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Genomes contain rare guanine-rich sequences capable of assembling into four-stranded helical
structures, termed G-quadruplexes, with potential roles in gene regulation and chromosome stability.
Their mechanical unfolding has only been reported to date by all-atom simulations, which cannot
dissect the major physical interactions responsible for their cohesion. Here, we propose a mesoscopic
model to describe both the mechanical and thermal stability of DNA G-quadruplexes, where each
nucleotide of the structure, as well as each central cation located at the inner channel, is mapped onto
a single bead. In this framework we are able to simulate loading rates similar to the experimental
ones, which are not reachable in simulations with atomistic resolution. In this regard, we present
single-molecule force-induced unfolding experiments by a high-resolution optical tweezers on a DNA
telomeric sequence capable of forming a G-quadruplex conformation. Fitting the parameters of
the model to the experiments we find a correct prediction of the rupture-force kinetics and a good
agreement with previous near equilibrium measurements. Since G-quadruplex unfolding dynamics
is halfway in complexity between secondary nucleic acids and tertiary protein structures, our model
entails a nanoscale paradigm for non-equilibrium processes in the cell.

PACS numbers: 87.15.-v, 36.20.-r, 87.18.Tt, 83.10.Rs, 05.40.-a
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I. INTRODUCTION

G-Quadruplexes (G4) are non-canonical conformations
of DNA or RNA sequences rich in Guanine nucleobases.
Unlike the classic double helix [1], the basic structural
unit in the G4 motif is the G-tetrad, a planar arrangement
of four guanines (G) nucleobases held by Hoogsten hydro-
gen bonds [2]. The presence of monovalent cations like
K+ and Na+ stabilizes the highly electronegative central
channel along the axis of the G4 stem. G4s have been ob-
served in some biological sequences within telomeres and
in promoter regions [3, 4], being their high mechanical
stability one relevant property in their potential role in
processes such as gene expression and chromosome main-
tenance [5, 6].

The mechanical stability of G4s have been studied at
the single molecule level by means of AFM and optical
tweezers (OT) [7–11]. Mechanical stability in this frame-
work is defined in terms of the unfolding force or unfold-
ing free energy. Typical values of the unfolding forces
for G4 range between 20-30 pN and depend on the G4
topology and the type of ion present in the G4 channel
[7]. Single-molecule characterization is at present lim-
ited by the temporal and spatial resolutions of the ex-
perimental techniques. Complementary information as
the structural changes during the unfolding is obtained
by molecular simulations.

The dynamics of the G4 has been modeled at different
temporal and length scales, from quantum calculations
[12, 13] and molecular dynamics simulations [14–19] to
mesoscopic approaches [20, 21]. Molecular dynamics al-

lows an atomistic description of G4 properties. In this
regard, we previously studied the mechanical unfolding of
a fragment of the human telomeric sequence that can be
folded in different geometries by using Steered Molecular
Dynamics. We showed that the unfolding pattern in the
force-extension curves is correlated with the loss of coor-
dination of the central ions in the G4 and that its stabil-
ity is significantly decreased if the ions are removed [19].
These results cannot be compared directly with the ex-
perimental results due to the high pulling velocity used
in this molecular dynamics simulation (around 6 orders
of magnitude higher than in the experiments), which is
known to affect the unfolding forces.

Larger temporal and spatial scales can be achieved by
means of mesoscopic models. Unlike for double-stranded
(ds) DNA or single stranded (ss) structures, like DNA
hairpins, only few mesoscopic models have been devel-
oped for G4 [20–22] and none, to our knowledge, to char-
acterize the mechanical unfolding. Margaret et al. [20]
developed a bead-spring model for dsDNA with three
beads per nucleotide. They studied thermal properties of
dsDNA and also those of ssDNA, specifically the melt-
ing of a DNA hairpin and the folding of the thrombin
aptamer (a G4 with two G-tetrad planes). Rebic et al.
developed a mesoscopic model following a bottom up ap-
proach [21]. Their model presents three different beads:
one bead for the Guanines, another for the nucleotides in
the loop, and the last one for the ions, which interact by
means of tabulated potentials.

In this work we propose a mesoscopic model for a frag-
ment of the G4 human telomeric DNA with a resolution
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FIG. 1. Mesoscopic model for G4. Left: Scheme of a parallel G4 assembly, taken as exemplary structure, where each nucleotide
is represented by a single bead (not to scale). For simplicity, the twist between successive G-tetrad planes is not represented.
Such rotation makes the distance between two consecutive planes (p0 = 0.5 l0, see the text for details) lower than the equilibrium
distance between two consecutive beads in the chain (l0 = 0.65 nm). Right: Potential between Guanines of the same plane
U(dGG) and between one ion and its neighbor Guanines U(dIG). The red lines mark the threshold distances used to define the
coordination numbers between Guanines and between the central ions and the neighbor Guanines. The black lines in the panel
of U(dIG) delimit the interval [a,b] where the coulomb force attraction is linearly shifted to zero.

of one bead per base and investigate both its thermal
and its mechanical stability. The simplified representa-
tion of the model allows, on the one hand, the exploration
of the mechanical unfolding at lower velocities than per-
mitted in atomistic simulations and, on the other hand,
the direct comparison with a high resolution mechanical
unfolding experiment we herein present.

II. METHODS

A. DNA G4 model

Each nucleotide and the two central ions are repre-
sented by a single bead as depicted in fig. 1 where li is
the distance between two consecutive beads in the chain;
dGG is the distance between two Guanines of the same
plane; dIG is the distance between each central ion and
its neighbor Guanines (this distance is defined for the
eight closest Guanines to each ion) and θi is the angle
between three consecutive Guanines. The Hamiltonian
of such system is composed by the following terms.

• A harmonic interaction between two consecutive
beads Ustr =

∑
i
1
2ks(li−l0)2, where li = |ri+1−ri|,

ri is the position vector of the i-th particle, l0 is the
equilibrium separation between beads and ks the
elastic constant of the chain. We take l0 = 0.65 nm,
which is approximately the distance between con-
secutive phosphor backbone atoms in the crystal
structure of the human telomeric parallel G4 [23].

• A Morse potential between consecutive beads of
the same plane to simulate the Hoogsten hy-

drogen bonds between the Guanines: UGG =∑
p

∑
gDG(e−αG(dGGg−r0)−1)2, where the sums go

over the number of planes p = 1, ..., 3 and the num-
ber of Guanines in each plane g = 1, ..., 4, dGGg is
the distance between two consecutive Guanines of
the same plane and r0 the equilibrium length of the
side of each plane. The strength of the hydrogen
bond interaction highly depends on their environ-
ment. In the case of the G4, it has been shown that
the hydrogen bonds between Guanines are stronger
when all the bonds of the same plane are formed
[12]. To take into account this cooperative effect,
we take the depth of the Morse potential DG to be
dependent on the distances between the Guanines
of the same plane as follows:

DG = D0{1 + 2e−δ(
∑

g dGGg−4r0)}, (1)

where dGGg are the four distances in the same plane
and δ sets the length scale for the decay of DG.
Thus DG varies from DG = 3D0 when the G4 is
folded and the side of the plane is r0, to D0 when
any of the distances dGGg increases beyond δ−1.

• An interaction potential between each central ion
and its neighbor Guanines UIG =

∑
i

∑
g A/d

12
ig −

Qig/dig, where the sums go over the two ions
i = 1, 2 and the eight neighbor Guanines g =
1, ..., 8, A/d12ig is a repulsive term that accounts for
the excluded volume effect and Qig describes the
strength of the effective attraction between the ion
and the Guanine. The constant A is selected in
such a way that the minimum of UIG is located
at
√

2(r0/2)2 + (p0/2)2 (p0 is the distance be-
tween the centers of two consecutive planes). The
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Coulomb contribution Qig/dig is shifted linearly to
zero in the interval a < b indicated in figure 1 with
the two black vertical lines. A purely repulsive in-
teraction between the two ions UI1I2 = QI1I2/dI1I2
is also included. We set Qig = 2.5QI1I2 . It is worth
noting that even if the interactions between the two
ions and between each ion and the Guanine have an
electrostatic origin, their features are different. In
fact, the interaction between the Guanine base is
due to the metal-ion coordination between the ion
and the oxygen O6 of the Guanine, and then is more
sensitive to their distance separation than if it were
a pure electrostatic interaction [24]. For this rea-
son we introduce, as a typical procedure adopted
in these cases, a cutoff distance for the interaction
between the ion and the Guanines.

• A bending energy interaction between the three
consecutive beads that belong to each side of the
G4 stem Uben =

∑
i kb/2 [1− cos(θi − θ0)], where

kb is a bending elastic constant, θ0 ≈ 150o due to
the twist between planes (not represented in Fig. 1)
and θi is the angle between vectors li+1 and li. This
term accounts for the stacking interactions between
the consecutive Guanines and confers stability to
the G4 stem. For the beads of the loops the bend-
ing can be neglected.

• A repulsive Lennard Jones interaction VLJ =∑
i

∑
j>i 4ε

[
(σ/rij)

12 − (σ/rij)
6
]

if rij < 1.122σ
between all the beads of the G4. This term ac-
counts for the excluded volume effect.

.
The dynamics of the system is obtained from the over-

damped equations of motion of the j-th bead of the G4
(j = 1, ..., 21)

mj ṙj = −∇rjUstr −∇rjUGG −∇rjUig −∇rjUben

−∇rjVLJ +
√

2kBTmjηj(t), (2)

and for the i-th bead representing the ions (i = 1, 2)

miİi = −∇IiUig −∇IiUI1I2 +
√

2kBTmiηi(t). (3)

The last terms in eqs. 2,3 represent the thermal contri-
bution as a Gaussian uncorrelated noise. The damping
is taken implicit into the time units. The mass of the ion
mi and of the nucleotide mj are taken as mj = 3.85mi.
We use the following dimensionless units: length is given
in units of l0 = 0.65 nm and energy in units of D0. The
energy and time units are derived in the next sections in
order to match the experimental values of the G4 melt-
ing temperature and unfolding force with the simulations.
The rest of the parameters in the dimensionless units are
D0 = 1, ks = 100, kb = 2, αG = 10 and δ = 0.3.

Systems of equations 2 and 3 are integrated with the
stochastic Euler algorithm with dt = 10−4. For the melt-
ing simulations, were the dynamics is studied at different
temperatures, the simulations are started from the lowest

temperature and a folded conformation of the G4. The fi-
nal positions and velocities at each temperature are used
as the initial conditions for the next temperature. Each
simulation lasts for 107 time steps, from which, the first
106 steps are for thermalization. Pulling simulations are
conducted at a temperature lower than the melting until
the G4 is unfolded.

B. Force-induced unfolding experiments

To adjust and validate the mesoscopic model, we per-
formed constant velocity pulling experiments in which
a DNA telomeric sequence that yields a G4 is unfolded
by means of a high-resolution OT device, as depicted
in Fig. 2. The central hexanucleotide-repeat sequence
is flanked by dsDNA handles for its manipulation in
the optical setup (see below). The trap stiffness is
k = 0.135 ± 0.004 pN/nm. The micropipette is moved
relative to the optically trapped bead with a pulling ve-
locity v = 11.8 ± 1.4 nm/s near the rupture event. The
elastic constant acting on the G4 due to the dsDNA han-
dles is estimated from the slope of their force-extension
curve in the enthalpic elasticity regime before the rup-
ture, which gives kDNA ≈ 0.4± 0.1 pN/nm.

FIG. 2. Experimental configuration for the mechanical un-
folding of the G4 at the single-molecule level. The two ends
of the G4 are tethered by two dsDNA handles, which are
in turn attached to micronsized beads via biotin-streptavidin
and digoxigenin-antidigoxigenin bonds. One of the beads is
kept fixed by air suction to a micropipete while the other
one is trapped in the laser-beam focus forming the OT. “B”
stands for biotin and “D” for digoxigenin.

1. Synthesis of telomeric DNA molecules

The molecular construction for OT experiments con-
sists of a telomeric G4-forming sequence (5’-TATA
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(GGGTTA)5 TAGT-3’) flanked by two dsDNA handles,
one of 650 bp at the 5’ end (handle A) and the other
of 401 bp at the 3’ end (handle B), for their attach-
ment to beads through digoxigenin-antidigoxigenin and
biotin-streptavidin labeling, respectively (Fig. 2). The
extra repetition and the flanking ssDNA nucleotides pro-
vide configurational flexibility for the formation of the
G4 in the presence of the dsDNA handles. The three
DNA fragments were obtained by PCR amplifications
of a conveniently modified pUC18 plasmid [11]. Handle
B was labeled during its PCR amplification using a 5’-
biotinylated primer (Integrated DNA Technologies, IDT,
Coralville, IA) and handle A was modified afterwards
adding a very short tail of 2-3 digoxigenin-dUTP at its
3’ end (DIG Oligonucleotide Tailing Kit, 2nd Generation
(Roche); 37oC-15 min). Both DNA templates and la-
beled handles were purified using Wizard R© SV Gel and
PCR Clean-Up System (Promega). Finally, equimolar
amounts of the telomeric DNA and the two DNA labeled
handles were mixed and annealed in the presence of KCl
in a PCR apparatus using the annealing procedure de-
scribed in [11].

2. Optical setup

Measurements have been performed in a dual-beam
optical trap in which two diode lasers (250 mW at max-
imum power, 808 nm wavelength) and associated op-
tics are compacted into a miniaturized instrument sus-
pended from the ceiling [25]. Each beam is delivered
by an optical fiber and its position in the plane per-
pendicular to the optical axis is controlled by bending
the optical fibers using piezoelectric crystals. The two
laser beams are counter-propagating and brought to the
same focus with orthogonal polarizations, which allow
their optical paths to be separated using polarizing beam
splitters. Each beam is passed through a pellicle beam-
splitter that redirects about 5% of the intensity, which is
used to measure the position of the trap. The remain-
ing light is focused through water-immersion objectives
(NA=1.20) to form the optical trap in a microfluidics
chamber, which also contains a micropipette. The light
exiting the trap from each beam is collected by the oppo-
site objective lens, which redirects it to position-sensitive
detectors that monitor the three force components acting
on the trapped bead. Force is measured using the light
momentum conservation [26]. This setup design reduces
the mechanical drift and allows a large measurement sta-
bility over time thus enhancing the discernibility of the
rupture events associated with the unfolding of the DNA
structure. It allows an approximate force resolution of
0.1 pN and a distance resolution of 0.5 nm.

III. RESULTS

A. Melting simulations

In this section we study the thermal stability of the
G4 with our model. To this end, different magnitudes
are calculated as a function of the temperature: the av-
erage coordination number of each ion CoI , the average
coordination number of each plane CoP , the radius of gy-
ration of the molecule RG and the heat capacity Cv. The
coordination number of each ion is 1 if the distance be-
tween it and its neighbor Guanine is lower than 1.63 nm
(2.5l0) and 0 otherwise. In each plane the coordination
number between two consecutive Guanines is put equal
to 1 if the distance between them is lower than 1.75 nm
(a distance around the plateau of the Morse potential is
reached) and 0 otherwise. CoI and CoP are defined as
the average over the total possible contacts for each ion-
Guanine (8) and in each plane (4), respectively and over
the simulation time at each temperature.

Figure 3 shows the melting curves of the G4 described
by the above mentioned magnitudes. For comparison, the
results of a simulation without the central ions are also
included. In both panels a) CoI and b) CoP we observe
that the curves decrease in a stepwise fashion approxi-
mately at the same temperature for the two measures.
Analogously, in the presence of the ions, RG (panel c)),
and CV (panel d)) show a similar stepwise change at the
same temperature. The narrow temperature interval in
which CoP goes to zero, as well as the sharp transition of
RG, are a consequence of the coperativity term included
in the definition of the Morse potential (Eq. 1). Con-
versely, in absence of the coperativity term (δ = 0), the
measures undergo their changes at higher temperatures
(the breaking of the planes CoP is not shown for sim-
plicity): in the case of the gyration radius the transition
is quite smooth and the dissociation of the three planes
CoP takes also place in a wide interval instead of appear-
ing as sharp transitions. The transition temperatures are
then very different from each other and do not permit any
definition of a melting temperature. In other terms, the
contribution of the cooperative term appears essential in
determining the steepness and so the uniqueness of the
melting temperature in the thermal unfolding.

Moreover, the abrupt changes in CoP , RG and Cv,
characteristic of the melting, is highly influenced by the
presence of central ions. We observe in Fig. 3 (panels b),
c), and d)) that the transitions of all the measures occur
at a lower temperature if the ions are not present (‘no I’
labels), indicating that their coordination increases the
thermal stability of the G4 [19].

It is important to note that the sharp changes in the
behavior of all the curves of the magnitudes described
above occur at the same temperature, demonstrating
the robustness of the model. It gives the possibility
to use indistinctly any of those magnitudes to quan-
tify the thermal unfolding and define the melting tem-
perature KT †m. In each trajectory, we use the mean
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FIG. 3. Melting curves in terms of different magnitudes as a function of the thermal energy KT : a) Average coordination
number of each ion CoI . I1 and I2 stand for each of the ions, whereas δ = 0 indicates the simulations without coperativity in
the Morse potential term of Eq. 1). b) Average coordination number in each plane CoP with (I) and without (no I) the central
ions. c) Gyration radius RG with and without the central ions. d) Heat capacity at constant volume Cv with and without the
central ions. Each of the above magnitudes are defined in the text. KT represents the thermal energy in dimensionless units.
The energy units are determined next according to the experimental melting temperature.

of the two temperatures KTI1 and KTI2 at which the
coordination CoI of ion 1 and 2 respectively drop be-
low the value 0.5, namely KTI1/I2. To account for
the stochastic effects in the unfolding, we repeated the
melting simulations Ns = 100 times from which we set
KT †m = 1

2 (〈KTI1〉 + 〈KTI2〉) = 1
2 〈KTI1/I2〉, where 〈·〉

denotes the ensemble average. The distribution of melt-
ing temperatures is presented in figure 4 (panel a). The
other panels of the figure present analogue distributions
by using magnitudes different than COI

: the loss of the
plane coordination Cop (panel b), the increase of the gy-
ration radius (panel c), and the position of the peak in
the heat capacity max{Cv} (panel d). All the measures
appear equivalent. By using the ion coordination CoI ,
the resulting melting temperature is KT †m = 0.4875, rep-
resented by a solid line in each panel of figure 4.

We can now adjust the energy unit of the model. Tak-
ing the experimental value T ∗m = 65 ◦C of the melting
temperature of a telomeric sequence in [K+] solution re-
ported in [27] we get: Eu = D0kBT

∗
m/KT

†
m = 2.33 kBT ,

(T = 298 K). The unit of force is Fu = Eu/lu = 14.7 pN.
In the next section, the pulling simulations are conducted
at KT = 0.4269 which corresponds to T = 22.8 ◦C in
real units. This temperature value is represented with
dashed line in figure 4. Note that this temperature value
is inside the distribution of melting temperatures. Thus,

when doing the pulling at this temperature, there is a
non-negligible probability that the unfolding occurs due
to thermal effects.

B. Mechanical unfolding at physiological conditions

In a previous work we studied the mechanical unfold-
ing of different G4 conformations at the atomistic level
by means of steered molecular dynamics and showed that
the force measured during the unfolding was correlated
with the loss of coordination of the central ions [19]. In
that work, a harmonic spring kA is attached to one atom
of the extreme of the G4 and displaced at constant ve-
locity v, while another atom at the opposite end is fixed.
The component of the force along the pulling direction
is calculated as F = kA(xA(t)− x1(t)), where xA(t) and
x1(t) are the components of the distance along the pulling
direction of the spring end (point A) and the pulled bead
1, respectively, as depicted in Fig. 5. The bead 21 is
fixed to the origin of coordinates.

The unfolding force value Fu obtained in the all-atom
simulations is in the order of 102 pN [19], one order of
magnitude higher than previous experiments of G4 me-
chanical unfolding [8, 11] and the experiment we present
here where Fu ≈ 20.4 ± 6.9 pN (mean ± s.d., N=163
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FIG. 4. Distribution of thermal energy at the melting tem-
perature calculated from different magnitudes over 100 real-
izations. a) Temperature at which the coordination of the
ions CoI goes below 0.5; b) Temperature at which the co-
ordination of the planes CoP goes below 0.5; (c) Tempera-
ture at which the radius of gyration RG goes over 1.2 nm;
and d) Temperature at which Cv takes the maximum value.
The melting temperature value for defining our energy unit
is KT †m = 0.4875 (solid line) and the room temperature, at
which the pulling simulations are performed is KT = 0.4269
(dashed line).

experiments). This is due to the high values of both the
parameters velocity v = 1 nm/ns and elastic constant
kA = 1650 pN/nm necessary for all-atom simulations in

FIG. 5. Scheme of the pulling simulations. The first and last
nucleotides in the G4 chain are represented by black beads and
labeled as 1 and 21, respectively. Bead 21 is fixed to the ori-
gin of coordinates, whereas bead 1 is attached to a harmonic
spring kA whose end A is displaced at a constant velocity v.
The distance projections along the pulling direction xA and
x1 are calculated during the simulations.
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FIG. 6. a) Force as a function of the extension x1 with the
mesoscopic model at different pulling velocities. b) Force as
a function of the position of the pulling spring xA with the
mesoscopic model at different pulling velocities. The velocity
is given in dimensionless units. c) Comparison of the force-
extension curve between two simulations at v = 0.08 and one
experimental realization of the mechanical unfolding. The ex-
perimental curve shows superimposed the entropic elasticity
regime of the double-stranded DNA handles at low forces (see
the Experimental Section).

order to reach a reasonable simulation times. With our
mesoscopic model, we are able to decrease both values
and to obtain unfolding forces comparable with the ex-
perimental ones. The elastic constant used in the meso-
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scopic simulations is set to kA = 0.4 pN/nm, in accor-
dance to our experimental value, as explained in the pre-
vious section.

Figures 6a), and b) show the force F as a function of
the extension x1 and the position of the spring xA for the
different pulling velocities, respectively. All the curves
exhibit a clear jump that coincides with the abrupt in-
crease of the G4 extension (figure 6a), so revealing the
unfolding of the G4 structure. In those conditions, the
unfolding patterns reveals a unique unfolding force Fu
that we define as the maximum force measured in the
spring before the jump. Different to the atomistic simu-
lations, we find that Fu is in the same order of magnitude
as the experimental values and that decreases when low-
ering the velocity. This behavior is due to the presence
of thermal fluctuations, which facilitate the unfolding at
lower pulling velocity. The nearly saturating behavior at
low velocities indicates that the unfolding occur in the
near equilibrium regime where Fu is independent of the
velocity. To express the velocity in real units, we need to
specify the time units, which will be defined later when
considering the mean value of the unfolding force as a
function of the velocity. Figure 6c) show the comparison
between two simulations at v = 0.08 and the experiment,
showing a clear agreement on the values of the unfolding
force.

Figure 7 shows different magnitudes that characterize
the mechanical unfolding: the distance between beads 1
and 21 d1−21 (panel a)), the gyration radius RG (panel
b)) and the average coordination number between the
two central ions and their eight neighbor guanines (pan-
els c) and d)). We note that the mechanical unfolding
pathway presents a similar behavior as the thermal one
for all the simulated velocities. Specifically, the gyration
radius RG increases abruptly almost at the same time
as the ions coordination number goes to zero, showing
the equivalence of the different measures. Moreover, the
coperativity term in the Morse potential also presents a
similar effect in the mechanical unfolding compared with
the thermal unfolding: if the cooperativity is removed
the unfolding occurs at higher values of the force and a
multi-peak structure is observed in the force extension
curves, corresponding to the consecutive rupture of the
different planes.

Figure 8 shows the Potential of Mean Force (PMF).
The PMF is the free energy along the extension x1 and
gives an equilibrium measure of the mechanical stabil-
ity. It is calculated by using umbrella sampling [28] and
the weighted histogram analysis method [29]. The ini-
tial conformations for calculating the PMF are taking
from a pulling simulation at v = 0.01. The PMF exhibit
a change of the convexity around x1 = 2 nm which is
in correspondence with the extension at which the force
jumps during the pulling simulations.

To account for the influence of the stochastic effects
during the unfolding, NR = 100 simulations at each ve-
locity are performed. The distributions of the unfold-
ing forces Fu at each velocity are shown in figure 9. In

agreement with the single realization results, the distri-
butions displace towards lower values of the forces as
the velocity is decreased. This behavior is better ob-
served from the mean value of the unfolding force as
a function of the velocity, or equivalently, as a func-
tion of the pulling rate r = kAv as shown in Fig. 10.
In this figure we have included two experimental force
values: the unfolding force Fu = 20.4 pN obtained in
the experiment at v = 11.8 nm/s and the equilibrium
force Fu = 2.5 pN obtained in the constant force ex-
periment of Long et al. [9]. The loading rate in the
dimensionless units of the mesoscopic model correspond-
ing to this force value is r=0.0014, and the velocity is
v = r/kA = 0.0788 lu/tu ≈ 0.051 nm/tu. Equaling this
value to the experimental one v = 11.8 nm/s, we get the
time unit to tu = 0.0043 s.

The dependence of Fu vs r is similar to the observed
in force dynamic spectroscopy experiments, where the
strength of molecular bonds or the mechanical resis-
tance upon unfolding is studied at different loading rates.
Several analytical theories based on the Kramer’s one-
dimensional theory of diffusive barrier crossing in the
presence of force have been proposed in order to get the
kinetic parameters of a simplified energy landscape of
the molecule at zero force from the Fu vs r data: the
height of the barrier separating the bounded/folded and
unbounded/folded states G+, the position of the barrier
xu and the unfolding rate constant in the absence of force
k0. Two of the most widely used models in this analy-
sis are the Bell-Evans-Ritchie (Bell) [30] and the Dudko-
Hummer-Szabo (DHS) [31]. The Bell model predicts a
linear behavior for both the mean and the most proba-
ble rupture force as a function of the loading rate. In
our data this linear behavior is not observed and we use,
more consistently, the DHS model, which predicts a non
linear behavior for high pulling velocity values. How-
ever, this model is not valid at low velocities where re-
binding/refolding events can occur. For this reason we
exclude the three lowest velocities from the fitting anal-
ysis with this model. Another kinetic model that takes
into account the refolding events and then is valid in the
region of low velocities is the Yoreo model [32]. From
this model the equilibrium unfolding force feq, which is
independent of the pulling velocity, is obtained. feq is the
force at which the force dependent folding and unfolding
rates are equal and depends on the elastic constant kA
of the pulling spring: feq =

√
2kAG+. We will use this

model to fit the simulated mean unfolding forces in the
whole interval of loading rates.

The mean unfolding force as a function of the pulling
rate with the DHS and Yoreo model reads, respectively:

〈Fu,D〉 =
G+

νxu

{
1−

[
1

βG+
ln
k0e

βG++γ

βxur
,

]ν}
(4)

〈Fu,Y 〉 = feq+
kBT

xu
e

(
ku(feqkBT )

rxu

)
E1

(
ku(feqkBT )

rxu

)
(5)
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FIG. 8. Potential of Mean Force (PMF) calculated from um-
brella sampling and the weighted histogram analysis method.

In the DHS model, eq. 4, r is the rate of variation of the
applied pulling force, γ ≈ 0.577 is the Euler-Marchesoni
constant and ν is a parameter that sets the shape of the
free energy potential to a cusp potential (if ν = 1/2) or
linear-cubic potential (if ν = 2/3). In the Yoreo model
(see Eq. 5), feq is the velocity independent equilibrium

force and E1(z) =
∫∞
z

e−s

s ds is the exponential inte-

gral which is approximated by ezE1(z) ≈ ln(1 + e−γ/z).
ku(f) = k0 exp(β(fxu−0.5kAx

2
u)) is the force dependent

unfolding rate from the Bell model. In our simulations
the pulling is performed with a harmonic spring and then
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FIG. 9. Distribution of the unfolding force over 100 realiza-
tions at different velocities.

r = dF (t)/dt = d
dtkA(vt+ x1(0)− x1(t)) ≈ kAv.

The values of the parameters obtained from the fitting
are summarized in table I. Both variants of the DHS
model, with ν = 1/2 and ν = 2/3, give similar results
in terms of the model parameters and the goodness of
the fit. Differently, with the Yoreo model the estimated
distance xu is lower than DHS, while the transition rate
k0 is higher. A similar trend has been observed in the
unfolding of both Titin and RNA when these param-
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FIG. 10. Mean value of the unfolding force as a function of
r = kAv and fitting to the kinetic models (note that the four
lowest values of the loading rates are excluded from the fitting
because in this region some rebinding events are observed
during the unfolding, and then the kinetic models are not
valid). Two experimental force values are included in this
figure: Fu = 20.4 pN from our constant velocity unfolding
experiment (red square) and Fu = 2.5 pN from the constant
force experiment of Long et al. [9] (arrow in the left axis).
The loading rate r is expressed in dimensionless units. That
is because we use its value at the experimental unfolding force
to define the time units of our model (see text).

TABLE I. Fit parameters obtained from the mean unfolding
force vs the loading rate. R2 is the coefficient of determination
that accounts for the goodness of the fitting. kA = 0.4 pN/nm

Model R2 G+ (kBT ) xu (nm) k0(s−1)
Dudko ν = 2/3 0.97 5.59 0.61 0.017
Dudko ν = 1/2 0.99 6.41 0.84 0.011

Yoreo 0.98 10.3 (feq = 6 pN) 0.23 0.243

Exp.
Messiers v const. [7] 5.3 0.9 0.004

Long F const. [9] (feq = 2.5 pN) 0.6 0.24

eters are obtained using the Bell models, where lower
values of xu and higher values of k0 are obtained with re-
spect to the DHS model [31]. This behavior agrees with
the fact that both Yoreo and Bell models have the same
dependence of the unbinding rate ku(F ) as a function
of the force. Force spectroscopy experiments performed
in other G4 systems validate the order of magnitude of
the parameters obtained with our model. For instance,
Messieres et al. [7] obtained G+ = 5.3 kBT , xu = 0.9 nm
and k0 = 0.004 s−1 for a parallel G4 with four guanine
tetrads by simultaneously fitting the unfolding force dis-
tributions at different loading rates r = 2, 7, 24 pN/s with
the probability distribution function of the DHS model.

C. Mechanical unfolding at T=0

To better understand the meaning of the parameters
obtained from the fitting in the context of our model
we look at one pulling simulation without thermal noise
KT = 0. Figure 11 shows the behavior of d1−21 (dis-
tance between beads 1 and 21) and the force F as a
function of the time during a pulling simulation. We can
identify different folded conformations before the unfold-
ing occurrence at t ≈ 9 × 105. According to the be-
havior of d1−21 as a function of time we can split the
folded conformations in two main elongation ranges: i)
0.8 < d1−21 < 2.2 nm (t < 0.05 × 105, visible in the
right inset of the figure), and ii) 2.2 < d1−21 < 2.9 nm
(0.05×105 < t < 9×105 in the main figure). When look-
ing at the folded configurations corresponding to these
two groups, we note that the increase in the extension
for the first one is mainly related to a rearrangement of
the distances and relative orientation between the planes,
almost without difference in the distances of the very G4
planes: the plane has rotated along their axes. In the
second interval, the increase in the extension is mainly
related with the stretching of the sides of the planes. The
possible extension of a guanine still bonded to the oth-
ers in the G4 plane is ruled by the width of the Morse
potential α−1 = 0.065 nm. Looking at the d1−21-values
for different velocities at room temperature in figure 7a)
we realize that the extension of the molecule before the
unfolding depends on the velocity: we observe that for
low velocities, the unfolding is more likely to occur when
the G4 lies in configurations belonging to the first elon-
gation subset 1 < d1−21 < 2.2 nm and for higher ve-
locities when belonging to the second elongation subset
2.2 < d1−21 < 2.9 nm (0.05× 105 < t < 9× 105. In fact,
at low velocities (v < 0.01) the system does not stabilize
at lengths of the second d1−21 subset, while, conversely,
for v > 0.01 the G4 does stabilize in the second subset
before the G4 unfolds (see Fig. 7a). This means that the
unfolding pathway depends on the velocity, and particu-
larly at low velocities, the dynamics is strongly assisted
by the thermal fluctuations, with also the presence of re-
folding events. In these conditions the DHS theory does
not work, and for this reason the points at the lowest ve-
locities have been excluded from our fitting analysis. The
parameters we got from the fitting are in agreement with
the transition from the second folded subset of lengths to
the unfolded state.

The values we calculated through the DHS model fit
appear to be in agreement with the following conclusions:
xu ≈ 0.61 nm for ν = 2/3 and xu ≈ 0.84 nm for ν = 1/2
are both in the order of the expected extension length
(xu = 0.7 nm) of the second subset, which, in fact, is our
estimation of the distance between the barrier and the
state of the G4 before the unfolding. In addition, though
the abrupt denaturation the G4 undergoes, the fit with
the parameter ν = 2/3 reproduces a little better the ex-
pected barrier position, so suggesting that a smooth po-
tential appears a better description than a cusp potential
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for this unfolding mechanism. The values obtained for
G+ with the DHS model are lower than the free energy
value obtained in the PMF at x1 = 2.2 nm which appears
to be the unfolding point, while the value obtained with
the Yoreo model is closer to the value of the PMF in
this point. These results corroborate the fact that the
DHS model is describing the transition from the second
subset length that requires less energy than the transi-
tion from the first substate, which is better described by
the energy estimated from the Yoreo model. The equi-
librium force feq calculated from this model is however
larger than the experimental value reported by Long et
al. [9] which can be due to the fact that feq depends on
the elastic constant used for the pulling. Finally we note
that the unfolding force obtained without the thermal
contribution (KT = 0) is Fu(T = 0) ≈ 500 pN.
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FIG. 11. Pulling simulation at KT = 0. Top: End to end
distance d1−21 and force F as a function of the time. The
dashed green lines mark the equilibrium value of d1−21 at v =
0. The solid black lines delimit the two distance intervals 1 <
d1−21 < 2.2 nm (I) and 2.2 < d1−21 < 2.9 nm (II). Bottom:
Snapshots of the G4 during the pulling simulation. Beads
belonging to the same plane have the same color (blue, red
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IV. CONCLUSIONS

We have developed a mesoscopic model that captures
the main features of DNA G4 thermal and mechanical

stability. It is characterized by single beads representing
each nucleotide of the ssDNA chain and the monovalent
cations located at the central channel of the G4stem.
Model parameters are obtained based on our previous
atomistic study of telomeric DNA G4 [19], on the melt-
ing temperatures of DNA G4 [27], and on the mechanical
unfolding experiment conducted in this work.

Among the many potential terms in the model, the co-
operativity term between the Guanines in the bond of the
plane interactions has a focus role. In fact it allows the
modification of the shape of the thermal transition from
sharp – when the cooperativity is strong – to smooth –
when the cooperativity term is either low or removed.
This phenomenological contribution can be adjusted to
describe other conformations of the G4, such as the an-
tiparallel or mixed arrangements of the strands.

The model correctly evidences the importance of the
ions in the stabilization of the G4 structure, whose rup-
ture force are increased with their presence. More im-
portantly, the model gives a very good description of the
system under mechanical stretching. In this context, it
is able to reproduce unfolding forces in the same order
of magnitude as in experimental studies, which are im-
possible to reach with atomistic calculations. Related to
that, we are able to explore wide time scales and study
the unfolding pathways by using loading rates up to five
orders of magnitude lower than those allowed in micro-
scopic simulations. The evaluated mean rupture force
as a function of the loading rate nicely reproduces the
nonlinear increasing behavior observed in dynamic force
spectroscopy experiments at high velocities and the al-
most force independent regime at low velocities, behav-
iors that are well fitted by the DHS and Yoreo models,
respectively. The values of the parameters of the one
dimensional free energy landscape assumed in the DHS
and Yoreo models appears to be in very good agreement,
on the one hand, with the umbrella sampling simulations
(which permit to determine the energy barrier G+) and,
on the other hand, to the pulling simulations at zero tem-
perature (that allowed the estimation of the position of
the potential barrier xu). Moreover they are also in the
order of magnitude of the corresponding parameters ob-
tained in some other experiments [7].

The proposed model, eventually with some extension
of it, can be used as a tool for performing systematic
studies on mechanical stability of different G4 conforma-
tions. In this regard it may be applied to understand
different G4 geometries according to the loop orientation
(parallel vs antiparallel) or allow the mechano-chemical
analysis of G4 tandem repeats [11], like those existing in
human telomeric sequences.
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