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Abstract

This paper uncovers a remarkable behavior in two biochemical systems that commonly appear
as components of signal transduction pathways in systems biology. These systems have globally
attracting steady states when unforced, so they might have been considered “uninteresting” from
a dynamical standpoint. However, when subject to a periodic excitation, strange attractors
arise via a period-doubling cascade. Quantitative analyses of the corresponding discrete chaotic
trajectories are conducted numerically by computing largest Lyapunov exponents, power spectra,
and autocorrelation functions. To gain insight into the geometry of the strange attractors, the
phase portraits of the corresponding iterated maps are interpreted as scatter plots for which
marginal distributions are additionally evaluated. The lack of entrainment to external oscillations,
in even the simplest biochemical networks, represents a level of additional complexity in molecular

biology, which has previously been insufficiently recognized but is plausibly biologically important.
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1 Introduction

Many unforced biochemical systems, such as pairs of mutually repressing genes, or phosphoryla-
tion/dephosphorylation cycles, can exhibit biologically important properties such as multistability
and oscillations [1, 2, 3, 4, 5, 6, 7, 8]. The experimental observation of these behaviors helps one

to distinguish among alternative models, and indicates the necessity of positive or negative feedback

*The corresponding author, email: eduardo.sontag@gmail.com


https://doi.org/10.1101/145201

bioRxiv preprint doi: https://doi.org/10.1101/145201; this version posted June 2, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

loops [9]. Biological observables exhibited in response to time-dependent forcing signals (i.e. “dynamic
phenotypes”) can provide further insight into the structure of biological systems. Recent examples
include scale invariance or “fold-change detection” [10, 11, 12], non-monotonic behavior under mono-
tonic inputs [13], refractory period stabilization [14], and non-entrained solutions or “period skipping”

when stimulii are periodic [14].

The paper [14] found experimentally, in a C. elegans odor sensing neuron, responses whose periods
are roughly multiples of the period of an excitation signal (see sample time traces in Section SI-5),
thus theoretically implying the presence of negative feedback loops, and went on to propose a circuit
architecture that is capable of displaying the observed dynamic phenotype. These findings suggest
the following theoretical question: what complicated dynamics can arise in the simplest biochemical
systems, more generally, in response to a periodic input? Here we answer that question by showing
that a negative feedback system motivated by [14], and also the “nonlinear integral feedback” circuit
proposed in [10] for scale-invariance, can both exhibit a rich bifurcation structure and chaotic behavior

in response to pulse-train excitations.

There is an extensive and deep literature that deals with the analysis of responses of nonlinear systems,
and particularly oscillators, to periodic signals. Under the influence of external periodic environmental
forcing, nonlinear systems can exhibit bifurcations leading to subharmonic responses and chaos. Such
behaviors have been studied theoretically and experimentally, in squid axons [15], cellular circadian
oscillations subjected to periodic forcing by a light-dark cycle [16], forced pendulums and other classical
physical oscillators described by the van der Pol and the Duffing equations [17, 18, 19, 20, 21, 22, 23],
and biochemical oscillators such as the “Brusselator” [24, 25]. Our contribution is to show that similar
behaviors can be found already in two of the simplest nonlinear systems which appear in the current
systems biology literature. Furthermore, and perhaps equally remarkable, our two systems are not
rhythmic in the absence of periodic stimulation; quite the contrary, they have unique and globally
asymptotically stable steady states when the input is constant. This complexity in ubiquitous systems
that constitute components of typical signal sensing and transduction networks suggests a previously
unrecognized hidden level of complexity in molecular biology, which is of plausible significance for

biological function [14].

2 Setup

We first discuss the models to be considered, the type of periodic input, and the notion of chaos.
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2.1 The two models

Our first example, motivated by the paper [14], where similar models appear, is a negative feedback
system which consists of two species X and Y such that X enhances the production of ¥ and Y
inhibits the production of X. The concentrations of X and Y at time ¢ are denoted respectively by
x = z(t) and y = y(t). The interaction terms are modeled by Michaelis-Menten kinetics, and both X
and Y are subject to zeroth-order decay through a mechanism such as protease-mediated degradation.
An external input U, with magnitude u = u(t) in appropriate units, triggers production of X. The

equations are as follows:

dr oult) e (1a)
dt O, +y My + =z

dy oyx yY

A — 1b
dt O, +x M, +y (1b)

were we omit the argument ¢ in x and in y, but leave it in the input in order to emphasize its time-
dependence. All constants are assumed to be positive. A diagram of this model is in Fig. 1(a,c). with

a general periodic input or a pulsed input respectively.
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Figure 1: Simple biocircuits with an arbitrary periodic input and a negative feedback output. Left:
negative feedback system. Right: FCD system. Top: arbitary periodic input. Bottom: pulse train
input.

To emphasize that the bifucation behaviors are not an artifact of artificially chosen parameter values,
we will also consider the special case of the model (1) in which all parameter values are unity (o, =
oy =0, =0, = p, = py, = M, =M, = 1). We call this the “unity” model.

Our second example originates in the paper [10] (see [26] for more theoretical analysis). It is an integral

feedback system consisting of a regulator species X and an output species Y, with equations (using
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again z,y,u for concentrations and inputs) as follows:

dx

i (¥ — yo) (2a)
dy cu(t)

A —d 2b
dt K,+z 4 (2b)

For a Michaelis-Menten constant K, < 1, this system is perfectly adapting to constant inputs and
has the fold-detection property, as discussed in [10]. A diagram of this model is in Fig. 1(b,d). with a

general periodic input or a pulsed input respectively.

Both examples have the property that when u(t) is a constant there cannot be any periodic orbits and,
furthermore, all solutions converge to a globally asymptotically stable steady state (with one minor
exception for (1), explained in Section SI-1, that arises when some solutions become unbounded).
For the system defined by (2), this fact was proved in [26]. For the system described by (1), this is

discussed in Section SI-1.

2.2 Inputs

For simplicity, and to connect with the experiments in [14], we will consider T-periodic input functions
u(t) (that is, u(t) = wu(t+ 7)) that consist of pulse trains of period T

0, 0 <t < ty,
u(t) =qm, t; <t <ty (3)
0, ty <t<T.

In (3), t; = (T'—A) /2, to = (T + A) /2, where T and A are the period and support of the input
function u(t), respectively. For the sake of (computational) simplicity, the support interval, [t1,ts], is
centered at the midpoint of the interval [0,T]. We will analyze the effects of different choices of the

amplitude parameter m or the period 7'

2.3 Chaos
There are many definitions of chaos, the choice of which depends on the aspect of chaos to be empha-
sized [27, 28, 29, 30, 22, 31].

The definition of chaos appropriate for our work is based on periodic orbits and corresponds to the

transition to chaos though period-doubling cascades [32, 33, 34]. Following [34], we say that the given
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dynamic system has a periodic-orbit chaos or a periodic orbit strange attractor, if it has infinitely

many regular periodic saddles.

It is instructive to compare our biocircuit models with the Duffing’s equation, the second-order ordinary
differential equation with a cubic nonlinearity describing a driven damped anharmonic oscillator,
2" + kx' + 2® = Bcoswt. Here, the parameter k controls the damping, and the parameter B controls
the amplitude of an external periodically varying driving force [17, 22]. Chaotic solutions of the
Duffing’s equation were discovered as early as 1962-63 [20, 21, 23] and have been the subject of
extensive research [35, 33, 18]. Detailed reviews of the Duffing equation’s fundamental properties can
be found in [22, 31]. In the examples studied below, a strange attractor emerges via a cascade of

period-doubling bifurcations, the transition to chaos also observed in the Duffing’s equation [33].

As already explained, when our biocircuits are subject to constant inputs, they admit a globally
asymptotically stable state. However, when the external periodic force is allowed to act during a short
period of time, very small relative to the period, chaotic behavior emerges (Fig. 2). This phenomenon

is discussed in detail throughout the rest of the paper.

2.4 Shift Maps by Period T

The piecewise definition (3) of the input u(¢) makes it inconvenient to numerically study bifurcations
of limit cycles with respect to model parameters. It is more convenient to study the corresponding

2D-iterated maps, or shift maps by period T,
Zn+l = CI)(Zm Oé), z € R? ) (4)

where ®(z,, @) is the shift map by period T" along the trajectories of the non-autonomous ODE given
by (1) or by (2) respectively (recall that 7" is the (minimal) period of the external input u(t)). More
precisely, we define ® (2,a) = ¢’ (2,a), where p'(z, ) is the solution of the given ODE, that is,
o' (z,a) = (x(t, @), y(t, @), with the initial condition z = (z,y) at t = 0. The iteration (4) gives
the value of 2,1 as a function of z, (n = 0,1,2,...), and « is the vector of model parameters. Note
that a fixed point of the map (4) corresponds to the appropriate periodic solution of the ODE model

considered.

Theoretical homotopy continuation [34] and numerical bifurcation approaches [36, 37|, as implemented
for instance in the powerful numerical bifurcation tool MatcontM [37], can then be applied to study
numerically bifurcations of fixed and periodic points of the iterated map ®(z,«) defined in (4). A
technical requirement for these methods is that the map ®(z, «) should be smooth with respect to

state variable z and parameter a. This requirement is easy to verify, see Section SI-6.
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3 Off-on-off chaos

Numerical analysis of the discrete trajectories of the maps (4) corresponding to the models described

in Sect. 2.1 immediately reveals chaotic dynamics, in a wide range of model parameters.

Specifically, Fig. 2 demonstrates examples of bifurcation diagrams generated from the corresponding
iterated maps (4), when the values of the external period T are allowed to vary: (a) the leftmost
column plots in Fig. 2 correspond to a strange attractor of the map (4) for the model (1) used with
the fixed parameter values o, = o, = 10% 6, = 10,6, = 1, p, = 100, p, = 10, M, = M, = 1,
m = 1.75, and A = 107% (b) the middle column plots correspond to the map (4) for the unity
model (1) (with all parameters equal to one) used with m = 2.0 x 10* and A = 107%; and (c¢) the
rightmost column plots correspond to a strange attractor of the map (4) for the FCD model (2) used
witha =Yy = c=d = 1.0,m = 107, and A = 0.2.

%1078 200 T T I — 8 <102
150} 6
* 1001 | x 4!
50| § ol
0
4 6 8 | 5 10 15 20
Period Period .5 Period

25 20 3
15§

10}

ol .
8 100 200 300 400 500 5 10 15 20
Period Period Period

Figure 2: Bifurcation diagrams with respect to period T. The panels in the left column correspond to the
model (1); the panels in the middle column correspond to the unity model obtained from the model (1) by setting all
parameter values to one; and the panels in the right column correspond to the FCD model (2). The values of largest
Lyapunov exponents for the attractors are shown in Fig. SI-2.1.

We observe from Fig. 2 that for large values of the external period (that is, low frequencies, w — 0), the
dynamics in all the three models is asymptotically localized to a small vicinity of the unique globally
stable steady-state, corresponding to oscillations with a very small amplitude. Indeed, large periods

of external forcing allow the dynamics systems to relax to their globally stable steady states.

However, as soon as the period of the external input decreases, small amplitude oscillations develop
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into large-amplitude oscillations, followed by the transition to chaos via a period-doubling cascade.
Remarkably, and counter-intuitively, while the period of the external input decreases, the period of
periodic processes described by each periodically-forced model increases before each model becomes

fully chaotic.

If the period T is further decreased, the chaotic dynamics is eliminated and is replaced again by regular
periodic oscillations with the external period T'. This backward transition, that is, “chaos — periodic
oscillations,” can be explained by the Krylov-Bogoliubov-Mitropolsky (KBM) asymptotic theory [38,
39]. The theory predicts that asymptotically in the limit w — oo, the system dynamics becomes
periodic with vanishing amplitude of oscillations. In this case, the high frequency small amplitude
periodic dynamics can be approximated by a steady-state in the corresponding autonomous (averaged)

system [40].

The strange attractors shown in Fig. 2 are called “off-on-off” attractors [34], because the chaotic
dynamics disappears for small and large values of the bifurcation parameter, the external period T" in
this case, and exists only for intermediate values of the parameter. Examples of chaotic time-resolved
solutions for the strange attractors (Fig. 2) with positive largest Lyapunov exponents (Amax > 0) [41],
are shown in Fig. SI-3.1.

To gain additional insight into the geometry of the strange attractors corresponding to the bifurcations
trees (Fig. 2) and their complex time-resolved realizations (Fig. SI-3.1) we then plotted their respective
phase portraits for the appropriate iterated maps (4) as discussed earlier. In the case of discrete
trajectories generated by the map (4), it is convenient to interpret the phase portraits as scatter plots
for which marginal distributions can be computed (SI-3). We observe from Fig. SI-3.1 and Fig. SI-
3.3 that for the model (1) with the parameters shown, and also for the FCD-model (2), the discrete
trajectories are localized along the axis y, respectively. However, in the special case of the unity model,
the discrete trajectories stochastically jump between and stochastically move along several attractor
loci (Fig. SI-3.1).

When instead of the period 7" the strength of the external input is taken as a bifurcation parameter,
similar results are obtained. Bifurcations in the models leading to strange attractors in the case when

the m is allowed to vary can be found in SI-4.

4 Power spectra and autocorrelation functions

In the theory of chaotic dynamic systems and discrete iterated maps, and specifically in [42] and refer-
ences therein, the power spectrum is computed and used in order to distinguish periodic, quasiperiodic,

and chaotic motions described by dynamical systems arising in a broad range of fields [30]. The power
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spectrum plotted for periodic or quasiperiodic trajectories has discrete peaks at the harmonic and sub-
harmonics, whilst chaotic trajectories have a broadband component in their power spectrum. In order
to illustrate that phenomenon for chaotic discrete trajectories of the iterated maps (4), we compute
the power spectra and autocorrelation functions for the discrete trajectories corresponding to those

values of parameters for which the plots in Fig. 2 (and Fig. SI-3.1) have been obtained.

To compute the power spectra we use Fast Fourier Transform (FFT) available from Matlab® with

N = 10°, the number of points used to compute the spectrum and autocorrelation functions (Fig. 3).
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Figure 3: Power spectra and autocorrelation functions Power spectra and autocorrelation functions are generated
form the discrete chaotic trajectories of the corresponding iterated maps. The left column panels correspond to the map
(4) for the model (1) with T' = 1; the middle column panels correspond to the map (4) for the unity model with 7" = 40;
and the right column panels correspond to the map (4) for the FCD model (2) with T = 5;

We can observe form Fig. 3 that the autocorrelation function for the model (1) converges to zero
slowly, rapidly oscillating between positive and negative values, while the autocorrelation functions for
the unity and FCD models vanish rapidly. This observation could be interpreted as saying that the
model (1) has a larger capacity for memory than the other two models in terms of its remembrance of

the past.
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5 Myrberg-Feigenbaum Cascades

We continue our discussion of the bifurcation diagrams (Fig. 2) by analyzing the corresponding period-

doubling cascades.

To being with, we note that Pekka Myrberg, a Finnish mathematician, was the first who discovered
period-doubling cascades for periodic orbits with periods p x 29, ¢ = 1,2, 3,.. ., for a variety of p values
in a series of papers published in 1958-1963 [43, 44], reviewed in [34]. In the mid-1970s, Mitchell J.
Feigenbaum discovered a remarkable universality for the period-doubling bifurcation cascades in 1D
iterated maps [32]. Specifically, Feigenbaum discovered that if dj, is defined by dy = pr1—px, where py,
is the given map’s bifurcation parameter value corresponding to the k-th period doubling bifurcation

with the period transition 2% — 25! | then

dy,

0 = lim

= 4.669202. ... (5)

The number §, known as the Feigenbaum constant, is as fundamental a quantity as the numbers m
and e, in that it appears throughout the realms of science. The constant § can be found not only
in iterative maps but also in certain differential equations, for example, in the Duffing equation, as
empirically shown in [33]. We next check if the corresponding bifurcation values of the parameters T’

and m also satisfy the universality law (5).

To carry out the corresponding computations systematically, we employed the command-line version
of MatcontM [37]. Specifically, we first used MatcontM to compute the Feigenbaum (bifurcation)
tree (Fig. 4), leading to the rapid accumulation of regular saddle periodic points which eventually
form an infinite countable set around the parameter value 7 (the left panel) or m* (the left panel),
correspondingly. Here, T* (or m*) corresponds to the Feigenbaum constant in the limit, T}, — 7™ (or
my — m*) and 0, — 0, as k — oo (Table 1).

Table 1: Numerical approximation of the Feigenbaum constant §.

3.46269 — 0.63353 —
1.79848 — 1.10720 —

1.67155  13.11112 1.23735 3.63917
1.66440  17.74194 1.27174 3.78548
1.66345 7.52016 1.27984 4.24533
1.66326  5.13666 1.28161 4.55884
1.66322  4.72916 1.28200 4.64452

N O Ol W N~ |
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Figure 4: A Feigenbaum period-doubling tree. Because of a very fast accumulation of the bifurcation values of
the corresponding parameters, T}, and myg, around their respective limits (Table 1), only very well visible onsets of the
bifurcation trees are shown: The left panel corresponds to the bottom leftmost panel in Fig. 2, while the right panel
corresponds to the bottom leftmost panel in Fig. SI-4.1.

We find from Table 1 that while the sequence {7} converges slowly, the sequence {my} converges

rapidly to its limit and its rate of convergence approximates the Feigenbaum constant very well.

To clarify our computational approach, we have to note that the default setup of MatcontM assumes
(implicitly) that the map ® (z,a) is given by explicit analytic expressions (formulas), since it uses
algorithmic differentiation to compute Poincaré normal form coefficients [45]. Because our map @ (z, «)
is defined implicitly through a number of numerical integration steps, we disabled the algorithmic (also

called automatic or symbolic) differentiation (adtayl) feature by setting ‘AutDerivative’ = 0.

To ensure robustness of all numerical commutations, we used the MATLAB® ode45, odel5s, and ode23s
solvers with tight values of ‘RelTol’ = 10~® and ‘AbsTol’ = 10!, and, additionally, with ‘Re1Tol’
= 107'Y and ‘AbsTol’ = 10~ !2. To obtain all bifurcation values of both 7}, and m; with at least five
significant digits, we computed the corresponding values two times by setting (i) ‘FunTolerance’ =
107% and 1078, (i) ‘VarTolerance’ = 107% and 107%, and (iii) ‘TestTolerance’ = 107 and 107"
inside MatcontM.

6 Multiple cascades

We next proceed with the discussion of the bifurcation diagrams shown in the middle column of Fig. 2
computed for the unity model. Specifically, intervals in the values of the parameter T" with chaotic
and regular dynamics interchange (Fig. 5, the left column panels). A similar phenomenon holds for

the bifurcations with respect to the parameter m characterizing the input strength (Fig. 5, the right

10
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column panels and Fig SI-4.1). Fig. 5 shows the onset of chaos presented in the middle column panels

of Fig. 4 and Fig SI-4.1, respectively. We next provide some more technical details, in order to obtain
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Figure 5: Multiple cascades in the unity model.

better insight into our numerical observations. We do this only for the parameter 7'

First, for each discrete value of the parameter T}, where T, = Ty + kAT, T, = AT = 1, and
k=0,1,2,..., we generated the solution of the unity model over large time intervals with the initial
conditions z(0) = y(0) = 107°.

Second, using the solution obtained as a time series, we computed the A\, and checked if it is equal

to or is greater than zero.

Third, we found that chaotic intervals (Apax > 0) in T are interchanged with intervals corresponding

to regular periodic solutions (Ayax = 0).

The behavior of the unity model turned out to be so complex that it was impossible to employ
MatcontM to carry out a detailed numerical bifurcation analysis similarly to that completed for the
model (1), and discussed in Sect. 5. Despite the complexity of the observed dynamics (Fig. 5), we
emphasize here that this model is exactly the type of very complex dynamical system for which the
theory developed in [34] can applied to attain insight into the origin of the model’s chaotic behavior.

Due to the theory [34] and our numerical evidence, we have a strong belief that multiple period-

11
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doubling cascades contribute to the formation of the strange attractor in both cases: when the values
of T are allowed either to increase or to decrease, starting with those values of T for which a numerically
verified globally stable unique periodic orbit exists. The case when the values of the parameter T are
allowed to increase is shown in Fig. 5. The multiple cascades (Fig. 5) also lead to the formation of
an infinite countable set of saddle periodic points which give rise the emergence of chaos in the unity

model in accordance with the theory in [34].

7 Unbounded Chaos

We complete our discussion of chaos emerging in these simple periodically forced models with the
case in which the FCD model has a strange attractor which appears to exist for unbounded values of
the bifurcation parameters 7" and m as verified in our intensive numerical computations (Fig. 6 and
Fig. SI-4.1).

%104

m ‘ %1078

4 6 8 10
m x10°®

Figure 6: Unbounded chaos cascade in the FCD model with T' = 5.
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The plots (Fig. 6) show the onset of the chaos presented in Fig. SI-4.1 (the right column panels),
where the latter is computed for a larger interval of the values of the parameter m. Both figures are

computed for the same values of the fixed parameters.

We observe form Fig. 6 and Fig. SI-4.1 (the right column panels) that while the magnitude of chaotic
changes in the y-variable stays bounded, the magnitude of chaotic changes in the z-variable grows
monotonically as the values of the bifurcation parameter m increase (Fig. 6, the top panel), see also
Fig. SI-4.1 (the right column panels). The complex dynamics within such strange attractors is called
unbounded chaos [34]. Moreover, the theory predicts the existence of a cascade leading to the formation

of strange attractors with unbounded chaos [34].

8 Discussion and conclusion

We showed that simple biochemical systems commonly seen in models of sensing and signal transduc-
tion pathways are able to exhibit a rich bifurcation structure into subharmonic oscillations, and even

chaotic behavior, in response to periodic excitations.

The appearance of subharmonic responses is by no means an automatic property of cellular biochemical
systems, however. For example, models of processes involved in gene transcription [46] and mRNA
translation [47] can be shown to display the opposite behavior, namely entrainment, which means that
all solutions have the same frequency as the forcing periodic signal. More generally, the synchronization
of oscillators to external signals whose magnitude is large enough to enter the “Arnold tongue” insures
that solutions will have the same frequency as the input [48]. As pointed out in the recent paper [49],

entrained responses of biological systems play a key regulatory role in organisms [50, 51, 52].

While the behavior that we uncovered theoretically is consistent with the non-entrained responses
seen experimentally in [14], it is virtually impossible to mathematically prove that an experimentally
observed behavior is chaotic, or even perfectly subharmonic, especially in molecular biology, where
noisy and relatively low precision measurements are the rule. Nonetheless, this work can serve as an
indication that a lack of entrainment, complicated bifurcation structure, and chaotic behavior even
in some of the simplest biochemical models, need not necessarily appeal to randomness or complex

hidden regulatory pathways.
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Supporting Information

SI-1 Global dynamics of the model (1) with constant imputs

Consider the system described by (1), with a constant input u(t) = wuo:

02U o
F = — SI-1.1
G(z,y) = Iy? oY (SI-1.1b)

0, +x M, +y’

We first note that a steady state, if it exists, is unique (clear because of the increasing or decreasing
character of the functions of x and y). An analysis of nullclines reveals that there is only one case in

which solutions may become unbounded, see Figure SI-1.1, and our examples never treat that case.

A ' B ", C T D TE

/
N

N'T—=——— N . N AN \
~ 7 Vi /

X X x x X
Figure SI-1.1: Possible phase planes. The blue curve represents the x-nullcline, that is, the locus o g:i“; = A;‘:fm, and

the brown curve represents the y-nullcline, that is, the locus of Z\/l;yﬁy = ;'lfr
y Eaa

In cases B-E, solutions remain bounded. In case A, solutions may diverge. Case A occurs when both of the following
conditions hold: (i) p, > oy and (ii) o, My /(py — 0y) < (0zu0/1tz) — 0y. (These conditions characterize that case when
both nullclines have have a positive limit as * — oo, and they do not cross.) Note that we picked parameters so that (i)
fails: p, = 10, 0, = 10* (or both equal to 1 in the “unity” model).

. Arrows indicate directions of movement.

Once that boundedness if solutions is established, the Poincaré-Bendixson Theorem [53] insures that
every solution converges to the unique equilibrium, unless there are periodic solutions or heteroclinic
(including homoclinic) connections. However, periodic solutions and connections are ruled out by the
Bendixson criterion [53], as follows. Consider the vector field V' (z,y) = (F(z,y),G(x,y)), correspond-
ing to the model in equations (SI-1.1). The Bendixson’s criterion states that if divV (z,y) # 0 for all
(z,y) € D, then then the vector field V(x,y) does not have a closed orbit or heteroclinic connections

in D, where D is any simply connected region of R?, D C R?, and

OF (z,y) N 0G(z,y)

div (V(z,y)) = e oy

(SI-1.2)
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To show that divV (x,y) # 0, V(x,y) € D = R? we simply compute:

fia Mo fy M,
(M, +2)* (M, +y)°

div (V(z,y)) = — < ) < 0, V (z,y) € R?. (SI-1.3)
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SI-2 Numerical evaluation of largest Lyapunov exponents

25 25
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Figure SI-2.1: Largest Lyapunov exponents \,.. depending on period 7. The panels corresponds to the
panels from Fig. 2 in the main text. Positive values A\p.x > 0 characterize chaotic solutions, while zero values Apax = 0
are associated with periodic solutions of the corresponding models under parameter values given in Sect. 3 of the main
text.
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SI-3 Examples of chaotic solutions
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Figure SI-3.1: Chaotic solutions. The panels in the left column correspond to the model (1) with 7' = 1.0 (which
results in Apax =~ 2.02); the panels in the middle column correspond to the unity model with 7' = 40 (which results
in Amax = 0.86); and the panels in the right column correspond to the FCD model (2) with T = 5 (which results in
Amax = 1.03). All other fixed parameter values are given in Sect. 3. (In the top left panel, z(¢) decays extremely fast,
hence the “spike” look of the plot.)
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SI-3 Scatter plots and marginal distributions

Figure SI-3.1: Scatter plot and marginal distributions for the model (1) with T' = 1.
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Figure SI-3.2: Scatter plot and marginal distributions for the unity model (1) wight T = 40.
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Figure SI-3.3: Scatter plot and marginal distributions for the FCD model (2) whit T = 5.
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SI-4 Bifurcation trees with respect to the parameter m

Fig. SI-4.1 demonstrates examples of bifurcation diagrams, when the values of the parameter m are
allowed to vary: (a) the leftmost column plots correspond to a strange attractor in the model (1) with
fixed parameter values o, = o, = 10* 6, = 10, 6, = 1, u, = 100, p, = 10, M, = M, = 1,
T = 1,and A = 107%; (b) the middle column plots correspond to the unity model (1) with 7" = 100
and A = 1072 (and all other unit parameter values also kept fixed); and (¢) the rightmost column
plots correspond to a strange attractor in the FCD model (2) witha = Yy = ¢=d = 1.0, T = 5,
and A = 0.2.

-14
0.5 x10 1800 800
2 /
ey / 600
: L 1200 y
8 y X 400
600 7
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80
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40
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Figure SI-4.1: Bifurcation diagrams. The panels in the left column correspond to the model (1); the panels in
the middle column correspond to the unity model obtained from the model (1) by setting unit values to all model’s
parameters; and the panels in the right column correspond to the FCD model (2).
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SI-5 Experimental results

In [14], experiments were performed on intact C. elegans worms in microfluidic chambers, measuring
the response of odor-sensing AWA neurons (quantified by intracellular Ca*™ activity as measured by an
AWA-specific GCaMP sensor) to periodic on-off pulses of diacetyl. Shown in Fig. SI-5.1 is a harmonic
response in one experiment to a pulse with period 7' = 39s, as well as, for another experiment, what
look like sub-harmomic responses when the period of pulses is shorter, T' = 15s. The experiments used
technology developed in [54]. (Not shown are preparatory odor pulses, used to calibrate the recordings

across experiments by waiting for stabilized responses.)

SI-6 Verification of smoothness of ¢(z, a)

We wish to prove that ®(z,«) is smooth, for our models with the piecewise defined input (3). The
result follows from a general theorem on the smooth dependence of the solutions of the given ODE on
initial conditions and parameters, see e.g. [55]. Indeed, let us first represent ®(z, «) in the following

superposition form,

B(z,0) = pl 202 oM (z, a). (S1-6.1)

Let z1(z, ) = ¢''(z,a), 22(21,a) = ¢271 (2, ), and 23(29, @) = T 2 (29, ).

Since z;(z, a) smoothly depends on z, z2(21) smoothly depends on z; (viewed as an independent initial
condition), and, analogously, z3(z2, @) smoothly depends on zy, it follows from the differentiation chain

rule applied to the superposition (SI-6.1) that ®(z, o) smoothly depends on the state variable z [55].

Similarly, because each of the shift maps, T 2(29, @), 27" (2, ), and ¢ (2, ), smoothly depends

on the parameter «, we can conclude that ®(z, a) as well smoothly depends on the parameter « [55].

Moreover, it can be proved that ®(z, a) is a diffeomorphism [55].
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Figure SI-5.1: Transition from entrainment to subharmonics, as period decreases, in a worm odor-sensing experiment.
Two selected responses to longer and shorter periods, from the work [14]. The z-axis represents time in units of 0.1
seconds, and the y-axis is intracellular Ca2T activity in arbitrary units. Top: A trace showing an approximately harmonic
(entrained) response to a pulse train with period 7' = 39s. Bottom: A trace showing a non-entrained response, with an
apparent lower-frequency component, to a pulse train with period T' = 15s. Pulse duraction A = 10s in both cases. See
[14] for details.
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