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Abstract 31 

We have employed label-free quantitative proteomics of wild-type and Alzheimer’s 32 

disease (AD) model mice synaptosomes to investigate proteomic changes occurring 33 

during AD progression as a prelude to analysis in humans. More than 4000 proteins were 34 

analyzed using multiple analysis tools and statistical criteria. Pathway enrichment 35 

identified numerous pathways consistent with the current AD knowledge base, including 36 

dysregulation of Glutamate Receptor Signaling, Synaptic Long Term Potentiation and 37 

Depression, Rho and Rac Signaling, Calcium Signaling, and Oxidative Phosphorylation 38 

and Mitochondrial Dysfunction. Additionally, the data demonstrate that a large number of 39 

changes occur in the proteome very early relative to the onset of both traditional disease 40 

markers such as amyloid accumulation, tau phosphorylation and cognitive dysfunction. 41 

These early changes include a number of dysregulated proteins that have novel 42 

associations with AD progression. These results reinforce the importance of mechanistic 43 

investigations in early disease progression long before the classical markers of 44 

Alzheimer’s disease are observed.  45 

Introduction 46 

 The synapse is the localized contact between nerve cells required for signal 47 

transmission and AD is considered by many to be a synaptic disease. This cell-to-cell 48 

communication is characterized by complex protein-driven molecular mechanisms 49 

including synthesis, delivery, storage, docking, fusion, neurotransmitter release and 50 

reuptake (1). Synapses can be studied by isolation of synaptosomes which contain the 51 

complete presynaptic terminal, including mitochondria and synaptic vesicles, along with 52 
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the postsynaptic membrane and the postsynaptic density. Several proteomic studies of 53 

synaptosomes have previously been performed (2–5). However, only recently has mass 54 

spectrometric analysis reached the level of technical advancement necessary for a direct 55 

and comprehensive analysis of the synaptic proteome (6). These advances in proteomics 56 

technologies allow direct and unbiased examination of protein level differences in 57 

neurodegenerative diseases and have great potential to shed new light on disease 58 

pathogenesis. Here, we employed these technical advancements in mass spectrometry 59 

for the detection of more than 4,000 synaptosomal proteins using label-free quantitative 60 

proteomics to characterize the proteome changes that occur in Alzheimer’s disease (AD) 61 

model mice. Multiple structural and/or metabolic proteins have been reported to have 62 

altered expression in AD supporting a high depth quantitative proteomic analysis for 63 

target discovery (7–10).  64 

 65 

Results 66 

Mouse Model Characterization 67 

 The B6C3-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax mouse model (Tg-AD) of 68 

Alzheimer’s disease is a widely used model for AD; it contains a chimeric mouse/human 69 

amyloid precursor protein (APP)(Mo/HuAPP695swe) and human presenilin 1 (PS1-dE9); 70 

both driven by the prion protein promoter and therefore expressed in central nervous 71 

system neurons (11–15). These two insertions favor processing through the -secretase 72 

pathway and, thus, elevate the amount of amyloid-beta (A) fragments produced from the 73 

APP transgene. To validate accumulation of A fragments in transgenic mice, we used 74 
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commercially available ELISA kits specific for A 1-42. As shown in Fig1, both A 1-42 75 

accumulates in the brain of Tg-AD mice in an age dependent manner, supporting the 76 

choice of this mouse strain as a relevant model of AD.  77 

Fig1. Amyloid accumulation in the APPswe/PSEN1dE9 Alzheimer’s disease 78 

mouse model. (A.) Human A42 was quantitated using commercially available 79 

sandwich ELISA kits at the indicated ages using both wild-type (WT) and Tg-AD 80 

(B6C3-Tg (APPswe, PSEN1dE9)85Dbo/J)) mice. Amounts of A42 were 81 

normalized to total protein as determined by BCA Assay. (B.) Three, five and nine 82 

month old Tg-AD mice were chosen for high depth proteomic analysis based on 83 

the stages of A load, plaque development, and cognitive decline. 84 

Based on our A accumulation data (Fig1) and upon previous characterizations of 85 

the APPswe, PSEN1dE9 biogenic mouse model which describe the timing of cognitive 86 

impairment and plaque formation (11–15), we chose to carry out a proteomic analysis of 87 

the synaptosomes of three, five, and nine month-old mice. These three age groups 88 

represent three distinct stages of AD, summarized in Fig1C. The three month-old Tg-AD 89 

age group have minimal accumulation of A1-42, normal cognitive function, and complete 90 

absence of plaques. The five month-old Tg-AD mice have relatively high levels of A1-42 91 

which are accompanied by the presence of sporadic plaques although no cognitive 92 

decline has been reported. In contrast, the nine month-old Tg-AD mice represent the post-93 

plaque and post-cognitive decline stage of AD.  94 
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 95 

Workflow 96 

Synaptosomes from 3, 5, and 9 month-old Tg-AD and wild-type (WT) mice were 97 

isolated according to standard protocols (16). Filter Assisted Protein Preparation (FASP) 98 

was utilized to obtain pure peptides for LC-MS/MS analysis (17). Peptide samples were 99 

analyzed by online two dimensional reverse phase (RP/RP) nanoflow HPLC-MS/MS. 100 

Raw mass spectrometry data was converted to protein abundance using chromatography 101 

feature finding software MaxQuant (version 1.5.2.8) (18–20).  102 

A total of 4,655 proteins were identified across all 18 samples using MaxQuant 103 

(18–20). All proteins categorized as potential contaminants, reverse sequence, and/or 104 

only identified by site were removed from the analysis. Biological replicates were than 105 

categorically annotated into 6 groups and proteins containing less than 2 valid values in 106 

each group were removed from the analysis, thus reducing the matrix to 3312 quantifiable 107 

proteins. (S1 Data File). 108 

S1 Data File. Protein Quantification and Analysis. 109 

 110 

Qualitative Analysis 111 

A qualitative evaluation of the MS data was performed on both the WT and AD 112 

data. While biological variation is expected and accepted among replicates, due to 113 

complex and step-wise collection of RP/RP HPLC MS/MS data technical variations 114 

should be evaluated. For this analysis, we started with a hierarchical cluster analysis 115 
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(HCA) performed using complete-linkage clustering with Euclidean distance metrics of 116 

the nine WT samples (Fig2A) and the nine AD samples (Fig2B). As shown in Fig2A, the 117 

sample WT_3M_12f-C was identified as a potential outlier to other eight WT samples that 118 

are all merged into one cluster. The sub-clusters of the eight WT samples include pair-119 

wise clustering of 3M with 5M and 5M with 9M, suggesting that age-dependent difference 120 

between the three WT age groups are negligible. In contrast, the main 2 clusters in the 121 

AD HCA (Fig2B) have a relatively short distance between them and the sub-clustering 122 

pairs include age matched AD samples, such as the pairing of AD_3M_14c-F with 123 

AD_3M_12f-AD, AD_9M_16c-CF with AD_9M_16a-D, and AD_5M_11a-C with 124 

AD_5M_11a-AB. Thus, the AD HCA suggests that differences between the age groups 125 

and, moreover, differences between the three selected stages of Alzheimer’s disease will 126 

be observed.  127 

Fig2. Qualitative Assessment of MS/MS data. A dendogram of the WT samples 128 

(A.) and the AD samples (B.) produced using Euclidean distance with complete 129 

linkage of LFQ intensity data with all invalid values removed. (B.) Histogram of 130 

absolute log2 expression values (ORANGE: WT_x – WT_average =, GREEN: 131 

3M_x – 3M_average, BLUE: 5M_x – 5M_average, YELLOW: 9M_x – 132 

9M_average). 133 

 134 

To further explore the variability between replicates, we evaluated the log2 fold 135 

change of individual samples from the average (Fig2C, ORANGE: WT from the average 136 

WT, GREEN: 3M_AD from the average 3m Tg-AD, BLUE: 5M_AD from the average 5m 137 

Tg-AD, and YELLOW: 9M_AD from the average 9m Tg-AD). The expectation is that all 138 
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samples included in the average should have a similar shaped distribution, thus the 139 

shorter and broader shape of the sample WT_3M_12f-C distribution compared to the 140 

other WT samples further supports the identification of this sample as an outlier. The 141 

3M_AD samples all have a similar distribution, despite the Euclidean distance of sample 142 

AD_3M_14c-A from the other two 3M_AD samples (Fig2B). While the AD_5M and 143 

AD_9M sample distributions are a clear reflection the short Euclidean distances observed 144 

in Fig2B; in particular, the distance between AD_5M_11a-C and AD_5M_11a-AB is 145 

shorter than for any other pairing and the distribution of these samples is taller and more 146 

narrow than any of the other samples. 147 

Together, this qualitative evaluation of the MS/MS data identifies sample 148 

WT_3M_12f-C as an outlier that will be excluded from the quantitative analysis. 149 

Additionally, this analysis supports that age dependent biological variability between the 150 

control groups is very small. Grouping the 8 WT samples in one control group increases 151 

the statistical power of the analysis, but may sacrifice age specific variations, thus further 152 

evaluation of age dependent protein abundance was analyzed. 153 

To determine if pooling the WT samples would be appropriate, we analyzed 154 

potential age-dependent changes in the WT samples using an ANOVA multi-sample test. 155 

No statistically significant proteins were identified using a loose False Discover Filter 156 

(FDR, Bengamini-Hochburg)  = 0.25. Thus, to identify genes that would likely lose 157 

statistical relevance if an average WT was used rather than age matched controls, we 158 

applied a p-Value cut-off of 0.1 with no FDR and an absolute log2 fold change filter of 0.5. 159 

We identified 73 proteins of interest (S1 Data File) that could be lost if we pooled the WT 160 
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samples into a single control group. However, despite these potential loses, we made the 161 

decision to group all of the WT samples into a single control group.  162 

 163 

Quantitative Assessment of Alzheimer’s Disease Progression Proteome 164 

R-limma (21–23) was used to perform a quantitative assessment of proteome 165 

differences between the following groups: 3m Tg-AD & WT, 5m Tg-AD & WT, and 9m Tg-166 

AD & WT. Empirical Bayes statistics was used to calculate p-Values. Using a Bengamini-167 

Hochburg FDR  = 0.1, (Fig3; S1 Data File). Surprisingly, the majority of statistically 168 

significant proteins identified were only significant in the pre-plaque, 3m Tg-AD, stage of 169 

AD when A levels are still very low. The protein expression profiles of the top most 170 

dysregulated proteins (log2 FC >= |1|) are shown in Fig4. We noted that even though the 171 

selection of significant proteins was dominated by the 3m Tg-AD statistical analysis, clear 172 

age dependent data trends were observed; we clustered the proteins based on these 173 

expression trends. This clustering shows groups of proteins that decrease (clusters 2 & 174 

3) and increase (clusters 8, 9, & 10) during AD progression, that are consistently up 175 

(cluster 1 & 2) or down (cluster 10 & 11), and that have stage specific protein 176 

dysregulation (clusters 4, 5, 6, & 7). Eleven of the proteins of interest identified have a 177 

previous association with A and/or AD (Fig4 *GENE), while 73 of these high confidence 178 

proteins (log2 FC >= |1|) are novel to our understanding of AD progression.  179 

Fig3. Quantitative Analysis of Age-Dependent Alzheimer’s Disease. R-limma 180 

was used to calculate the p-Value and log2 fold change for the 3312 quantifiable 181 

proteins using the following groupings: (A.) 3m Tg-AD & WT, (B.) 5m Tg-AD & WT, 182 
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and (C.) 9m Tg-AD & WT. A Bengamini-Hochburg FDR  = 0.1 is indicated with a 183 

solid line in each graph and the significant proteins are colored. This data and the 184 

corresponding gene names are included in Supplement File 1.  185 

 186 

Fig4. High-Confidence Protein Expression Profiles and Clusters. Proteins 187 

were filtered using an FDR = 0.1 and an absolute FC = 1 in at least one age group. 188 

Proteins were clustered based on observable FC trend. Proteins with a previously 189 

recognized association with A (24) and/or recognized by Kegg as “Alzheimer’s 190 

Disease: are indicated by * next to the gene name. 191 

 192 

STEM Analysis 193 

 As mentioned above, we observed many proteins that appeared to have a linear 194 

trend of protein expression. Time-dependent data trends can further increase confidence 195 

in the data, and analysis of these trends may even identify addition statistically significant 196 

protein changes. To further explore proteins with trending protein profiles we utilized the 197 

Short Time-series Expression Miner (STEM)(25). We used a maximum of 50 model 198 

profiles and maximum unit change of 3 (log2 FC) between time points to profile the matrix 199 

of 3312 quantifiable proteins at the three Tg-AD age groups. STEM profile enrichment 200 

identified 121 proteins that follow one of five significant profiles (S2 Data File). Fig5A-E 201 

shows these significant STEM profiles (black); the protein expression patterns that were 202 

fitted to these profiles are plotted along with the STEM profiles. Not quite half the proteins 203 

identified by STEM (58/121 proteins) were identified as significant using the empirical 204 
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Bayes statistical enrichment, while 63 new proteins were added to the list of proteins 205 

dysregulated during the progression of AD. 206 

S2 Data File. Time-series expression analysis by STEM. 207 

Fig5. Significant Protein Trends identified by STEM. Five protein expression 208 

profiles were identified as having more proteins fitting to the profile than would be 209 

expected by random chance. These significant profiles included three increasing 210 

profiles with 41 proteins fitting the -3, 0, 1 log2 FC profile (A.) in the 3m, 5m, and 211 

9m age groups, respectively, 25 proteins fitting the -1, 0, 3 log2 FC profile (B.), and 212 

16 proteins fitting the -2, -1, 1 log2 FC profile (C.). Two decreasing profiles were 213 

also identified; these were characterized by 25 proteins fitting the 3, 0, -1 log2 FC 214 

profile (D.) and 14 proteins fitting the 2, 1, -1 profile (E.) The profile summaries 215 

exported from STEM can be found in S2 Data File and the protein-to-profile 216 

assignments can be found in S2 Data File as well as in S1 Data File. 217 

 218 

Canonical Pathway Enrichment 219 

The benefit of adding proteins identified by STEM is demonstrated in Fig6 where 220 

Canonical Pathway Enrichment (by Ingenuity Pathway Analysis, IPA) is compared 221 

between three data filters for the 3m Tg-AD data set: a strict filter (FDR 0.1 + log2 FC >= 222 

|1|), an FDR only filter (FDR 0.1), and a STEM enriched filtered data set (FDR 0.1 + log2 223 

FC >= |0.4|, +STEM proteins) for a select group of canonical pathways (complete list: S3 224 

Data File). P-values for canonical pathways are calculated in IPA using a right-tailed 225 

Fisher Exact Test that considers the overlap of observed and predicted genes in a 226 
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pathway. Thus, while strict data filters will result in a high confidence gene list (Fig4), a 227 

short gene list will also produce a low confidence canonical pathway enrichment. 228 

Additionally, Fig6 & S3 Data File show that, with few exceptions, expanding the gene list 229 

to include lower confidence protein expressions identified using STEM adds to our 230 

pathway confidence (p-Value) or in other words, “what is significant becomes MORE 231 

significant”. IPA also assigns a Z-score that assesses the match of observed and 232 

predicted up/down regulation patterns.  Therefore, the age-dependent FC for all proteins 233 

in the Canonical Pathway are considered. In IPA, a Z-score greater than 2 or less than -234 

2 is considered predictive; positive Z-scores indicate activation and negative Z-scores 235 

indicate repression of the described function.  As shown in Fig6, the STEM enriched 236 

protein list allows higher confidence directional predictions in comparison the FDR only 237 

filtered protein list.  No predictable directionality was found in any of the enriched 238 

Canonical Pathways when the high confidence protein list (FDR 0.1, |FC|>1) was used. 239 

S3 Data File. Canonical Pathway Enrichment. 240 

Fig6. STEM proteins add confidence and direction to Canonical Pathway 241 

Enrichment analysis. Ingenuity Pathway Analysis (IPA) was used to analyze the 242 

3m Tg-AD Canonical Pathway Enrichment using three different data filters: the 243 

high confidence protein list from Fig4, a standard filter (FDR = 0.1 only), and the 244 

STEM expanded FDR = 0.1 and absolute FC >= 0.4. p-Values and z-scores as 245 

calculated by IPA are shown for the top Canonical Pathways. The complete 246 

Canonical Pathway Enrichment list can be found in S3 Data File. 247 

 248 
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 With this in mind we utilized the protein expression data from all proteins identified 249 

as significant (FDR = 0.1, absolute log2 FC >= 0.4) plus the STEM identified proteins to 250 

run a canonical pathway enrichment analysis. All pathways with a z-score in at least one 251 

age group are shown in Fig7. Z-scores greater than or equal to the absolute value of two 252 

are considered predictive. All dysregulated pathways, including those without a z-score, 253 

can be found in S3 Data File. 254 

Fig7. Ingenuity Pathway Analysis (IPA) predicted direction of Canonical 255 

Pathways. IPA was used to analyze compare the directionality (z-scores) of 256 

Canonical Pathways identified enriched in the STEM expanded FDR = 0.1 and 257 

absolute FC >= 0.4 protein list. Canonical pathways with valid/non-zero z-score in 258 

at least one age group are shown here. The complete Canonical Pathway 259 

Enrichment list can be found in S3 Data File. 260 

Discussion 261 

The most well-known and well-studied histopathological hallmark of AD is an 262 

increase in A peptide abundance and subsequent formation of amyloid plaques. 263 

Accordingly, the mouse model used in our studies should provide insights in downstream 264 

mechanisms following A production. A is believed to be a crucial pathogenic factor in 265 

AD development. Recent evidence indicates that the soluble-oligomeric forms of A are 266 

primarily responsible for the neurodegeneration and loss of synaptic function 267 

characteristic of later stages of AD, and this soluble-A hypothesis is further supported 268 

by recent clinical data on aducanumab, a human monoclonal antibody shown to reduce 269 

soluble and insoluble A (26).  270 
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Surprisingly, we observed that the largest changes to the synaptosomal proteome 271 

occurred in the 3m Tg-AD mouse model where A levels are relatively low, A plaques 272 

are absent, and no cognitive decline is observable. While this is consistent with soluble-273 

oligomeric forms of A being primarily responsible for the pathogenesis of AD, it is notable 274 

that despite the large proteomic changes, the 3m Tg-AD mice have no observable 275 

phenotype. Very recently, a new AD phenotype has been observed: olfactory recall 276 

impairment occurs up to ten years prior to the onset of cognitive decline (27,28). This 277 

suggests that the observed proteomic changes in the 3m Tg-AD mouse may have 278 

correlated phenotypes that remain to be identified. However, it could also suggest that A 279 

has a significant biological impact on the brain, even at low levels, and that compensatory 280 

mechanisms are not only active but, most importantly, are biological efficacious during 281 

the preclinical stages of AD. Although the ultimate progression of AD suggests that any 282 

early neuroprotective response to A is not sustainable or is not sufficient to prevent 283 

neurotoxicity.  284 

In typical AD progression, A promotes disturbances in a number of pathways that 285 

ultimately lead to neurotoxicity. Specifically, A oligomers have been reported to induce 286 

NMDA receptor activation, mitochondrial Ca2+ overload/membrane depolarization, 287 

oxidative stress and apoptotic cell death (29–32). Consistent with this pathology, we 288 

observed dysregulation in these Canonical Pathways: Glutamate Receptor Signaling, 289 

Synaptic Long Term Potentiation and Depression, Calcium Signaling, and Oxidative 290 

Phosphorylation and Mitochondrial Dysfunction (Figures 6 & 7, S3 Data File). Beyond 291 

observing dysregulation of Canonical Pathways that are consistent with what is already 292 

known about AD, we identified 73 proteins with high confidence (log2 FC >= |1|, Fig4) that 293 
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are novel in our understanding of AD progression, but that are consistent with previous 294 

studies. While refraining from going through all proteins/pathways, a striking example of 295 

how our data supports the existing knowledge can be found by close inspection of the 296 

RhoA Pathway depicted in Fig8. Specifically, our data shows an increase RhoA GEF 297 

protein (ARHGEF1) and a decrease in RhoA GAP protein (RHOGAP) in the 3m Tg-AD 298 

(Fig8A), consistent with activation of RhoA Signaling Pathway (Fig8B). RhoA activation, 299 

as shown in Fig8A & B, leads to the activation a number of kinases whose downstream 300 

activities regulate the actin cytoskeleton. ROCK, for example, is a kinase downstream of 301 

RhoA that activates LIMK which in turn phosphorylates, and thus inhibits, the actin 302 

severing protein, cofilin (Fig8).  However, in direct opposition to the IPA’s predicted state 303 

of cofilin, previous observations with A1-42 treatment show an increase in 304 

dephosphorylated cofilin (33) and an increase of cofilin translocation into the mitochondria 305 

(consistent with dephosphorylated cofilin) (34). Moreover, in AD patients, a loss or 306 

shortening of dendritic spines is observed, consistent with loss of cytoskeletal stability. 307 

Previous studies have also shown that A1-42 treatment of hippocampal neurons induced 308 

increased activity in Rac1, Cdc42, and PAK1 (33), which, like RhoA, are also involved in 309 

activation of LIMK and the phosphorylation of cofilin. Together, this data suggests that A 310 

either inhibits phosphorylation or promotes dephosphorylation of cofilin and that activation 311 

of upstream activators of LIMK may be a compensation mechanism for the increase in 312 

dephosphorylated cofilin. Potential mechanisms of A’s regulatory role on cofilin 313 

phosphorylation and dephosphorylation are illustrated in Fig9A. 314 

Fig8. RhoA Signaling Pathway activation in early AD.  (A.) Canonical Pathway 315 

enrichment analysis identified RhoA as activated in the 3m Tg-AD.  (B.) The log2 316 
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FC of eight proteins within the RhoA Signaling Pathway were used to calculate the 317 

z-score and the predicted directionality of RhoA Signaling. (C.) These molecules 318 

are colored red (up-regulated) or blue (down-regulated) in a schematic of the RhoA 319 

Signaling pathway in the 3m Tg-AD. (D.) IPA’s Molecular Activation Predictor 320 

illustrates the predicted outcome of the 3m Tg-AD protein abundance changes. 321 

(Red = activated; Blue = inhibited; Yellow = inconsistent with state of downstream 322 

molecule) 323 

Fig9. Proposed A’s impact on Cofilin Phosphorylation and actin 324 

stabilization. Our study, in concert with previous studies, implicates A 325 

involvement in the activation of a number of molecules upstream of Cofilin 326 

regulation and actin stabilization. (Red = activated; Blue = inhibited; Yellow = 327 

inconsistent with state of downstream molecule) 328 

 329 

Compensation for A induced dysregulation of cofilin-actin dynamics would be 330 

required for sustained neural function and survival. Cofilin-actin regulation is critical for 331 

morphogenesis and the structural dynamics of neural spines and has been strongly 332 

implicated in synaptic trafficking of AMPA receptors during Synaptic Potentiation and 333 

Depression (35,36).  In the 3m Tg-AD, we do not see a significant difference in the number 334 

of AMPA receptors (GRIA). However, we assume there is successful compensatory 335 

stabilization of actin filaments through the RhoA Signaling Pathway.  336 

The RhoA Signaling Pathway represents only one of many pathways that were 337 

found to be dysregulated in the pre-clinical 3m Tg-AD model.  Understanding how these 338 
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pathways take part in the response to A may lead to new therapeutic avenues for AD. 339 

Additionally, recognition of the early dysregulation of these pathways may help identify 340 

new, pre-clinical, phenotypes for AD. 341 

Methods 342 

Mice 343 

Mice used in the experiments were housed in accordance with protocols approved 344 

by the Institutional Animal Care and Use Committee at University of Colorado and all 345 

experiments were conducted according to the NIH Guide for the Care and Use of 346 

Laboratory Animals. The B6C3-Tg(APPswe, PSEN1dE9)85Dbo/J) breeding pair was 347 

obtained from The Jackson Laboratory (stock number 004462). Colony was maintained 348 

using +/+ sibling x Hemi zygote. Ear punches were taken at approximately 10 days old 349 

and PCR identification was performed to identify AD transgenic mice and the non-350 

transgenic littermate controls. The AD transgenic mice and the non-transgenic littermate 351 

controls of the same sex were housed in individual ventilated cages, with a maximum of 352 

five mice per cage. Female B6C3-Tg(APPswe, PSEN1dE9)85Dbo/J) transgenic mice at 353 

various ages (3, 5, and 9 months) and their age-matched, non-transgenic littermate 354 

controls (wild type, WT) were used in this study. For quality control purposes tail clips 355 

were taken at the time of death and a second genotyping was performed to confirm the 356 

first. 357 

ELISA 358 

Hemi-brain samples were analyzed for human A 1-40 and 1-42 using 359 

commercially available ELISA kits (Life Technologies: KHB3481 & KHB3441) according 360 
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to manufacturer’s instruction. Amounts of A were normalized to total protein as 361 

determined by BCA assay (Pierce #23225). 362 

Synaptosome Isolation 363 

All mice were sacrificed at the age indicated. Synaptosomes were isolated as 364 

previously described with minor modifications (16). The whole brain was dissected from 365 

one mouse and homogenized with 20 strokes in 2 mL of complete sucrose buffer (0.32 366 

M Sucrose; 2 mM EGTA; 2 mM EDTA; 10 mM HEPES (pH 7.4), 1x Protease Inhibitor 367 

Cocktail: cOmplete, EDTA-free (Roche 05 056 489 001), 1mM Na3VO4 (Sodium 368 

Vanadate), 1mM Na4O7P2 (Sodium Pyrophosphate). Centrifuged at 800 x g for 10 minutes 369 

at 4°C to pellet the membrane fragments and nuclei and collect supernatant (S1) in 15 370 

mL conical tubes then fast frozen in liquid nitrogen and then stored at 70°C until all mouse 371 

brain samples for were collected. To minimize technical variability, synaptosomal 372 

preparation was performed in age-matched batches. All batch purifications were 373 

performed with the same stock buffers within 24 hours of each other. To prepare purified 374 

synaptosomes the S1 samples were thawed on ice, centrifuged at 800 x g for 10 minutes 375 

at 4°C and collect supernatant (S1’) in high-speed polycarbonate tubes. S1’ fractions 376 

were then centrifuged at 10,000 x g for 15 minutes at 4°C to obtain a pellet (P2) containing 377 

synaptosomes contaminated with mitochondria and microsomes. P2 was suspended in 378 

500 µl of Complete Sucrose Buffer, vortexed thoroughly then loaded on a sucrose 379 

gradient (from bottom to top): 1.18 M – 1.0 M – 0.85 M (all prepared in 10 mM HEPES, 380 

pH 7.4, 2 mM EDTA, 2 mM EGTA) prior to centrifuging at 82,500 x g for 1 hour at 4°C. 381 

Pure synaptosomes were collected from the interface between 1.0 M and 1.18 M, washed 382 

by adding ~3X volume of Complete Sucrose Buffer and centrifuged at 10,000 x g for 15 383 
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minutes at 4°C prior to re-suspending in Complete Sucrose Buffer and measuring of 384 

protein concentration using a micro BCA Protein Assay (Pierce 22660) according to 385 

manufacturer’s instructions. Pure synaptosomes were divided into 50 µg aliquots and 386 

stored at -80°C. 387 

Peptide Preparation 388 

Peptide preparation was performed by the Filter Assisted Sample Preparation 389 

(FASP) method as described (17). Briefly, to extract membrane proteins in the 390 

synaptosome samples, a 0.3% concentration of Triton X-100 was used to solubilize 50 391 

µg of purified synaptosomes. The sample was then washed with fresh 8 M and 2 M Urea 392 

Buffer in a 30 kDa filter (Millipore UFC 503024); the proteins were reduced (10 mM TCEP) 393 

and alkylated (25 mM IA) and treated with trypsin (Promega #V5113; 1:100 or 0.05 µg of 394 

trypsin per 50 µg sample) overnight in the spin filter. The resulting peptides were desalted 395 

in C-18 spin columns (Pierce 89870) according to the manufacturer’s instructions. The 396 

peptide concentration was estimated using a NanoDrop 2000 and Bovine Serum Albumin 397 

as reference (mass extinction coefficient of 6.7 at 280 nm) resulting in 6-7 g of peptide 398 

per sample. The peptide was then immediately lyophilized for 2 hours, and stored at -399 

80°C. 400 

RP-RP MS/MS 401 

The peptides were separated by liquid chromatography using a nanoAcquity UPLC 402 

system (Waters) coupled to a LTQ Orbitrap mass spectrometer (Thermo Fisher 403 

Scientific). Peptide mixtures (2 µg) were loaded onto a 300-µm × 50-mm XBridge C18, 404 

130-Å, 5-µm column maintained at pH 10.0, eluting peptides in six fractions 405 
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corresponding to 10%, 15%, 20%, 30%, 40%, and 60% buffer B1 (buffer A1: 20 mM 406 

ammonium formate, pH 10.0; and buffer B1: 100% acetonitrile). Steps were eluted from 407 

the high pH column at 20 µl/min onto a 180-µm × 20-mm C18, 100-Å, 5-µm trap column, 408 

which was then switched in-line with the analytical column and eluted as in the 1D 409 

method. For 1D analysis, a BEH C18 reversed phase column (25 cm × 75 µm i.d., 1.7 410 

µm, 100 Å; Waters) was used for the analytical separation using a linear gradient from 411 

90% buffer A2 (0.1% formic acid) to 40% buffer B2 (0.1% formic acid and 80% 412 

acetonitrile) over 60 min at a flow rate of 300 nL/min. 413 

MS/MS data were collected by an enabling monoisotopic precursor and charge 414 

selection settings. Ions with unassigned charge state were excluded. For each mass 415 

spectrometry scan, the 10 most intense ions were targeted with dynamic exclusion 30 s, 416 

1 D exclusion width, and repeat count equal to 1. The maximum injection time for Orbitrap 417 

parent scans was 500 ms, allowing 1 microscan and automatic gain control of 106. The 418 

maximal injection time for the LTQ MS/MS was 250 ms, with 1 microscan and automatic 419 

gain control of 104. The normalized collision energy was 35%, with activation Q of 0.25 420 

for 30 ms. 421 

Data Analysis 422 

The raw MS/MS data from all samples were analyzed by MaxQuant (37)(version 423 

1.5.2.8). Andromeda (38), a probabilistic search engine incorporated into the MaxQuant 424 

framework was used to search the peak list against the Uniprot_MOUSE database 425 

(UniProtKB release 2016_098, entries: 82,200). Common contaminants were added to 426 

this database. The search included cysteine carbamidomethylation as a fixed modification 427 
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and N-terminal acetylation and methionine oxidation as variable modifications. The false 428 

discovery rate (FDR) was set to 0.01 for both peptide and protein identifications. Enzyme 429 

specificity was set to trypsin allowing N-terminal cleavage to proline. Two miscleavages 430 

were allowed, and a minimum of seven amino acids per identified peptide were required. 431 

Peptide identification was based on a search with an initial mass deviation of the 432 

precursor ion (ITMS) of up to 0.5 Da, and the allowed fragment mass deviation (FTMS) 433 

was set to 20 ppm. Razor peptides were used for quantification; unmodified or with the 434 

modifications specified above. To match identifications across different replicates and 435 

adjacent fractions, the “match between runs” option in MaxQuant was enabled within a 436 

matching time window of 0.7 min.  437 

Bioinformatics analysis was done with Perseus (39)(version 1.4.1.3) tools 438 

available in the MaxQuant environment. The proteins only identified by site, from the 439 

reverse database, and contaminant proteins were removed from the matrix. Categorical 440 

annotation by age and type was performed resulting in 6 groups: AD_3M, AD_5M, 441 

AD_9M, WT_3M, WT_5M, & WT_9M, with an n=3 in each group. The protein matrix was 442 

reduced to those identifications with at least one valid observation in each group. A 443 

multiple-sample test was run between WT_3M, WT_5M, & WT_9M using a Bengamini-444 

Hochburg FDR=0.25 (7 significant) and these proteins were removed from the matrix. 445 

The 9 WT samples were then pooled into one WT group and the data was exported for 446 

further analysis with R version 3.3.1 (2016-06-21) and the package limma (21,23) (version 447 

3.28.14). Limma was then used to calculate the log2 fold change and the empirical Bayes 448 

p-Value between the following groups: AD_9m & WT, AD_5m & WT, AD_3m & WT, 449 

WT_9m & WT, WT_5m & WT, and WT_3m & WT. 450 
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