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Abstract: 20	

1. Species abundance and community composition are affected not only by the local 21	

environment, but also by broader landscape and regional context. Yet determining the 22	

spatial scale at which landscapes affect species remains a persistent challenge that hinders 23	

ecologists’ abilities to understand how environmental gradients influence species 24	

presence and shape entire communities, especially in the face of data deficient species 25	

and imperfect species detection.  26	

2. Here we present a Bayesian framework that allows uncertainty surrounding the ‘true’ 27	

spatial scale of species’ responses (i.e., changes in presence/absence) to be integrated 28	

directly into a community hierarchical model.  29	

3. This scale selecting multi-species occupancy model (ssMSOM) estimates the scale of 30	

response, and shows high accuracy and correct type I error rates across a broad range of 31	

simulation conditions. In contrast, ensembles of single species GLMs frequently fail to 32	

detect the correct spatial scale of response, and are often falsely confident in favoring the 33	

incorrect spatial scale, especially as species’ detection probabilities deviate from perfect.  34	

4. Integrating spatial scale selection directly into hierarchical community models 35	

provides a means of formally testing hypotheses regarding spatial scales of response, and 36	

more accurately determining the environmental drivers that shape communities.  37	

 38	

  39	
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Introduction 40	

Features of the landscape beyond the local scale often affect the processes that give rise 41	

to patterns of community composition (Wiens 1989; Levin 1992; Kneitel & Chase 2004; 42	

Dray et al. 2012; Fortin et al. 2012; McGarigal et al. 2016). As a result, ecologists have 43	

sought to quantify what landscape features, in what contexts, and at what spatial scales 44	

explain the presence and abundance of species. Yet determining how species respond to 45	

the landscape has been challenging, in part because the relevant spatial scale(s) at which 46	

environmental conditions affect species and communities are rarely known a priori. This 47	

difficulty has led to uncertainty regarding the conclusions of many landscape level 48	

studies (Jackson & Fahrig 2015). The development of statistical methods that more 49	

robustly incorporating scales of responses within the statistical analysis of communities 50	

(Borcard & Legendre 2002; Jombart et al. 2009; Matthiopoulos et al. 2011; Dray et al. 51	

2012; Warton et al. 2015; Ovaskainen et al. 2016, 2017), and more accurately convey 52	

uncertainty regarding these scales (Chandler & Hepinstall-Cymerman 2016), have the 53	

potential to accelerate basic and applied ecological research. 54	

 When considering landscape level effects on species presence, abundance, or 55	

biomass, two properties of the species are generally of interest. First, at what spatial scale 56	

does the species respond to the environment (Desrochers et al. 2010), and second, how 57	

do they respond (positively or negatively)? The most commonly used approach for 58	

determining spatial scale of response (i.e., the spatial context, spatial contingency; Fortin 59	

et al. 2012) quantifies the average environmental value within buffers of various radii 60	

(Holland et al. 2004; Weaver et al. 2012; Zuckerberg et al. 2012; McGarigal et al. 2016), 61	

and then repeats a statistical analysis using the environmental covariate at each spatial 62	
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scale (Figure 1). For each species in turn, or for some community-level index like species 63	

richness or diversity (e.g., Shannon Index), the most likely spatial scale (as quantified by 64	

AICc, correlation coefficient, or slope parameter value) is selected to represent the best 65	

match of a species’ response to landscape heterogeneity. 66	

This multi-scale analysis approach has been successful in elucidating species and 67	

community responses (McGarigal et al. 2016). By considering landscapes as a whole it 68	

has helped quantify the benefits of small forest fragments to biological communities, and 69	

related ecosystem services (Karp et al. 2013; Mendenhall et al. 2016). More generally it 70	

has highlighted that species respond to different environmental conditions at different 71	

spatial scales, and that species distribution models possess greater predictive power when 72	

these multiple scales are directly incorporated (Desrochers et al. 2010; Weaver et al. 73	

2012). However, the current multi-scale approach does present a number of problems 74	

related to estimating the spatial scale of response, exacerbating uncertainty by treating 75	

species individually rather than the community as an integrated whole, and ignoring 76	

issues with species detectability. All of these will inflate error in estimating the true 77	

spatial scale of response, and quantifying how species respond to the environment.  78	

First, single species model comparison approaches that select a single best model 79	

typically neither quantify nor integrate over uncertainty regarding scale selection. This 80	

means that other parameters may be biased if the ‘most likely’ scale is not the true scale. 81	

Relatedly, the set of scales analyzed is often quite small (Desrochers et al. 2010; Jackson 82	

& Fahrig 2015), and as a result is unlikely to even include the true spatial scale. Meta-83	

analysis has shown that the most likely spatial scale is often at one of the extremes of 84	

those analyzed—suggesting that the true spatial scale is even more extreme (Jackson & 85	
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Fahrig 2015). Recently, Chandler & Hepinstall-Cymerman (2016) proposed a modeling 86	

approach that internalizes spatial scale estimation within a single species model by using 87	

smoothing kernels to average landscape variables around focal sites. This single-species 88	

model addresses these two problems by maximizing likelihood over the spatial scale 89	

parameter, and also allows confidence intervals to be calculated around it. Further, 90	

because spatial scale is a continuous (albeit bounded) parameter, it eliminates the 91	

problem of not including the true spatial scale among the scales assessed (provided an 92	

appropriate range of scales is investigated). 93	

The second major problem with the standard approach is that it makes 94	

assessments of multiple species in a species-by-species fashion. In the study of entire 95	

communities, however, this approach is often inadequate, because it ignores rare species 96	

(which are both typically of greatest conservation concern, and may be trophically 97	

influential). This problem is especially true in tropical communities, which are 98	

particularly under threat from land-use change, and where species rarity is common 99	

(MacArthur 1969; Hubbell 2001). Further, a species by species approach is prone to 100	

estimation bias and loss of power (Ovaskainen & Soininnen 2011; Banks-Leite et al. 101	

2014). Hierarchical joint community models have been proposed to move beyond 102	

piecemeal assessments (Ovaskainen & Soininnen 2011; Warton et al. 2015; Ovaskainen 103	

et al. 2017). By assuming that species parameters come from common distributions, 104	

overall community error is minimized and rare species can be included in analyses. 105	

Finally, imperfect detection of species is a problem for animal communities 106	

generally, especially when species traits, site characteristics, or the time or conditions of 107	

observation influence detectability. Multi-species occupancy models (MSOMs) are a 108	
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commonly adopted solution to account for imperfect and variable detection within 109	

communities (Iknayan et al. 2013). MSOMs are typically implemented in a Bayesian 110	

framework (relying on MCMC to overcome challenges in maximizing likelihoods when 111	

numerous random effects exist). Yet, model comparison and selection is still difficult to 112	

implement with Bayesian models (e.g., Hooten & Hobbs, 2015; but see Lele et al. 2007). 113	

Together this means that comparing models across a large range of spatial scales would 114	

be both time extremely time consuming (because MCMCs are relatively slow), and non-115	

trivial to implement. Because MSOMs are not easily amenable to adequate testing at 116	

multiple spatial scales, the scale of response has generally not been incorporated into 117	

community analyses that incorporate imperfect detection. Consequently, their power has 118	

not been sufficiently directed to understand how landscape features structure community-119	

level processes.  120	

Fortunately scale selection can be integrated directly into MSOMs by establishing 121	

a parameter that allows the spatial scale at which species respond to be estimated (e.g., 122	

Chandler & Hepinstall-Cymerman, 2016). When extended to the community as a whole, 123	

incorporating scale selection into the model should result in the appropriate spatial 124	

scale(s) being estimated directly from the data within a single model run, and also ensure 125	

that other parameter estimates are not biased because they were analyzed at the wrong 126	

spatial scale. One of us (LOF) recently developed the foundations of the approach 127	

presented here in an attempt to internalize scale selection within hierarchical multispecies 128	

models to overcome uncertainty about what spatial scale to analyze data for two specific 129	

empirical studies (Frank et al. In Press; Karp et al, In review). However, this technique 130	

was not fully developed in those works, and it remains unclear whether this approach has 131	
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correct type I error rates, and whether it does indeed increase power and accuracy over 132	

more traditional approaches. Here we fully describe, and demonstrate the use of, a multi 133	

spatial scale selection multi-species occupancy model (hereafter; ssMSOM), and test its 134	

performance in estimating both spatial scale of response, and species’ strengths of 135	

response to the environment (i.e., a landscape-level covariate). We compare this approach 136	

to the standard method of analysis: a series of species-by-species GLMs. While the 137	

approach here is demonstrated with a simple single season occupancy model for multiple 138	

species, the internalized scale selection is generalizable. For example, it could be directly 139	

integrated into abundance models, or combined with flexible hierarchical modeling 140	

approaches to query population dynamics through times, or the effects of species traits, 141	

phylogenetic relatedness, or interspecific competition on community structure (Yackulic 142	

et al. 2014; Frishkoff et al. 2017). 143	

 144	

Methods 145	

Model overview: 146	

The scale selecting multi-species occupancy model (ssMSOM) estimates parameters 147	

related to occupancy and detection probabilities in communities containing multiple 148	

species (indexed by i), across multiple sites (j), with multiple site visits (k). The observed 149	

detection histories (Yi,j,k) are assumed to derive from unobserved (latent) occupancy states 150	

(Zi,j, where Zi,j = 1 for presence, and 0 for absence) and detection probabilities determined 151	

by species, and site (Pi,j ; visit based variability in detection is ignored for simulations and 152	

models, but could be incorporated if desired). Specifically: 153	

𝑌!,!,!  ~ 𝐵𝑒𝑟𝑛 Z!,! ∗  𝑃!,! . 
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The occupancy state (Zi,j) in turn was assumed to come from some underlying occupancy 154	

probability according to:  155	

𝑍!,!  ~ 𝐵𝑒𝑟𝑛(𝜓!,!). 156	

The detection process was modeled according to: 157	

logit P!,! = 𝛼0! + 𝛼1! ∗ 𝐸𝑛𝑣!,! . 

And the occupancy probability (𝜓!,!) according to:  158	

logit 𝜓!,! = 𝛽0! + 𝛽1! ∗ 𝐸𝑛𝑣!,! +  𝛾0!  . 

Here Envj,s is a site-by-scale matrix of some landscape level environmental variable 159	

(centered and scaled within each column). All parameters in the α and β groups are 160	

estimated for each species, with species terms drawn from a normal distribution of mean 161	

(µ) and variance (σ2) estimated from the data. γ terms were random intercepts for each 162	

site (variance estimated from data around a mean of 0) designed to incorporate consistent 163	

differences in occupancy probabilities in all species across sites that are not accounted for 164	

by Env. The indexing value s (representing columns of the Envj,s matrix) spans multiple 165	

spatial scales, and the parameter value of s that best fits the data is estimated from the 166	

model. Because models are implemented using MCMC, this process results in a posterior 167	

distribution for values of s, which fully integrates over the uncertainly regarding the 168	

proper spatial scale, and which further can be used to select the most appropriate spatial 169	

scale (e.g., posterior mean or mode) or an interval of spatial scales that well describe the 170	

data. This formulation is conceptually similar to generalized linear models that integrate 171	

over phylogenetic uncertainty in tree topology (de Villemereuil et al. 2012). For 172	

simplicity, the environmental effect of a species’ detection probability is assumed to 173	

come from the environmental conditions at the finest (i.e., most local) spatial scale. This 174	
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assumption could be relaxed if there is reason to expect that more distant environmental 175	

conditions somehow affect detection probability. 176	

 For demonstration and testing purposes, we here assume that a single 177	

environmental gradient affects community composition. However, the ssMSOM could be 178	

generalized to include multiple environmental conditions (multiple site-by-scale 179	

environment matrixes, e.g., Env1j,s Env2j,t Env3j,u, etc.), each affecting communities at 180	

different spatial scales (with scale parameters s, t, u, etc., each independently estimated 181	

from the data). 182	

 183	

Simulation conditions 184	

In order to test the performance of the ssMSOM, we simulated communities, using an 185	

Env matrix based on empirical landscape forest cover. Spatial forest cover data for 186	

simulation and analysis came from northwestern Costa Rica, used as part of a study of 187	

how local and landscape level habitat conversion affects community composition (Karp 188	

et. al. In review). In that study, sites were selected to ensure that local forest cover varied 189	

independently from landscape level forest cover. To measure surrounding forest cover, 190	

all tree cover within 1.5km of sites was classified using high-resolution Google Earth 191	

images obtained from 2013-2016. The resulting 5m-resolution tree cover map was 192	

verified based on ground-truthed data collected in the field. For analysis, site level forest 193	

cover proportion was calculated in radii from 50m to 1500m, in 50m increments, 194	

resulting in an Env matrix with 30 columns. For the ssMSOM it would be most appealing 195	

to use the smallest increments possible to generate the largest number of spatial scales 196	

possible, since using few spatial scales makes it likely that the true scale will not be 197	
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among the analyzed set. We settled on 50m increments because of a balance of 198	

computational efficiency in model runs, and increments that approximate a continuous 199	

stretch from our smallest to largest spatial scale.  200	

 To test the performance of ssMSOM under a variety of conditions, we simulated 201	

120 communities (four at each of the 30 spatial scales), each with 16 species (Nsp), across 202	

50 sites (Nsite), with three site visits per site (Nvisit). All species parameters were drawn 203	

from normal distributions, generating diversity in species’ commonness (simulations 204	

included both common and rare species), and species’ responses to tree cover (some 205	

responded negatively and others responded positively to ‘deforestation’). This diversity 206	

of overall commonness and responses to the environment mimics patterns observed in 207	

many empirical systems. We repeated these simulations under five alternative detection 208	

scenarios:  209	

 1. Perfect detection, where the probability of detecting a species at a site if the site 210	

is occupied is 1. 211	

2. High detection probability: average detectability equals ~ 0.5. 212	

3. Low detection probability: average detectability equals ~ 0.25. 213	

4. Low detection with detection affected by local environment: average 214	

detectability equals ~ 0.25, but rising to ~0.5 under high local values of Env and dropping 215	

to ~0.1 under low local values of Env. 216	

 5. Low detection with species-specific variation in detectability by local 217	

environment: Same as 4, but some species increase in detectability with increasing values 218	

of local Env, while others decrease in detectability. 219	

For an overview of all simulation parameters see Table 1. 220	
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 221	

Model comparison 222	

To examine ssMSOM performance, versus a typical analysis strategy for this type of 223	

data, we compared it to a series of single species models fit using maximum likelihood 224	

across all 30 spatial scales. These models are referred to as piecemeal GLMs throughout 225	

and are described by standard binomial GLM functions of the form: 226	

logit 𝜓! = 𝛽0+  𝛽1 ∗ 𝐸𝑛𝑣! 

Y!  ~ 𝑏𝑒𝑟𝑛(𝜓!) 

where 𝜓! is the naïve occupancy probability of the focal species at the focal spatial scale, 227	

and Y! is the naïve occupancy state (i.e., whether a species was detected at a site across all 228	

site visits or not). To match the approach taken by empirical analyses species with 229	

observations at fewer than 10% of all sites were excluded from analysis (because data 230	

would presumably be insufficient for precise parameter estimates; e.g., Desrochers et al. 231	

2010; Zuckerberg et al. 2012). We then used AICc to choose the optimal spatial scale for 232	

each species in turn. 233	

 We focus on two core questions when evaluating the ssMSOM versus standard 234	

GLM approaches. First, does using an integrated community analysis provide more 235	

accurate estimates of the correct spatial scale (s) than a piecemeal approach? For species 236	

for which β1 is close to 0, the spatial scale of response cannot be evaluated in the 237	

piecemeal GLMs because the scale of response is undefined if the species does not 238	

respond to the environment. For this set of analyses we therefore additionally excluded 239	

all species for which β1 was not significantly different from 0 in the most likely GLM, as 240	

estimation of true spatial scale should be more accurate for the remaining species.  241	
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Second, even when estimating spatial scale is not the primary goal and is 242	

therefore considered a nuisance variable, does integrating over uncertainty regarding the 243	

correct spatial scale result in more accurate estimates of how species respond to the 244	

environment (𝛽1) than a piecemeal approach? To answer this question we additionally 245	

compared parameter estimates with GLMs using the true spatial scale under which 246	

simulations were conducted. While for empirical data the true spatial scale is never 247	

known without error, using it here represents the ‘best-case scenario’ for community 248	

level analyses of landscape level responses to the environment. 249	

 To quantify the accuracy of the ssMSOM versus a piecemeal GLM approach, we 250	

calculated the root mean square error (RMSE) across the entire community of the family 251	

of parameter estimates from the true simulated value. With regards to ‘s’, we consider the 252	

posterior mode in the case of the ssMSOM, where as for the GLMs we consider the 253	

spatial scale that minimizes AICc for each species. To ensure the results are comparable 254	

in both approaches we calculate RMSE for each species in turn, even though in the case 255	

of the ssMSOM the parameter s is estimated for all species simultaneously, and is 256	

therefore identical for all species.  257	

We also examine coverage probability of the posterior estimates (i.e., the inverse 258	

of type I error). If models are behaving as expected, the 95% CIs of the parameter 259	

estimates should contain the true value 95% of the time. For ssMSOMs and GLMs the 260	

coverage probabilities for 𝛽1 can be calculated directly from species-specific parameter 261	

estimates. Similarly coverage probabilities around ‘s’ for the ssMSOMs can be calculated 262	

using equal tail Bayesian credible intervals around the posterior of s. To calculate a value 263	

equivalent to coverage probabilities of the spatial scale in the case of the piecemeal 264	
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GLMs we first calculated the AICc weight for all spatial scales for a given species, and 265	

then asked whether the true spatial scale was within the top 95% of the cumulative model 266	

weights. 267	

 268	

Model Fitting 269	

Models were fit using JAGS through the R environment. Simulation code in R and JAGS 270	

model code is available in the supplement. For MCMC analyses diffuse priors were used 271	

throughout, with a flat prior placed on ‘s’. 272	

 273	

Results 274	

Inferring spatial scale 275	

The posterior mode of spatial scales from the ssMSOM tended to accurately estimate the 276	

true spatial scale of response, and had relatively low error, typically off by less than 277	

100m under the conditions simulated (Figures 2 and 3). In contrast, piecemeal GLMs 278	

failed to consistently recover the true spatial scale for the majority of species in the 279	

community, even when detection was perfect. The degree of error was lower when 280	

restricting analysis to only those species for which the lowest AICc GLM showed a 281	

significant relationship with the environmental gradient, though RMSE across the entire 282	

community was still >3X that of the ssMSOM (Figure 3a). Further, when detection itself 283	

varied along the environmental gradient at local scales in a species-specific manner, 284	

using a standard GLM approach resulted in error in estimating species response scales 285	

that is no better (and sometime worse) than guessing a scale at random (Figure 3a). Not 286	

surprisingly, error in estimating the scale of response within piecemeal GLMs was 287	
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greatest for both species that were detected in a small number of sites, as well as species 288	

detected in the majority of sites (Figure 3b). 289	

 The ssMSOM demonstrated correct type I error rates when estimating s, 290	

regardless of detection regime. In contrast, piecemeal GLMs showed inflated type I error 291	

when estimating the true spatial scale, which was exacerbated as detection probability 292	

deviated from perfect (Figure 4). This behavior was further accentuated when excluding 293	

species that did not have a significant response to the environmental gradient at its most 294	

likely spatial scale, such that nearly 20% of all species assessments did not include the 295	

true spatial scale model in the top 95% Akaike weighted models under a low-detection 296	

regime with specific-specific variation in detectability by environment. 297	

  298	

Estimating species responses to the environment 299	

Estimates of species responses to the environment (β1) were more accurate in the 300	

ssMSOM than in piecemeal GLMs, even when GLMs were run using the true spatial 301	

scale (Figure 5). These patterns were not strongly affected by detection regime, though in 302	

general estimates are more accurate when detection probabilities are high. Type I error 303	

does however strongly shift with detection. If detection is perfect, and the true spatial 304	

scale in known a priori, then a piecemeal GLM approach performs as well as the 305	

ssMSOM (Figure 6). However, when the spatial scale must be inferred from the data 306	

GLMs generate falsely confident results, with the true values of species responses 307	

excluded from the 95% confidence intervals up to 30% of the time under some simulated 308	

conditions (i.e. 6X the nominal type I error rate). In contrast the ssMSOM possess 95% 309	

CIs that behave has expected, regardless of detection regime. 310	
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 311	

Discussion 312	

Here we described and tested the statistical properties of the ssMSOM against the 313	

standard method for ascertaining species’ and communities’ scales of response. We find 314	

that internalizing scale selection into the model results in greater community wide 315	

accuracy for key parameter estimates, and reduces the probability of making incorrect 316	

inferences. The key strength of the ssMSOM is that it does not rely on setting the spatial 317	

scale a priori. Like the approach of Chandler & Hepinstall-Cymerman (2016), the 318	

ssMSOM avoids the problem of researchers selecting only a few scales to investigate, 319	

which are too narrow to include the true scale of response (Jackson & Fahrig 2015). This 320	

of course requires that researchers first extract landscape data from as broad a range of 321	

scales as possible, ideally in the finest increments possible. This allows spatial scale to be 322	

treated as nearly continuous, such that 95% CIs can be created, and inferences made as 323	

with any other continuous parameter in the model. When taking a flexible scale 324	

estimation approach it is essential to use as fine scale environmental data as possible. If 325	

environmental data are coarse with respect to the resolution at which species interact with 326	

the environment then the estimated spatial scale of response will be strongly upwardly 327	

biased and overall model performance will suffer (Mendenhall et al. 2011). 328	

 329	

Examples of empirical use 330	

Two recent studies have demonstrated the power of using the scale selection routine from 331	

the ssMSOM (i.e., indexing the Env matrix by scale) when analyzing empirical datasets. 332	

Frank et al. (in press) used a phylogenetic occupancy model (Frishkoff et al. 2017) with 333	
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the internalized spatial scale selection method presented here, finding that bat responses 334	

to deforestation are strongly phylogenetically conserved. Similarly, Karp et al (in review) 335	

used Bayesian spatial scale selection embedded within an N-mixture model to examine 336	

how bird communities responded to habitat conversion while accounting for imperfect 337	

detection in order to understand how β-diversity was structured along land-use and 338	

climate gradients. In both cases spatial scale selection strongly supported deforestation 339	

affecting the communities at fairly small spatial scales. While in both cases scales at over 340	

a kilometer away from focal sites were queried, for bats the posterior distribution peaked 341	

at 50m, and excluded all scales above 100m, while for birds scales below 300m were 342	

favored. Because of the ssMSOM framework, these studies were able to analyze both 343	

common and rare species. Had these studies relied on individual GLMs (or species-by-344	

species occupancy models) the uncertainty around the scale of response would likely 345	

have been extremely high, and un-estimatable for the majority of rare species. This was 346	

particularly important in the case of Neotropical bats for which rare and hard to detect 347	

species tended to be found in natural forests. Indeed, if imperfect detection were not 348	

taken into account species richness would have appeared to have been unaffected by 349	

forest loss, when in fact it declined sharply (Frank et al. In press). These early examples 350	

of embedding spatial scale selection into hierarchical models highlight the broad 351	

applicability of the method. The ssMSOM approach is easily extended to abundance 352	

models (i.e., N-mixture or recapture models), or indeed any Bayesian implementation of 353	

multispecies models with or without detection for which the true spatial scale of response 354	

is unknown could benefit from the general approach. 355	

 356	
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Assumptions, limitations, and future directions  357	

Critically, for the simulations presented (and within the ssMSOM itself) there is the 358	

assumption that a single, true spatial scale exists at which all species respond to the 359	

environment. This may or may not be true for a given assemblage in nature. Empirical 360	

studies have shown that different species respond to different spatial scales (e.g., 361	

Chambers et al. 2016), and theoretical approaches suggest that some species traits may 362	

modulate the scale of response (Jackson & Fahrig 2012). However, we show in our 363	

simulations that empirical analyses conducted on a species by species basis (as past 364	

studies have been) are often unable to recover the true spatial scale at which species 365	

respond, and show high heterogeneity in the scale of response even if all species are 366	

simulated to respond at the same spatial scale. While many species likely do respond at 367	

different scales, this finding casts some doubt on the specific estimates of scales of 368	

response presented in past empirical studies. The high degree of inaccuracy inherent in 369	

the piecemeal GLM approach may be partially responsible for the lack of correlation 370	

between empirically estimated scales of response, and species traits thought to modulate 371	

these scales (Jackson & Fahrig 2015). 372	

 Future development of the ssMSOM and similar community wide approaches 373	

should be able to relax the assumption that all species have the same scale of response, 374	

although doing so may diminish the ability to precisely estimate response scales for rare 375	

species. One path would be to estimate spatial scale separately for two or more groups of 376	

species, delimited based on natural history knowledge, functional guild placement, or 377	

other a priori expectations (Pacifici et al. 2014). An a priori grouping based approach, 378	

however, is at best an imperfect solution. Ideally individual species’ scales of response 379	
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would be allowed to vary from one another—using random effect structures within the 380	

scale selection component of the model would be one logical way to do so. Allowing 381	

random variation among species could additionally allow species’ level covariates to 382	

affect the scale of response, thereby facilitating testing the hypothesis that some species’ 383	

traits correlate with scale of response that both maintains high power, and is minimally 384	

afflicted by type I error. 385	

 In real communities, species’ responses to the broader landscape might be 386	

predicated on conditions at the local scale (i.e., an interaction between local and 387	

landscape scales). For example, a farm-land bird species might benefit from landscape 388	

level tree cover when the local habitat is agriculture, but might only exist in forest when 389	

there are low amounts of landscape level tree cover because it uses forest edge habitat. 390	

Allowing interaction terms between landscape and local effects (e.g., forest cover as 391	

estimated within a point count radius) will allow these types of species interactions with 392	

the environment to be tested (Matthiopoulos et al. 2011; Paton & Matthiopoulos 2016).  393	

Chandler and Hepinstall-Cyberman (2016) pointed out that the step function used 394	

to calculate proportion of focal habitat within a given radius has no theoretical basis, and 395	

instead favor a Gaussian weighting function. This approach could be easily implemented 396	

with the Bayesian framework presented here, by indexing the Env matrix based on the 397	

output of the weighting function over incremental changes in its key parameter. While, 398	

alternatives to the commonly used step functions are certainly appealing on theoretical 399	

grounds, at least one study that examined Gaussian weighting versus a step function 400	

radius method found that models performed roughly equivalently (Timm et al. 2016). 401	

 402	
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Conclusion 403	

Humans are altering landscapes across the globe, such that the remaining extent of 404	

natural habitats are often much diminished and severely fragmented (Haddad et al. 2015). 405	

Such complex, heterogeneous landscapes challenge ecologists’ abilities to discern the 406	

underlying environmental drivers of community composition. Yet achieving successful 407	

conservation strategies in these landscapes requires simultaneously describing and 408	

predicting how these spatially heterogeneous environments affect not just individual 409	

species, but entire communities. Internalizing spatial scale selection within community 410	

models offers one approach to uncover the environmental drivers behind such community 411	

change while accommodating the unavoidable uncertainty in the ‘true’ scale of species’ 412	

responses. The ssMSOM possess high accuracy and correct type I error rates when both 413	

identifying the spatial scale of response, and the direction and magnitude with which 414	

individual species respond to environmental gradients. This approach represents a 415	

promising path forward for understanding the ecological drivers of community 416	

composition, and the consequences of ongoing environmental change. 417	

 418	
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 535	
Figures and Tables 536	
 537	
Table 1: Simulation conditions of communities. 538	
    Detection Regime 

Component Parameter Perfect High Low 
Low-
Env Low-Env Variable 

D
et

ec
tio

n µα0 100 0 -1 -1 -1 
σα0 0 1 1 1 1 
µα1 0 0 0 1 1 
σα1 0 0 0 0 1 

O
cc

up
an

cy
 µβ0 -1 -1 -1 -1 -1 

σβ0 1 1 1 1 1 
µβ1 0.5 0.5 0.5 0.5 0.5 
σβ1 1 1 1 1 1 
σγ0 0.1 0.1 0.1 0.1 0.1 
s variable variable variable variable variable 

Sa
m

pl
e 

Si
ze

 Nsp 16 16 16 16 16 
Nsite 50 50 50 50 50 
Nvisit 3 3 3 3 3 

 539	
 540	
  541	
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 542	

 543	
Figure 1. Map of empirical 5m-resolution subsection of forest cover landscape in 544	
northwestern Costa Rica with three fictitious sampling points that break the correlation 545	
structure between local and broader landscape forest cover. Colored points represent 546	
50m-point count radii, and each successive buffer represents an increase in radius of 547	
50m. Only 50-300m radii are shown, though for simulation analyses radii extended to 548	
1500m. 549	
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 551	

 552	
Figure 2. Example histograms of single species GLMs, and the ssMSOM. Example 553	
comes from low detection case (mean detection = ~0.25). Upper panel depicts posterior 554	
distribution of the spatial scale that describes species responses to the environment from 555	
the ssMSOM. Lower panel depicts the spatial scale that minimizes AICc for each single-556	
species GLM, after removing one species that was observed in fewer than 10% of sites 557	
(i.e. 15 species remaining). Purple bars are species for which the response to the 558	
environment does not differ significantly from 0, at the ‘best’ spatial scale, whereas blue 559	
species have significantly positive or negative responses to the environment at the ‘best’ 560	
spatial scale.  561	
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 563	
Figure 3. (a) General comparison of root mean square error for spatial scale across 120 564	
simulations per detection regime, comparing posterior mode from ssMSOM, and AICc 565	
selected spatial scale for each species in single cases (splitting off only species with 566	
statistically significant responses to the environment [in blue], from all species [in 567	
purple]). ‘Random’ indicates the distribution of RMSEs that one would obtain if selecting 568	
spatial scales randomly along the uniform range from 50m to 1500m. (b) Blue lines in 569	
right panel depict lowess smoothers through all individual species’ error in spatial scale 570	
estimation from piecemeal GLMs (across all simulated communities), as a function of the 571	
number of individuals observed. Red lines show mean error across all ssMSOMs (all 572	
species in the community are assumed to respond at the same scale, so species’ level 573	
error is invariant to number of observations). Ability to estimate a species’ scale of 574	
response suffers when species are either too rare, or too common, when using piecemeal 575	
GLMs. 576	
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 579	
Figure 4. Quality of inference of true spatial scale declines for single species cases 580	
declines as detection becomes lower confounded with environment. For ssMSOM 581	
coverage probability indicates the proportion of simulations (n = 120 per regime) for 582	
which the true spatial scale was within the 95% CIs of the spatial scale posterior. For 583	
GLMs coverage probability indicates the proportion of species across simulations for 584	
which the true spatial scale was within the top 95% of Akaike weighted models. 585	
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 587	
 588	

 589	
Figure 5. Accuracy of estimates of species responses to the environment (β1sp). Left 590	
panel depicts boxplots of community level RMSE of β1sp values for each of 120 591	
simulations per detection regime. Species observed in fewer than 10% of sites were 592	
removed from GLM estimates in left panel. Right panel depicts lowess smoothers 593	
through individual species’ error in β1sp (across all simulated communities), as a function 594	
of the number of individuals observed. Here blue lines represent estimates from 595	
piecemeal GLMs (using min. AICc), whereas red lines represent estimates from 596	
ssMSOMs. 597	
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 600	
Figure 6. Coverage probabilities around true value of response to the environment (β1sp). 601	
Each point represents the proportion of species across all simulations for which the true 602	
value fell within the 95% CIs of the estimate. For GLMs all species observed in fewer 603	
than 10% of sites were excluded from the analysis. GLMs min AICc indicates each 604	
species’ GLM at the ‘best’ spatial scale. GLM True scale is the GLM from at the spatial 605	
scale that the responses were simulated at, regardless of whether this GLM possessed the 606	
lowest AICc. 607	
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