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ABSTRACT 

Fundamental to biological decision-making is the ability to generate bimodal expression 

patterns where two alternate expression states simultaneously exist.  Here, we use a 

combination of single-cell analysis and mathematical modeling to examine the sources of 

bimodality in the transcriptional program controlling HIV’s fate decision between active 

replication and viral latency.  We find that the HIV Tat protein manipulates the intrinsic 

toggling of HIV’s promoter, the LTR, to generate bimodal ON-OFF expression, and that 

transcriptional positive feedback from Tat shifts and expands the regime of LTR 

bimodality.  This result holds for both minimal synthetic viral circuits and full-length 

virus.  Strikingly, computational analysis indicates that the Tat circuit’s non-cooperative 

‘non-latching’ feedback architecture is optimized to slow the promoter’s toggling and 

generate bimodality by stochastic extinction of Tat.  In contrast to the standard Poisson 

model, theory and experiment show that non-latching positive feedback substantially 

dampens the inverse noise-mean relationship to maintain stochastic bimodality despite 

increasing mean-expression levels.  Given the rapid evolution of HIV, the presence of a 

circuit optimized to robustly generate bimodal expression appears consistent with the 

hypothesis that HIV’s decision between active replication and latency provides a viral 

fitness advantage.  More broadly, the results suggest that positive-feedback circuits may 

have evolved not only for signal amplification but also for robustly generating bimodality 

by decoupling expression fluctuations (noise) from mean expression levels. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/144964doi: bioRxiv preprint 

https://doi.org/10.1101/144964
http://creativecommons.org/licenses/by-nc/4.0/


Page 3 of 35 

INTRODUCTION 

Bimodality is a recurring feature in many biological fate-selection programs (1), such as 

the HIV active-vs.-latent decision (Fig. 1A).  Bimodal expression is a population-wide 

distribution pattern comprised of two gene-expression modes, each corresponding to a 

specific fate path (2).  The mechanisms that can generate bimodal phenotypes have long 

been studied and the architecture of underlying gene-regulatory circuits appears to be a 

key driver of bimodality (3-11).  Classically, bimodality has been associated with 

deterministic bistability in gene circuits (12-15).  Deterministic bistability requires 

ultrasensitive input-output relations and can result from non-linear positive feedback (i.e., 

Hill coefficient > 1) on a constitutively expressed promoter (16,17).  However, many 

promoters are non-constitutive and instead toggle between inactive and active expression 

states generating episodic bursts of mRNA production (for review see (18)).  The finding 

that promoters undergo episodic bursts of expression led to a proposal that this toggling 

alone could generate bimodality without deterministic bistability.  Compared to 

constitutive expression, toggling increases the degrees of freedom in a system [19], and if 

promoter toggling occurs relatively slowly, the resulting expression bursts can potentially 

produce bimodality independent of ultrasensitivity (19,20).  However, the promoter 

toggling kinetics required to generate bimodality appeared to be in a small portion of the 

experimentally observed regime (18,21-23) with experimental measures of intrinsic 

promoter toggling exhibiting kinetics are typically too fast to produce bimodal expression 

patterns (Fig. 1B)—specifically, the measured promoter toggling rates where greater than 

per capita protein and mRNA decay rates (18,24,25).  Nevertheless, synthetic positive-

feedback circuits that slowed toggling could induce bimodality (26).  Thus, while 
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computational models showed that promoter ON–OFF toggling was sufficient for 

bimodal expression (20) and synthetic transcriptional circuits lacking bistable feedback 

could generate bimodal expression (26), it remained unclear how natural biological 

circuits exploit this mechanism to generate bimodality without bistability.  Here, we 

examine if promoter toggling can intrinsically generate bimodal distributions in a natural 

biological system (i.e., human immunodeficiency virus, HIV) and the potential 

physiological relevance. 

 

Fig 1. The mechanistic problem underlying bimodal fate-selection programs: 

promoter toggling is theoretically sufficient to generate bimodality, but only in a 

narrow parameter regime.  (A) A simplified fate-selection decision in HIV.  Upon 

infection of a CD4+ T lymphocyte, HIV either enters into an active state of replication 

(red), producing viral progeny and destroying the host cell or enters into a quiescent state 

of silenced gene expression termed proviral latency (blue).  This fate bifurcation between 

active replication and latency is not controlled by the cell state (27) but rather by an HIV 

gene-regulatory program that can generate bimodal gene-expression distributions from its 

LTR promoter.  (B) The LTR is accurately described by a two-state promoter model (e.g., 

random telegraph models) where the LTR toggles between an inactive (represented by 

Prom-Gene that is crossed out, top) and active (represented by Prom-Gene) state of 

expression at rate kON.  In the active state, mRNAs are produced, before the promoter 

flips back to inactive at rate kOFF.  As a promoter toggles between these active and 

inactive states, they can produce bimodal distributions in gene-expression products but 

only within a restricted regime of phase space.  Each parameter set was checked to see if 
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it generated unimodal latency (blue), unimodal active replication (red) or bimodality 

(orange) as described in the materials and methods.  For the modality analysis, each mode 

was required to contain at least 0.1% of the population, otherwise the parameter set was 

determined to produce a unimodal population.   

 

We focus on HIV as a physiological model system for expression bimodality driving a 

decision-making process (Fig. 1A).  Upon infection of a CD4+ T lymphocyte, HIV 

undergoes a fate-selection decision, either actively replicating to produce viral progeny 

and destroy the host cell or entering a long-lived quiescent state called proviral latency 

(28,29).  A viral gene-regulatory circuit is both necessary and sufficient to drive HIV fate 

selection (10).  At the core of this decision-making circuit is a virally-encoded 

transcriptional positive-feedback loop comprised of a single HIV protein, the 

transactivator of transcription (Tat) that amplifies expression from the virus’s only 

promoter, the long terminal repeat (LTR) promoter.  Molecularly, this positive-feedback 

loop functions because the LTR is a relatively weak promoter, in the absence of Tat, with 

RNA polymerase II (RNAPII) elongation stalling ~69-nucleotides after initiation (30).  

Tat transactivates the LTR by binding to a short ~69-nucleotide RNA-hairpin loop called 

the Tat-Activation RNA (TAR) loop and recruiting the positive Transcriptional 

Elongation Factor b (pTEFb)—principally composed of CDK9 and cyclinT1—which 

hyper-phosphorylates the carboxy-terminal domain (CTD) of RNAPII, thereby relieving 

the RNAPII elongation block (30,31).  Thus, Tat acts much like a bacterial anti-

terminator enhancing transcriptional elongation rather than initiation.   
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Importantly, minimal LTR-Tat positive-feedback circuits are sufficient to generate 

bimodal expression patterns (32) and in the full-length viral context, this circuit is both 

necessary and sufficient to drive HIV’s active-vs.-latent decision (27).  There are two 

specific quantitative features of the Tat-LTR feedback circuit that are curious given its 

obligate role in viral fate selection.  First, unlike many other positive-feedback circuits 

that control phenotypic decisions (33,34), the Tat positive feedback loop is non-

cooperative (Hill coefficient ≈ 1) and not deterministically bistable (35).  Second, the 

LTR promoter itself displays large episodic expression bursts toggling between ON and 

OFF states at virtually all integration sites throughout the human genome (24,36,37), 

raising the possibility that the LTR itself may be sufficient to generate bimodal 

expression patterns independent of Tat feedback. 

 

In this study, we construct minimal circuits to examine if the LTR itself is capable of 

generating bimodal expression patterns in the absence of Tat feedback, and then 

computationally examine the precise role of Tat positive feedback in bimodality.  The 

results indicate that the LTR is intrinsically capable of generating bimodal ON-OFF 

expression even in the absence of feedback, but that Tat feedback shifts and expands the 

regime of LTR bimodality into physiological ranges by slowing LTR toggling.  In fact, 

the architecture and parameters of the Tat circuit appear optimized to robustly generate 

bimodal expression.  Given the rapid evolution of HIV, the presence of a circuitry that 

appears optimized to slow promoter toggling and generate bimodality may be consistent 

with the hypothesis that the circuit has been selectively maintained and that bimodal 
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expression (between active replication and latency) provides a viral fitness advantage 

(38).   

 

RESULTS  

 

LTR promoter toggling is capable of generating bimodality in the absence of 

feedback  

Previous studies demonstrated that Tat positive feedback can generate bimodal 

expression patterns from the HIV LTR (32).  However, given the large, episodic bursts of 

expression that characterize LTR activity (24,36,37), we set out to test if the LTR was 

capable of bimodal expression, even in the absence of feedback (i.e., whether feedback 

was dispensable for bimodality, possibly having an orthogonal function in HIV).  

Analysis of experimental and computational literature reports indicated that the regime 

for generating bimodality through promoter toggling alone fell outside the experimentally 

observed values of LTR toggling but that slightly slower LTR toggling transitions might 

generate bimodality without feedback (Figs. 1 and S1).   

 

To test this prediction that Tat feedback was dispensable for bimodality, HIV circuitry 

was refactored to split the Tat positive-feedback loop (27) into open-loop parts (Fig. 2A).  

This minimal circuit system allows Tat concentrations to be modulated by doxycycline, 

and Tat protein stability to be tuned through Shield-1 addition (27).  As Tat is fused to 

Dendra, the Tat concentrations can be quantified, while LTR activity is simultaneously 

tracked in single-cells.  This open-loop doxycyline-inducible circuit was integrated into T 
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cells by viral transduction and cells were exposed to varying concentrations of activator 

(Dox) and Tat proteolysis inhibitor (Shield-1) –generating ~48 unique unimodal Tat 

inputs to the LTR (Figs. S2 and S3).  Expression profiles from the LTR are all unimodal 

in the absence of Tat (Figs. S2), in agreement with previous findings (32,36,37).  

However, in striking contrast, the presence of Tat induces bimodality from the LTR 

despite the lack of cooperativity or feedback in this open-loop system (Figs. 2B, S2 and 

S3).  In other words, despite a fixed, unimodal concentration of active Tat transactivator, 

bimodal LTR distributions can be generated, and single-cell time-lapse microscopy 

confirms that the activity of the LTR is dependent on Tat input (Fig. S4).  Based on the 

known requirements for bimodality to arise from a toggling promoter (Fig. 1), the data 

suggest that LTR toggling becomes sufficiently slow in the presence of Tat to produce 

bimodal expression patterns, even in the absence of positive feedback.     

   

Fig 2. LTR promoter toggling is sufficient to generate bimodality and control HIV 

fate.  (A) Schematic of the open-loop HIV circuit.  Doxycycline addition induces 

transcription from the Tet-ON promoter.  Shield-1 addition controls the stability of the 

Tat-Dendra-FKBP fusion protein.  Tat induces transcription from the HIV LTR.  (B) The 

(Iso) term represents an independent isoclonal population so each cell within a clone have 

the same integration site for the LTR.  9 Iso populations were exposed to 48 different 

doxycycline and Shield-1 conditions (Figs. S2 and S3) and bimodality was tested for by 

the Hartigan Dip Test (39) (threshold for determining bimodality was p<0.3, agreeing 

with an independent test, Fig. S3).  Gray squares are determined to be unimodal, black 

squares are bimodal.  (C) Open-loop stochastic model of Tat transactivation of the LTR 
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by one of three mechanisms.  Left column, increasing burst frequency by promoting 

transitions into an active state (increasing kON, blue); middle column, increasing burst 

size by increasing transcriptional efficiency (increasing α, red); right column, increasing 

burst size by inhibiting transitions into the inactive state (inhibiting kOFF, green).  Model 

equations and details are presented in (Table S1-3).  Plotted histograms are steady-state 

results of 1,000 simulations (at 1000 hours) showing that slowing promoter toggling by 

inhibiting transitions into the active state is sufficient to generate bimodal distributions 

(i.e., right column, middle panel).  Insets: Zoom of α modulation so the scale of the x-axis 

matches the kON (left column) and kOFF (right column) modulation graphs. 

 

Independent of feedback or cooperativity, LTR promoter toggling is sufficient to 

control full-length HIV fate 

The bimodality in the minimal open-loop system (Fig. 2) represents the two fate paths of 

the virus—active replication, and proviral latency (40)—and suggested that positive 

feedback may also be dispensable for controlling viral fate in full-length HIV.  

Importantly, results from a Tat-deficient full-length HIV virus (27), where Tat is 

introduced in trans (Fig. S5) confirm that Tat feedback is not required to select between 

alternate HIV fate paths.  Thus, unlike other decision-making circuits (17,26), fate 

selection can occur independent of positive feedback or cooperativity in HIV.   

 

Tat slows promoter toggling by inhibiting LTR ON-to-OFF transitions, leading to 

bimodality 
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To understand the molecular mechanisms enabling LTR bimodality in the absence of 

feedback, we used a previously validated computational model of HIV (27) and adapted 

it to an open-loop system where Tat would either modulate: (i) burst frequency alone, kON 

modulation, (ii) burst frequency and burst size, kOFF modulation, or (iii) burst size alone 

by affecting transcriptional efficiency, α modulation (Fig. 2C, top, and Tables S1-3).  The 

model results are consistent with previous findings that bimodality is not induced through 

frequency modulation of the LTR (i.e., kON modulation) or increases in burst size through 

transcriptional efficiency, α (24,36,37).  However, the model shows that slowing toggling 

kinetics, or increasing the dwell time in the ON state (i.e., kOFF modulation), is required 

for bimodality, and if Tat only affects a single parameter, kOFF modulation is necessary 

and sufficient (Figs. 2C, bottom, and S6).   

 

The interpretation of these results is that while natural LTR promoter toggling is too 

quick to generate large enough expression fluctuations for bimodality, Tat transactivation 

is able to slow the kinetics of toggling, expanding the bimodal regime (Fig. 1).  The 

slowing of toggling kinetics reinforces the findings that Tat stabilizes transient pulses of 

expression from LTR fluctuations (40), thereby effectively reducing kOFF.  If Tat does 

stabilize pulses of expression to control gene-expression variability, then the prediction is 

that altering Tat-feedback strength would, similar to the open-loop system, control the 

shape of the gene-expression distribution and bimodality.  

 

Positive-feedback strength controls whether the expression distribution is unimodal 

or bimodal in HIV  
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To test the prediction that Tat-feedback strength shapes the expression distribution, we 

used a synthetic Tat circuit (27) where positive-feedback strength could be manipulated 

pharmacologically by addition of a small-molecule, Shield-1, that stabilizes Tat 

proteolysis (Fig. 3A).  In this system, a subset of isoclonal cell populations carrying this 

synthetic circuit naturally generate bimodal distributions (Fig. 3B).  These clonal 

differences are mainly due to the genomic location of HIV integration, which can dictate 

the transcriptional bursting parameters, and the effectiveness of Tat transactivation 

(24,36).  Though the differences in Tat transactivation potential are not clear, studies 

have shown that transcriptional parameters of the LTR in the absence of feedback vary 

due to promoter methylation status, nucleosome acetylation and methylation state, or 

gene-proximity dependencies (41).  When positive-feedback strength is increased, a 

significant fraction of cells generate bimodal distributions and even convert from a 

unimodal (low peak) into a bimodal distribution (low and high peak) or from a bimodal 

(low and high peak) to a unimodal (high peak) distribution (Figs. 3B and S7).  In other 

words, a fraction of isoclones can naturally generate bimodal distributions with low 

feedback strength (e.g., 0 nM Shield-1), but with intermediate positive-feedback strength 

bimodal distributions are more prevalent (e.g., 100 or 500 nM Shield-1).   

 

Fig 3.  Positive-feedback strength controls whether the expression distribution is 

unimodal or bimodal in HIV.  (A) Schematic of the LTR-mCherry-IRES-Tat-FKBP 

closed-loop, positive feedback circuit.  Tat stability is tuned through the addition of 

Shield-1 to alter Tat feedback strength, i.e. loop transmission (Fig. S9).  (B) Flow 

cytometry histograms showing bimodal distribution for nine isoclonal cell lines exposed 
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to various concentrations of Shield-1.  A fraction of isoclones can naturally generate 

bimodal distributions with low feedback strength (e.g., red [0 nM Shield-1]), but with 

intermediate positive-feedback strength bimodal distributions are more prevalent (e.g., 

green [100 nM Shield-1] or blue [500 nM Shield-1]).  The ‘ON’/‘OFF’ threshold was set 

based on the background level of expression from a naïve Jurkat cell line.  (C) 

Measurement of bimodality for each Shield-1 conidition for each isoclonal population in 

(B) as quantified by the Hartigan Dip Test.  The results agree with another metric for 

measuring bimodality (Fig. S7).  Gray squares are determined to be unimodal, black 

squares are bimodal.  (C) A closed-loop stochastic model (in contrast to the open-loop 

model in Figure 2C) of LTR promoter toggling that incorporates Tat positive feedback 

through one of three alternate mechanisms (as in Figure 2C).  The steady-state results for 

1,000 simulation runs (modeled for 1000 hours) show that Tat inhibition of promoter 

turn-off is sufficient to generate bimodalities (right column, middle panel), whereas 

alternate Tat positive-feedback mechanisms are unable to generate bimodality in the 

requisite parameter regimes.   

 

Importantly, simulations of Tat positive-feedback circuitry corroborate this phenomenon 

of bimodal expression at intermediate feedback strength if Tat acts by decelerating LTR 

toggling kinetics (Fig. 3C), in agreement with simulations of the open-loop circuit (Fig. 

2).  Thus, these simulations indicate that Tat-feedback strength likely alters the natural 

LTR toggling kinetics set by the local integration site (42) to control HIV bimodal-

expression patterns.  To test if Tat feedback in fact extends pulses of expression (i.e., kOFF 

reduction) HIV gene-expression was activated to a high-expression state, using tumor 
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necrosis factor alpha (TNFα), and the circuit then allowed to relax back to the 

unperturbed state under varying feedback strengths.  TNFα enhances HIV expression by 

stimulating recruitment of a p50-RelA heterodimer to NFkB binding sites within the LTR 

(42).  Cells were exposed to TNFα for 24 hrs then allowed to relax back in the presence 

of strong or weak feedback (Fig. S8).  The results show that increasing feedback strength, 

by dosing cells with increasing amounts of Shield-1, increases the transient in the 

expressive state, leading to slower transitions from ON to OFF states (Fig. S8), which 

corroborates previous findings (27,40).  Thus, relaxation to various baseline states are 

dictated by feedback acting on promoter toggling. 

 

One simplifying assumption in the model is that Tat only modulates a single bursting 

parameter.  To test how relaxing this assumption affects bimodal generation, new 

simulations where Tat could modulate multiple bursting parameters was performed.  The 

models allow Tat to alter both burst size and frequency through either kON and kOFF, kON 

and α, or kOFF and α modulation (Fig. S9).  Interestingly, the simulations show that any 

combination of parameters could yield bimodality (Fig. S9).  In each scenario, Tat 

positive feedback yields non-exponentially distributed ‘OFF’ times, and slows toggling 

kinetics.  This result is in agreement with the previous findings that slowing promoter 

toggling kinetics yields bimodal distributions (Figs. 1-3 and S6).  

 

A few alternate explanations are possible for the observed bimodality.  The first is that 

the bimodality may arise from deterministic cell-to-cell variability (43) where the 

transcriptional parameters vary between cells, leading to bimodality.  However, these 
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minimal circuits display a high level of ergodicity (24,40), suggesting cell-to-cell 

variability in transcriptional parameters is minimal.  Second, HIV feedback may be 

bistable (i.e. exist in one of two stable states (high or low) (17)).  Bimodality observed 

from bistable circuits results from fluctuations around latching feedback strengths (Fig. 

S10).  Previous studies analyzing fluctuations in noise to measure feedback strength, 

cooperativity in feedback, or stability of the ‘ON’ state found that HIV feedback lacks the 

canonical features of bistability (34,35,40).  Last of all, HIV feedback may latch, 

meaning small incrases in Tat would be drastically amplified to saturable levels where 

the system would then latch in a high state.  Note that the latching behavior can be 

present in deterministically monostable feedback (40).  To test this, here, we directly 

quantified the feedback strength—to test if the feedback-induced bimodality results from 

latching feedback—by use of the small-signal loop gain, a direct measure of feedback 

strength (40,44,45).  The small-signal loop gain was quantified by measuring changes in 

LTR expression associated with changing Tat stability (Fig. S10) or increasing Tat 

concentration (Fig. S11).  In agreement with other measures of HIV feedback strength 

(40), Tat positive feedback appears to be non-latching (Figs. S10 and S11).  Interestingly, 

unlike systems that latch, non-latching feedback strength inherently renders the system 

relatively insensitive to small fluctuations (46), i.e. HIV will not drastically change 

expression profile or latch in response to a small fluctuation, lending a molecular 

explanation for the insensitivity of HIV circuitry to external cues (47,48). 

 

HIV Tat positive feedback appears optimized to robustly generate bimodal 

distributions   
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The combination of non-latching feedback coupled to a toggling promoter allows for 

bimodal generation across a wide range of Tat concentrations (Fig. 2) and feedback 

strengths (Fig. 3).  Promoters driving non-latching feedback can exhibit extended, 

transient pulses of expression before reverting back to the initial system state (8).  To test 

if this mechanism of extended-duration transient pulses was responsible for generating 

bimodality in the LTR, we built a specific model of the LTR to map out the phase space 

of feedback strengths that would allow for LTR bimodality given the known toggling 

parameters (Table S1).  The model specifically considers promoter toggling coupled to 

weak positive feedback and examined the effect of changing feedback strength (from 

weak non-latching to strong non-latching).  In agreement with previous theoretical 

predictions (19,20), intrinsic slow promoter toggling is sufficient to generate bimodality, 

but only in a very narrow parameter regime (Figs. 1 and 4A).   

 

Fig 4.  HIV positive feedback appears optimized to robustly generate bimodal 

distributions.  (A) Varying positive-feedback strength changes the toggling kinetics to 

yield a larger regime for bimodality within the physiological parameter range.  The 

results for the parameter scans are shown for ‘No Feedback’ (left), and increasing 

feedback strengths.  Whether a population was unimodal latent (blue), unimodal active 

replication (red), or bimodal (orange) was determined for each set of parameters as 

described in the materials and methods.  For the modality analysis, each mode was 

required to contain at least 0.1% of the population.  (B) The percent of toggling kinetics 

that yield bimodal distributions for varying feedback strengths.  The asterisks above the 

bars represent the feedback strengths shown in (A).   
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To explore if weak non-latching positive feedback might explain the robust generation of 

bimodality that was experimentally observed, we incorporated dose-response data from 

the open-loop circuit into the model and generated an input-output function (Fig. S12) to 

quantify the relationship between Tat and kOFF values.  This approach allows of the open-

loop data to be mapped unto a model containing feedback (Fig. 4A).  The output of the 

resulting model shows a striking dependence of bimodality on feedback strength (Fig. 

4B).  Specifically, as feedback strength increases from zero, the bimodality regime 

significantly expands.  However, as feedback increases further, to strong non-latching 

feedback strengths, there is a drastic reduction in the potential for bimodal generation 

(Figs. 4B and S13).  This acute contraction of the bimodal regime likely results from 

drastic amplifications of small noise spikes that drive the system to stay on (17).  

Interestingly, the model predicts that bimodality is generated across ~13% of parameter 

values for the HIV system (Fig. 4B), in agreement with experimentally observed 

frequencies for spontaneous bimodal generation across the HIV-integration landscape 

(32).  Thus, HIV’s moderate feedback strength (Figs. S10 and S11) appears optimized to 

slow promoter-toggling kinetics into the regime enabling bimodality.  

 

Robust bimodality results from positive feedback decoupling expression noise from 

mean levels 

Since the circuit’s bimodality is ultimately dependent upon fluctuation-driven (i.e., 

stochastic) extinction of Tat, we next sought to determine how increasing expression 

levels influenced bimodality.  In the classical Poisson or super-Poissonian transcriptional 
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burst models (49), the expression mean scales with variance (σ2 ∝ μ) such that the noise 

magnitude (CV2 = σ2/μ2) decreases proportional to the inverse of the mean squared (Fig. 

5A) and the extinction probability can be shown to be (Text S1): 
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Eq. [1] 

However, non-latching positive feedback breaks the Poissonian relationship such that σ2 

∝ μN with 1 < N < 2 (44).  In the extreme case where N = 2, CV2 becomes independent of 

the mean and the extinction probability becomes (Text S1):  
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Eq. [2] 

where σ2
NFB and μNFB are variance and mean for the non-feedback case, respectively.  

Importantly, Eq. [2] shows that stochastic extinction can be decoupled from the mean 

(when N = 2) and simulations verified that such perfect decoupling was possible (Fig. 

5B).  Analysis of the experimental data in Fig. 3 shows that the Tat circuit displays partial 

decoupling of noise and mean with N ≈ 1.5 (Fig. 5C).  Thus, Tat circuitry enables greater 

stochastic extinction over a broader range than other circuitries (e.g. no feedback or 

latching positive feedback) would be able to achieve. 

 

Fig. 5.  Non-latching positive feedback substantially dampens the Poissonian noise-

mean inverse relationship allowing stochastic extinction despite increasing mean-

expression levels.  (A)  In the classical Poisson or super-Poissonian transcriptional burst 

models (49), the expression mean scales with variance (σ2 ∝ μ) such that the noise 
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magnitude (CV2 = σ2/μ2) decreases proportional to the inverse of the mean.  Non-latching 

positive feedback breaks the Poissonian relationship such that σ2 ∝ μN with 1 < N < 2 

(44).  In the extreme case where N = 2, CV2 becomes independent of the mean.  (B) 

Monte-Carlo (Gillespie) simulations showing that stochastic extinction can be decoupled 

from the mean (when N  = 2).  (C) Analysis of the data in Fig. 3 shows that the Tat circuit 

displays partial decoupling of noise and mean (N ≈ 1.5). 

 

 

DISCUSSION 

In summary, HIV’s Tat circuit seems particularly well suited for generating bimodal 

expression patterns and alternate single-parameter mechanisms for Tat function (e.g. 

increasing burst frequency alone rather than slowing toggling kinetics) appear to severely 

limit or completely abrogate the potential for bimodality.  The precise architecture of this 

robust bimodal-generator circuit in such a rapidly adapting virus suggests that bimodality 

in HIV expression (i.e., latent and active replication modes) may be a beneficial trait that 

has been selectively maintained (38).  In contrast with other known roles for positive 

feedback (e.g., bistability, noise amplification), these findings demonstrate a further role 

for positive feedback as a mechanism for robust generation of bimodality (50).  On a 

conceptual level, this ability of positive feedback to expand the bimodal regime into 

physiological ranges maybe related to positive feedback’s ability to expand the regime 

where sustained oscillations occur (51,52).  Consequently, positive-feedback circuits may 

have evolved not only for signal amplification but also to stabilize certain dynamic 

phenotypes (e.g., bimodality and oscillations) in diverse biological systems. 
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From a basic HIV biology standpoint, these results on Tat’s mechanism of action may 

have therapeutic implications for HIV cure approaches.  Specifically, it has long been 

known that Tat protein addition reactivates HIV latency more potently than current 

chromatin remodeling latency-reversing agents (LRAs) such as histone deacetylase 

inhibitors (HDACi’s) (42).  However, there has been no mechanistic explanation as to 

why Tat protein is more potent than LRAs (e.g., HDACi’s) and the phenomenon was thus 

considered by some to be an off-target effect.  Conventional LRAs (e.g. PKC agonists 

and HDACi’s) only affect kON and we have previously shown that agents that 

simultaneously reduce kOFF and kON potentiate reactivation (53).  Hence, the finding 

herein that Tat alters kOFF, coupled with the magnitude of the Tat-induced kOFF change, 

provides a mechanistic explanation as to why Tat is so effective for latency reversal.  The 

findings also suggest that Tat-based strategies and conventional LRA strategies could be 

used synergistically, and new approaches aimed at simultaneously reducing kOFF and 

increasing kON would be optimal for ‘shock-and-kill’ strategies, while conversely 

increasing kOFF and decreasing kON would be optimal for ‘block-and-lock’ strategies. 

 

MATERIALS AND METHODS 

Molecular Cloning Procedures: The sequence of Tat from recombinant clone pNL4-3, 

GenBank: AAA44985.1, M19921, was used.  To clone the LTR-mCherry-IRES-Tat-

FKBP construct d2GFP was swapped with mCherry using BamHI and EcoRI restriction 

sites (27).  To clone the Tet-Tat-Dendra-FKBP plasmids, Tat-Dendra or Tet-Tat-Dendra 

was swapped with YFP-Pif from the pHR-TREp-YFP-Pif plasmid (a gift from Wendell 
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Lim’s Laboratory at UCSF) using BamHI and NotI restriction sites.  The full-length virus 

was generated as previously described (27). 

 

Recombinant virus production and infections.  Lentivirus was generated in 293T cells 

and isolated as described (32,54).  To generate the isoclonal closed-loop circuit 

populations, lentivirus was added to Jurkat T Lymphocytes at a low MOI to ensure a 

single integrated copy of proviral DNA in infected cells.  Cells were stimulated with 

tumor necrosis factor alpha (TNFα) and Shield-1 for 18 hours before sorting for 

mCherry. Isoclonal and polyclonal populations were created as described (32).  Sorting 

and analysis of cells infected was performed on a FACSAria II™.  Inducible-Tat cells 

were generated by transducing Jurkat cells with Tet-Tat-Dendra-FKBP and SFFV-rTta 

lentivirus at high MOI (27).  The cells were incubated in Dox for 24 h and then FACS 

sorted for Dendra+ cells to create a polyclonal population.  To create the Tet-Tat-Dendra-

FKBP + LTR-mCherry cells, the polyclonal population was infected with LTR-mCherry 

lentivirus at a low MOI.  Before sorting for mCherry+ and Dendra+ cells, Dox was added 

at 500ng/mL for 24 h, and single cells were FACS sorted and expanded to isolate 

isoclonal populations.   

 

Flow Cytometry Analysis:  Flow cytometry data was collected on a BD FACSCalibur™ 

DxP8, BD LSR II™, or HTFC Intellicyt™ for stably transduced lines and sorting.  Flow 

cytometry data was analyzed in FlowJoTM (Treestar, Ashland, Oregon) and using 

customized MATLAB® code (27).   
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Mathematical Model and Stochastic Simulations: A simplified two-state model of 

LTR toggling and Tat positive feedback was constructed based on experimental data of 

LTR toggling (24,36) and simulated using the Gillespie algorithm (55) in MATLAB® to 

test how altering toggling kinetics and feedback strength would affect the activity of the 

circuit.  At least 1000 simulations were run for each condition. 

 Alternatively to sweep the parameter space of different modulations of the Tat 

circuit, the accurate chemical master equation (ACME) method (56,57) was used to 

directly solve the chemical master equation (CME) to obtain the full probability 

landscapes of protein copy number.  For each parameter pair in the sweeping, the protein 

probability landscape was computed at day 3 or at steady state.  The phenotype of 

bimodality or unimodality at different parameter pairs was based on the numbers and 

locations of probability peaks in the landscape using the bimodality analysis approach 

described in the methods below.  

 

Bimodal Analysis: Two approaches were taken to quantify whether a distribution from 

the experimental data or simulations was bimodal or unimodal.  The first, applied to both 

simulations and experimental data, was to convert the fluorescence density data using the 

bkde function in the KernSmooth package in R to a binned kernel density (58): the 

KernSmooth R package is available at https://cran.r-

project.org/web/packages/KernSmooth/index.html.  To filter out biologically irrelevant 

noise in the data, the data points with fluorescence density less than 1 or small peaks 

lower than 0.05 in calculated kernel density function were ignored.  The number of 

modality peaks was performed by calculating the second order derivative of the kernel 
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density.  The second approach, only applied to the experimental data, was to utilize the 

Hartigan Dip Test, a dip statistic testing for multimodality by testing for maximal 

differences which can ascertain the probability that a particular distribution is unimodal 

(39).  Code for the Hartigan Dip Test was obtained from http://nicprice.net/diptest/, 

adapted from Hartigan’s original Fortran Code for Matlab®.  
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SUPPORTING INFORMATION CAPTIONS 
 
Table S1.  Chemical reaction scheme (with parameters) for stochastic simulations of 

circuits where Tat only modulates kOFF.  For the open-loop circuit with no positive 

feedback, the ** reaction is present, but the * reaction is not.  The variable input in the ** 

parameter represents the different Tat inputs, which experimentally are varied by adding 

different amounts of doxycycline to the culture (Fig. 2).  The * reaction closes the loop 

and is used to model the circuit that has positive feedback.  The ** reaction is not used 

for the models with positive feedback.  The fifth reaction defines Tat’s modulation of 

promoter toggling.  For Tat affecting kOFF, Tat binds to the LTRON state and creates a 

third state, LTRTat.  From the LTRTat state, the LTR must move through LTRON first 

before switching back ‘OFF’. 

 

Table S2.  Chemical reaction scheme (with parameters) for stochastic simulations of 

circuits where Tat only modulates kON.  See Table S1 description for further 

information.  The fifth reaction represents Tat’s ability to modulate burst frequency 

through kON. Tat binds to the LTROFF state, and flips the promoter to the LTRON state.  

 
Table S3.  Chemical reaction scheme (with parameters) for stochastic simulations of 

circuits where Tat only modulates alpha.  See Table S1 description for further 

information.  The fifth reaction defines Tat’s modulation of burst size by modulating 

alpha. Tat binds to the LTRON state and promotes transcription, thereby affecting 

transcriptional efficiency when the promoter is already in an active state.   
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Figure S1.  Promoter toggling kinetics controls the separation of gene-expression 

peaks due to transient production and decay.  For a given time, the rate of switching 

between the ‘ON’ and ‘OFF’ promoter state (top pulse trains) is related to the duration of 

time in a specific promoter state.  The duration of the promoter state determines the 

length, or separation from the mean (cyan line, same value for each panel) of the transient 

production or decay of gene-expression products. Increasing promoter kinetics reduces 

transients and the separation between potential peaks in a bursty system (top left moving 

to the right, then bottom left moving to the right).  

 
Figure S2.  The LTR produces bimodal distributions in response to unimodal Tat 

inputs.  (A) Histograms of the Tat input to the LTR, as measured by Dendra fluorescent 

signal, is unimodal across all combinations of doxycycline and Shield-1.  The colors of 

the lines indicate increasing doxycycline concentrations (red, 0ng/mL � orange, 

2.5ng/mL � yellow, 5ng/mL � green, 12.5ng/mL � cyan, 25ng/mL � blue, 50ng/mL 

� pink, 250ng/mL � magenta, 500ng/mL), and the increasing brightness of the same 

color represents increasing Shield-1 concentrations (0, 10, 50, 100, 500, and 1000nM).  

(B) Histograms of LTR output as measured by mCherry fluorescent signal.  The 

‘Dim’/‘Bright’ threshold was set based on each population’s mCherry expression in the 

absence of doxycycline or Shield-1 (i.e. no Tat).  The change in signal in the ‘Bright’ 

population is used to determine the small-signal loop gain (Fig. S11) in response to Tat.  
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Figure S3.  Bimodality analysis for the open-loop system.  9 isolconal populations of 

the open-loop circuits described in Figure 2 were exposed to 48 different doxycycline or 

Shield-1 concentrations.  The populations were assessed for the number of modes as 

described in the methods.  Briefly, fluorescence intensity data was smoothed using the 

bkde function in the KernSmooth package in R to a binned kernel density.  The number 

of modality peaks was calculated by taking the second order derivative of the kernel 

density.  Gray squares are unimodal and black squares are bimodal.  

 
Figure S4.  Tat activation of the LTR controls expression pulses.  Single-cell time-

lapse fluorescence microscopy of the open-loop circuit without doxycycline (black lines) 

or with 25ng/mL (red lines), 100ng/mL (cyan lines) or 500ng/mL (green lines) of 

doxycycline.  Both Dendra (i.e. Tat levels) and mCherry (i.e. LTR activity) fluorescence 

levels were tracked over time.  Variable Tat inputs as measured by Dendra fluorescence 

leads to variable expression pulses from the LTR as measured by Cherry expression.  

 

Figure S5.  Full-length HIV decision-making can be controlled in the absence of 

feedback or cooperativity.  Schematic of the full-length HIV open-loop circuit (top).  

Doxycycline addition induces Tat expression, which can activate expression of the full-

length HIV virus with a fluorescent mCherry reporter.  Cells were initially infected in the 

absence (red histogram) or presence of doxycycline (blue histogram), and a time point 

was taken 24hrs post infection (left side, ‘Initial Infection’).  Doxycycline was then added 

to a split of the ‘No Dox’ at the Initial Infection for 24hrs to look for HIV reaction (right 

side, ‘Latent Reactivation’). 
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Figure S6.  The fluctuations in mCherry depend on the mechanism of Tat 

transactivation.  (A) Each parameter set was allowed to run for 1000 stochastic 

simulations, where Tat would work through kON (green), kOFF (pink), or alpha (black 

lined) alone.  The average protein count is equivalent for all the simulations.  (B) Time 

course of mCherry count over time, showing the extent of stochastic fluctuations when 

Tat affects kON, kOFF, or alpha.  Three representative traces are shown for each.  

  

Figure S7.  Bimodality analysis for the closed-loop feedback system.  9 isoclonal 

populations were exposed to various concentrations of Shield-1 as described in Figure 3.  

The number of modes was determined as described in the methods.  Briefly, fluorescence 

intensity data was smoothed using the bkde function in the KernSmooth package in R to a 

binned kernel density.  The number of modality peaks was calculated by taking the 

second order derivative of the kernel density.  Gray squares are unimodal and black 

squares are bimodal.  

 
Figure S8.  Positive feedback strength sets the steady-state activity and percentage 

of cells in an active state.  A polyclonal population of Ld2GITF cells were exposed to 

TNF-alpha for 24 hours (-24 to 0hrs), then the cells were washed and split into two 

cultures, one with Shield-1 (1uM, blue) or one in the absence of Shield-1 (0uM, gray).  

GFP measurements were taken every 24 hours and mean fluorescence intensity (right 

axis) or the percentage of cells in the ON state (left axis) were quantified.  In the absence 

of Shield-1 after 72hrs, the cells returned to the unperturbed state in both percent ON and 
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mean fluorescence intensity.  In the presence of Shield-1, positive feedback strength is 

increased, and the system remains activated for a longer duration of time.  Importantly, 

both populations return to the state of no TNF-alpha addition, i.e. no bistability.  

 

 
Figure S9.  Simulations of Tat modulating two parameters of transcriptional 

bursting.  We consider three different phenotypes: unimodality of latency (blue areas), 

unimodality of activation (red areas), and bimodality (yellow areas).  The phase diagrams 

of phenotypes for three different modulations: kON-kOFF (left graphs), kON-alpha (middle 

graphs), and kOFF-alpha (right graphs) based on the steady state probability landscapes are 

shown in part A, and the phenotype phase diagrams based on the day 3 probability 

landscapes are shown in part B.  Details about the models and parameter sweeping can be 

found in the Materials and Methods.  In the modulations of kON-kOFF (left graphs) and 

kON-alpha (middle graphs), some parameter pairs are bimodal at day 3 (yellow area in 

part B), but become unimodality of activation at the steady state (red area in part A).  

This is due to the slow evolution of the probability landscape in these parameter pairs.  

The phenotypes of all parameter pairs in kOFF-alpha (right graphs) modulation at steady 

state are consistent with those at day 3.  All simulations were started with initial toggling 

kinetics of kON = 0.001/min, kOFF = 0.01/min, and the rest of the parameters can be found 

in Table S1.  

 
Figure S10.  Tat positive feedback is non-latching.  (A) A schematic showing the 

input-output relationship for a positive feedback loop under the control of a constitutive 

promoter.  Unimodal signal inputs of varying strengths reach a constitutive promoter 
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encoding for a transcription factor (TF), which initiates positive feedback.  The level of 

amplification due to positive feedback is quantified by the small-signal loop gain.  For 

loop gains < 1 across all protein concentrations, the system displays non-latching 

feedback and the results in a unimodal output over the abundance regime.  However, if 

small-signal loop gain increases with protein abundance to ~1, small input fluctuations 

are drastically amplified and can generate a bimodal distribution in the output (bottom 

right).  The error bars around the circles in A, right-hand graphs, represent, for a 

population of cells that receive the same inputs, the fluctuations that would lead some 

cells to display higher or lower small-signal loop gains.  (B) Quantification of the small-

signal loop gain for the closed-loop circuit in nine isoclonal populations reveals that Tat 

feedback is non-latching.  

 

Figure S11.  Quantification of the open-loop small-signal loop gain shows non-

latching feedback.  (A) Plot of the fold change in Tat-Dendra abundance versus the fold-

change in mCherry ‘ON’ population expression for nine isoclonal populations.  (B) 

Quantification of the small-signal open-loop gain of the nine isoclonal populations.  

These values are representative of the expected small-signal loop gain for an intact circuit 

with feedback.  Importantly, all nine isoclonal populations indicate that Tat feedback is 

non-latching. 

 

Figure S12.  The LTR’s response to Tat is biphasic; the LTR is sensitive to low 

levels of Tat, but insensitive to higher levels of Tat.  Plot of normalized LTR-mCherry 

output to normalized Tat-Dendra fluorescence for the eleven clonal populations (Figure 
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2).  The data is best fit with a logarithmic function but can also be represented with two 

linear fits (R2 = 0.98): one for the sensitive region (between 0 and 0.2, Normalized Tat-

Dendra Fluorescence) and insensitive region (between 0.2 and 1, Normalized Tat-Dendra 

Fluorescence). 

   

Figure S13.  Non-monotonic relation between the percent of toggling kinetics that 

yield bimodality versus feedback strength.  To simulate various feedback strengths the 

binding affinity, kb, was tuned from 5x10^-7 to 10, on a parameter scan across kON and 

kOFF values ranging from 0.001 to 10/minute.  Next, of those parameter scans, a 

bimodality test was performed (see the Bimodality Analysis in the Methods).  The 

percentage of parameters that yielded bimodality was then quantified.  Various thresholds 

were set to determine whether a population was bimodal by requiring that each mode had 

to have 10^-8%, 0.1%, 1%, 5%, or 10% of the total population.  
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