate tools. 
The proposed method success on data profile will be evaluated continu-
ously with new datasets. Eventually, data and software can be versioned 
and cited to give credit to the individuals who have contributed to these 
building blocks of Science. This workflow is not merely a reproducibil-
ity validation tool, it is an attempt to make research product more reusa-
ble by the community using an online platform, beyond the publication 
process. Some top-down initiatives already provide some incentives for 
such a process i.e. Horizon 2020 (H2020, 
https://ec.europa.eu/research/press/2016/pdf/opendata-
infographic_072016.pdf) project of the European Commission (EC) 
mandates open access of research data, while respecting security and 
liability. H2020 supports OpenAIRE 
(https://www.openaire.eu/edocman?id=749&task=document.viewdoc), a 
technical infrastructure of the open access, which allows the interconnec-
tion between projects, publications, datasets, and author information 
across Europe. Thanks to common guidelines, OpenAIRE interoperates 
with other web-based generalist scientific data repositories such as 
Zenodo, hosted by CERN, which allows combining data and GitHub 
repository using digital object identifiers (DOI). The Open Science 
Framework also hosts data and software for a given project (Foster and 
Deardorff, 2017). Respecting standard guidelines to transparently com-
municate the scientific work is a key step towards tackling irreproduci-
bility and insures a robust scientific endeavor. 
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