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Abstract

Ecological communities have mainly been investi-
gated theoretically in two ways: piecewise, a few
species at a time; or as complex networks, simulated
in exhaustive detail. But our empirical knowledge of
networks is limited, and the space of simulation mod-
els and parameters is mindbogglingly vast. We show
that a large fraction of that space of possibilities ex-
hibits generic dynamics, which can be predicted from
a single minimal model. To demonstrate this, we con-
sider a wide array of ecological models, from resource
competition to predation and mutualism, known to
display very different behaviors for a few species. We
simulate large communities, and show that equilib-
rium diversity, functioning and stability can often be
predicted analytically from only four broad statisti-
cal properties of the community. Our approach pro-
vides a convenient framework for exploring generic
patterns in ecosystem assembly and quantifying the
added value of detailed models and measurements.

1 Introduction

As famously pictured by Darwin’s “entangled bank”,
ecological communities form large and intricate net-
works of dynamical interdependencies between their
constituent species and abiotic factors. The richness
and variety of natural systems has long been a source
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of wonder, but understanding the mechanisms that
shape their diversity, stability and functioning is also
a pressing challenge.

Many of the intuitions we employ to “disentan-
gle the bank” have come from the study of simpli-
fied patterns of interaction, involving a few species
with distinctive traits (e.g. a predator and a prey,
two parasites and their host). There are two main
ways that these results have been used to understand
larger communities. First, such simple structures can
remain globally predictive: each species in a simpli-
fied model can stand for an entire group, for instance
generalizing from predator-prey dynamics to whole
trophic levels. Second, they may remain locally pre-
dictive: a more complex network, while not so neatly
organized, might still be decomposed into different
patterns (network motifs [1, 2] or feedback loops [3])
and understood piece by piece.

However, the way that many small-scale motifs
come together to drive the dynamics of large commu-
nities is often unclear. The next step for ecological
theory was to investigate complex networks of inter-
acting species. This often relied on extensive numeri-
cal simulations, randomly drawing species traits from
empirically-inspired distributions (e.g. [4]). Current
computational power allows exploring levels of com-
plexity that were unapproachable only a few decades
ago, and ecologists have taken advantage of this fact
to address numerous questions about the properties
of communities assembled from a large pool of in-
teracting species. But the parameter space in these
simulations is fatally vast, with many possible choices
for species traits, interactions, and even dynamical
equations. Thus, although computers can now sim-
ulate realistic degrees of complexity, the absence of
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empirically well-established structures and parame-
ter values means that there is a discouragingly vast
ocean of possibilities to explore. For each simulation,
there could be a contradictory prediction given dif-
ferent yet plausible parameters and assumptions.

Against this vertiginous perspective, we show here
that large communities can in fact exhibit simple and
generic behavior, agnostic to most of these details.
The crucial intuition is that, when combining many
small structures, the outcome will fall between two
limits. As we noted above, there can be systems
where a simple, coherent global structure emerges.
But in many cases, each species will be involved in
various patterns that drive its dynamics in different
directions, and cancel each other out. The latter case
is what we call a disordered interaction network [5].
Its constituent motifs lose their unique signature; the
more numerous they are, the more they interfere with
each other. Instead, ecosystem properties become
sensitive only to a few aggregated features of the
species pool, leading to a drastic reduction of the
space of possibles.

Our purpose in this article is to demonstrate this
property of simplicity arising from disorder, and dis-
cuss when it is relevant to ecological community as-
sembly. We borrow an array of models from the liter-
ature, with different dynamics and structures, cover-
ing the main types of ecological interactions: mutual-
ism, competition and predation. For a few strongly-
coupled species, these models are known to lead to
wildly different outcomes, from competitive exclusion
to predator-prey cycles. However we show that, when
interactions are distributed over more species, the
outputs of all these models can become predictable
from a much simpler, more generic “reference model”.
This random Lotka-Volterra model covers a class of
possible dynamics, rich enough to encompass the out-
comes of the other models, yet simple enough to per-
mit the exhaustive analysis of essential community
properties [6] including species richness, abundance
distribution and stability.

The reference model is parametrized by only four
simple statistics computed from species interactions,
growth rates and self-regulation. Armed with this
minimal information, it reproduces the results of
various complex simulations, suggesting that the

main mechanisms controlling their dynamics are not
model-specific. This is a powerful simplification,
which allows us to identify the role of various mod-
elling choices, make sense of contradictory predic-
tions obtained in different simulations, or simply use
the reference model as a starting point in future in-
vestigations to tease out other generic patterns in
assembly. The idea that few parameters can drive
properties of complex systems is not new in ecology:
May famously related the stability of large randomly
communities to only a few statistical properties of
the interactions [7, 8]. Because we explicitly con-
sider the assembly process, our approach goes fur-
ther: first, it accounts for the fact that, even starting
from a random pool, population dynamics produce
non-random patterns in assembled communities that
ensure their stability [9]; second, our results extend to
other ecosystem properties, such as functioning and
diversity.

The reference model cannot always predict the
equilibria of other models, but such discrepancies also
produce novel insights. Far from being haphazard,
they occur when the community possesses a coher-
ent global structure, such as a trophic or competitive
hierarchy. In fact, the two limits of randomness and
structure are not exclusive, but complementary: a
large part of what makes complex ecosystems differ-
ent from simplified models resides in the disordered
component, but it may have to be combined with
essential information about community structure.

Our results are structured as follows: first, we
demonstrate that the equilibria of complex ecologi-
cal dynamics can be predicted by a simple reference
model, parametrized by a few statistical properties of
the species pool. Second, we argue that these generic
parameters provide a powerful tool to reduce the pa-
rameter space of other models, and efficiently explore
and compare their predictions. We show that certain,
but not all, network structures lead to less generic
phenomena that diverge from reference model pre-
dictions. Finally, we demonstrate how the latter can
be extended to capture these structures in the sim-
plest possible way, and propose this combination of
disordered dynamics and simple structure as a way
forward in the task of understanding complex ecolog-
ical communities.
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Figure 1: Comparison scheme used throughout this article. On the left, various specific ecological models
from the literature, some of which are used as examples below. They correspond to various choices of model
ingredients, among the main categories detailed in Box 1 (not all connections are represented here). Nu-
merical simulations of these models (and other combinations of ingredients) allow us to find their properties
at equilibrium. On the right, the reference Lotka-Volterra model with its four control parameters, whose
values can be obtained by “translation” from the ingredients of other models. This reference model is easily
simulated, and it is also solved analytically, so that its equilibrium features are known and can be compared
to simulations.
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Box 1: Reference model and commu-
nity properties

Dynamics The reference random model follows the
widely-used Lotka-Volterra dynamics:

d

dt
Ni =

ri
Ki
Ni

Ki −Ni −
S∑
j 6=i

αijNj

 (1)

where S is the number of species in the pool, Ki the carry-
ing capacity of species i (if Ki > 0, else density-dependent
mortality), αijNj the interaction with species j, and ri the
intrinsic growth rate. Solving for equilibrium dNi/dt = 0,

Ni = Ki −
S∑
j 6=i

αijNj . (2)

where we see that the growth rate ri plays no explicit role.
Only the species for which (2) allows Ni > 0 can survive
together in an assembled state. We consider the equilibrium
obtained after all possible invasions took placea.

Parameters As recently shown [6], if αij and Ki are
drawn at random, the equilibrium properties are controlled
by four statistics of the pool of invaders:

ζ2 =
〈
K2
i

〉
− 〈Ki〉2 , µ = S 〈αij〉 ,

σ2 = S(
〈
α2
ij

〉
− 〈αij〉2), γ =

S

σ2

(
〈αijαji〉 − 〈αij〉2

)
,

(3)

Features Ecosystem functioning was characterized by
the total biomass T and total productivity from external
resources P , defined from species abundances Ni (in units
of biomass) and growth rates ri. Diversity was represented
by two quantities: φ the fraction of species in the invader
pool that survive in the assembled state, and D the inverse
of the Simpson index [10]. Among the many dimensions
of ecological stability [11], we focused on one measure of
dynamical stability frequently employed in empirical stud-
ies: variability V , the variance in time of species abundance
due to stochastic perturbations [12, 13, 14] (see details in
Supplementary Materials). In summary:

T =
∑
i

Ni, P =
∑
i

riNi, φ =
∑
i

Θ(Ni), (4)

D−1 =
∑
i

(
Ni
T

)2

, V =
∑
i

Var(Ni(t))

S
. (5)

with Θ(x) = 1 if x > 0, 0 otherwise. Finally, all these
quantities were combined in a single metric of relative error
between simulations and reference:

Error =
1

5

∑
x∈{T,P,φ,D,V }

∣∣∣∣xsimulated

xreference
− 1

∣∣∣∣ (6)

aIt is possible to show that there is a critical degree of heterogeneity
σc under which there is a unique, globally stable equilibrium reached
by any invasion sequence, and above which there is multistability [6].
The analytical results are exact in the single-equilibrium regime, but
still approximately valid in the multistable region.

2 Methods

2.1 Overview

We compared the equilibria of complex simulated
communities to analytical predictions from a sim-
ple reference Lotka-Volterra model, following a pro-
cedure illustrated in Fig. 1. This was done in two
steps:

(1) We selected models from the literature, and for
each, generated many pools of species. We then sim-
ulated their dynamics, allowing invasions from any
species of the pool at any time, until a stable, unin-
vadable equilibrium was reached. We measured im-
portant properties of this equilibrium: its diversity,
functioning and dynamical stability.

(2) We translated each model into the generic pa-
rameter space of the reference Lotka-Volterra model.
For each of the species pools generated earlier, we
computed four statistical metrics – µ, σ, γ and ζ –
which characterize the interactions and growth rates
of potential invaders. We then inserted these four
parameters into the analytical predictions for equi-
librium features of the reference model [6, 15], and
finally compared these predictions with the simula-
tion results of the initial, more complex models.

2.2 Simulation models

We selected from the literature a wide array of models
of community dynamics [16, 17, 18, 19, 20, 4, 21, 22],
with starkly different ecological implications. Their
common trait was having been studied for their equi-
librium properties – we ignored stochastic models
that would not give rise to stable assembled commu-
nities [23, 24, 25]. These models varied in an immense
space of possibilities, from which we extracted five
main classes of structural components (represented
in Fig. 1):

Interaction nature and functional response
We allowed for competitive, mutualistic, trophic and
mixed interactions, and limited ourselves to linear
or saturating functional response. This saturation
can come from many factors: limited provision or di-
minishing returns for mutualistic services [19], finite
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handling time for predators [26] or competition with
close neighbors in space [27].

Network structure We constrained the interac-
tions to exhibit various complex network properties,
which have been well studied in ecology and be-
yond [28]. One such property was nestedness, as ex-
emplified by the cascade model for predation [18],
or the competition-colonization model [17]: the first
species consumes (or outcompetes) all the others, the
second species consumes (or outcompetes) all but the
first one, and so on. Another property was graph
partitioning: many mutualistic networks in particu-
lar are bipartite, e.g. plant-pollinator networks [29].
We could also generate the interaction network from
a classic ensemble: Erdos-Renyi random graphs [30]
and Barabasi-Albert scale-free graphs [31]. These
ensembles lead to very different network properties,
such as degree distributions, which are often argued
to play a fundamental role in network structure [32].

Parametrization and trait distributions In
many models, interactions and carrying capacities
were not drawn directly but derived mechanistically
from underlying species traits and environmental
factors, such as body size or temperature [4, 33].
Since there is no exhaustive way to explore these
system-specific choices, we focused on the important
example of resource competition [16, 34] below. In
addition, all these traits could be drawn from a vari-
ety of distributions, including: normal, exponential,
beta and multimodal.

From this list of structural components, we per-
formed the following simulations (details in SI):

Sweep through interaction structures We sim-
ulated 180 combinations of three main structural
components: interaction nature, functional response,
and network structure (starting from a random graph
and progressively ordering it to achieve desired nest-
edness, partition or degree distribution) to evidence
how they varied in their impact on community as-
sembly. Some of these combinations were similar to
models from the literature, including those shown in

Fig. 1: spatial competition [27], consumer-resource
mutualism [20] and cascade predation [18].

Mechanistic example: Resource competition
We studied a model where structure arose from mech-
anistic assumptions: species competition through
consumption of various resources [16, 34], here cho-
sen discrete (e.g. prey species, spatial patches).
If ξix is the rate at which species i consumes re-
source x (among R), the effective competition be-

tween species i and j was given by
∑R
x=1 ξixξjx. Like-

wise, species carrying capacities and growth rates
were parametrized by consumption rates, and by the
availability of each resource.

Modular example: Plant-pollinator commu-
nity We wished to showcase a complex community
with multiple functional groups and mixed interac-
tions, inspired by theoretical and empirical consid-
erations [29, 35, 22]. Our example was comprised
of two functional groups, plants and pollinators. In-
teractions within each group were competitive, while
those between groups were mutualistic, with pollina-
tors being obligate mutualists (no intrinsic growth).
To test the importance of group structure, we then
increased the probability of rewiring each of these in-
teractions, ignoring group boundaries while respect-
ing nestedness and other desired network properties.

Model comparison

Generic parameter space The reference random
model is parametrized by simple statistical moments
of the carrying capacities Ki and interactions αij .
The variance in species’ intrinsic fitness is captured
by ζ. For any species, the total effect of its interac-
tions with all its partners is distributed with mean µ
and standard deviation σ. This makes µ a measure
of how antagonistic the community as a whole is to
one species, and σ a measure of how much this varies
between species. The reciprocity parameter γ takes
values in the range [−1, 1]: γ = 1 means that two
partners affect each other identically, while γ = −1
means that reciprocal effects are maximally different.
The fact that these simple statistics – mean, variance
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and symmetry – are sufficient to analytically predict
many simulation results below shows that disorder
can erase the dynamical influence of any higher-order
correlation structure.

Translation For simulation models with a linear
functional response, the translation process was im-
mediate since they already had Lotka-Volterra dy-
namics and only needed to be rewritten in the form
of equation (1). Then, we computed four statistics
of these matrices as defined in (3) to parametrize
the reference model, effectively ignoring all additional
structure.

In the case of models with a saturating functional
response, interactions were similar to Lotka-Volterra
at low abundances but plateaued at higher abun-
dances. Since the reference model allowed us to com-
pute the abundance distribution, and hence the like-
lihood of saturation, we could derive the effective dis-
tribution of interaction strengths in the system, and
compute the same statistics (technical calculations in
SI).

Finally, we used various community properties to
compare the equilibria attained in simulations to pre-
dictions from the equivalent random model, which are
entirely known analytically [6]. Whenever the simula-
tion results and reference predictions concurred, we
deduced that any additional information contained
in the simulation models failed to change these out-
comes.

3 Results

Following the scheme outlined in Fig. 1, we compared
the equilibrium properties of the simulated models
to analytical predictions from the random Lotka-
Volterra reference model. In Fig. 2, we showcase some
of the community properties listed in Fig. 1 in a par-
ticular example: a resource competition model (see
Methods). We show the effects of varying the number
of resources, R, and a measure of species heterogene-
ity: the variance of consumption rates, σ2

ξ . Increas-
ing R led to more diversity without affecting other
properties, while increasing σ2

ξ improved stability and
functioning. The reference random Lotka-Volterra
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0.4

0.6

0.8
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(d) Variability

Figure 2: Various community properties predicted by
the reference model: (a) Total biomass T , (b) Frac-
tion of surviving species φ, (c) Simpson diversity D,
(d) Temporal variability V . Simulation results (dots)
were obtained from the resource competition model,
varying the number of resources R and the hetero-
geneity of consumption rates σξ (details in SI). They
were then compared to theoretical predictions from
the reference model (solid lines) parametrized only
by the four generic properties of the species pool, see
Fig. 1.
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model, lacking the underlying mechanistic structure,
was simply parameterized by the four statistics µ, σ,
γ and ζ defined in Box 1 in (3). It could then repro-
duce all these patterns quantitatively. In other words,
R, σ2

ξ and other properties were important only inas-
much as they affected these four generic parameters.

We illustrate in Fig. 3 how different models visit
this generic parameter space as we vary their own
properties, focusing on the (µ, σ) plane. This projec-
tion in a common space allows to understand why and
when various models can generate similar or different
predictions. For instance, models can overlap: we
constructed an example where the competition and
predator-prey models correspond to the same values
of all generic parameters, giving rise to communities
with identical properties (in particular, species abun-
dance distributions). These very different models
thus indeed live in the same space of generic dynam-
ics. However, they mostly occupy different regions
of it, and this overlap is rare for all four parameters:
for instance, resource competition tends to lead to
higher µ but lower σ than predation, entailing lower
total biomass but more stability.

Fig. 4 explores the role of network structures for
competitive, predator-prey and mutualistic commu-
nities. We plotted the relative error of the analytical
predictions compared with simulations as we added
more and more structure to the interactions. Strik-
ingly, mutualistic communities emerged as uniquely
disordered. While network structure (nestedness, bi-
partition) has been extensively studied [28, 36], we
found that it did not contribute to the large-scale
community properties studied here, except indirectly
by changing µ, σ and γ. This is reminiscent of pre-
vious results on “universality” in mutualistic com-
munities [37]. The same cannot be said of predator-
prey communities, where nestedness appears to play
a large role, as it creates a trophic hierarchy of
species. Counter-intuitively, competitive communi-
ties seem to be those where structure matters the
most, even though they are the least studied in that
respect. Nestedness (competitive hierarchy) has long
been proposed as an important structural factor [38],
but we found here that the largest deviation from
reference occurred in the bipartite case: we even ob-
served that one entire group could go extinct while

Number of
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μ (Interaction antagonism)
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Figure 3: Equivalences and differences between com-
munities. To explain how different models typically
make distinct predictions, but can nevertheless over-
lap, we show where they lay once translated into the
parameter space of the reference random model, fol-
lowing the comparison scheme outlined in Fig. 1. We
illustrate in the (µ, σ) plane the effective parame-
ter values corresponding to: the spatial competition
model (yellow) with neighbor threshold Nc ∈ [1, 100]
and mean interaction Ã ∈ [1, 20]; predation (ma-
genta) with intensity m ∈ [0.1, 25] and biomass con-
version efficiency ε ∈ [0, 1]; and resource competition
(blue) with number of resources R ∈ [102, 104] and
consumer heterogeneity σξ ∈ [0.1, 0.6]. See SI for de-
tails on model-specific parameters. Inset: An exam-
ple where a competitive community and a predator-
prey community display identical species abundance
distributions, corresponding to the parameter values
marked by the red cross.
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Figure 4: The role of network structure. (a)-(c) For
each of the three main interaction types, the rela-
tive error (y-axis, between 0 and 60%) of the ref-
erence model against simulations, as a function of
the degree of structure in the community (x-axis).
Each set of symbols indicates a different network
structural property: nestedness, partitioning (from
complete to bipartite graph) and scale-free structure.
The ordering parameter is 1− p with p the probabil-
ity of rewiring any of these interactions at random;
the fully disordered limit is always a random graph.
We see that mutualistic communities are especially
predictable from a disordered model, with less than
2% error regardless of their structure. Inset: Total
biomass in mutualistic communities. We can see that
predictability is not due to lack of change: ordering
does seem to have strong effects on simulation results
(symbols), but these effects are entirely predicted by
the reference model (solid lines), i.e. they simply
translate to changes in µ, σ and γ.

the other survived, suggesting competitive exclusion
at the group level [39].

Following this indication of the importance of func-
tional groups, the reference model was extended to
allow for multiple groups, measuring interaction pa-
rameters µ, σ and γ within each group and be-
tween groups (see Methods). We illustrate in Fig. 5
the case of a plant-pollinator community with intra-
group competition and inter-group mutualism. Our
extended theory made good predictions for simu-
lations with a functional group structure, even in
the complex situation of intermediate levels of order,
where the boundaries between groups were blurred.
We discuss other extensions in SI, in particular to
account for nestedness. This prospective result sug-
gests the value of incorporating simple structure and
disorder simultaneously in a single model, to tackle
more complex communities while staying in a rela-
tively small parameter space.

4 Discussion

Generic patterns can emerge in the assembly of large,
heterogeneous ecological communities, that depend
only on global statistical properties of the species
pool, rather than on detailed model assumptions.
Understanding these patterns provides powerful tools
to efficiently explore complex models and assess the
importance of structure. To show this, we compared
assembled communities at equilibrium, using a va-
riety of properties accounting for diversity, stability
and functioning. We used the same reference model
as a comparison point for all others, and suggested
how that model could be extended to account for
community structure.

Theoretical consequences

Our results have at least two consequences for the
theory of complex ecological communities. Intricately
detailed ecological models may make the same predic-
tions as a much simpler model, entirely parametrized
by the easily computed summary statistics described
in (3). On one hand, this means that theoreti-
cal investigations aiming for generic patterns can
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Simulated network

Reference model

Figure 5: Mixture model: two functional groups with
competitive and mutualistic interactions. (a) Car-
toon of the model. In the ordered limit, all intra-
group interactions were competitive and all inter-
group interactions were mutualistic. The ordering
parameter is defined as in Fig. 4. Mutualism is fac-
ultative for one group and obligate for the other. (b)
Fraction of surviving species in the assembled com-
munity for the simulation model (symbols) against
analytical predictons in the basic reference model
(solid line) which cannot account for ordering. (c)
Same data, but the reference model is modified to
account for the existence of two groups. It success-
fully predicts community properties for any degree of
ordering, even the complex intermediate case.

start from the reference model as a flexible and
simple platform for exploring various ecological pat-
terns. In addition, this generic character is not lim-
ited to a “mean-field” limit where all differences be-
tween species are erased statistically, as in previ-
ous statements on universality in ecological dynam-
ics [40, 41, 37].

On the other hand, theorists interested in a more
specific and complex model may benefit from com-
paring its predictions to that of the reference model.
This is immediate as there is no fitting involved: the
parameters of the reference model are simple statis-
tics of the species pool, and can be inserted in the ref-
erence model’s analytical solution to readily obtain
predictions. Checking when these results align is a
way of testing the “added value” of other structures
and mechanisms. If outcomes differ, this suggests
that some aspect of the simulation model’s structure
has large-scale dynamical consequences. If they are
identical, then we can better understand the role of
the model’s parameters, by seeing how they translate
into the reference parameters whose effect on equilib-
rium properties are easily understood. In particular,
this can be useful to disentangle generic community
dynamics from mechanistic parametrization, leading
to a more modular approach: instead of putting all
components together in a large simulation, we can
see how certain mechanisms (e.g. temperature or
size dependence in growth and interactions) affect the
generic parameters µ, σ, γ and ζ, and therefore how
they will most generically shape the assembly pro-
cess.

The role and interpretation of the
generic parameters

Whenever the reference Lotka-Volterra model man-
ages to capture the properties of the assembled state
produced by another model, we conclude that all the
relevant properties of the community were correctly
encapsulated in the four parameters of the reference
model: the summary statistics of the initial species
pool µ, σ, γ and ζ. Large µ means more antagonis-
tic interactions, hence lower total biomass. If species
differ more in fitness, due to intrinsic factors (ζ) or
interactions (σ), we find lower coexistence and Simp-
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son diversity. Finally, more negative γ means greater
coexistence and stability (see also Fig. S1 in SI).

These four parameters are very generic attributes,
that are not tied to any specific interaction nature
or community structure. Instead, they reflect a top-
down perspective on the puzzle of assembling a stable
community from a large pool of species. ζ indicates
how species differ in their intrinsic ability to remain in
the assembled state. µ indicates how much biomass
is lost (or gained, if negative) on average due to in-
teractions. σ represents how different the “pieces” of
the puzzle are in their connections; as σ decreases,
the pieces become more similar, hence easier to as-
semble and less likely to lead to diverse solutions. γ
in turn represents how symmetrical these connections
are: negative γ can be associated with trophic inter-
actions, but also with strongly asymmetrical compe-
tition or mutualism. For example, we often found
γ < 0 in the resource competition model. This asym-
metry causes a negative feedback of a species on itself
via its immediate interactions, which makes it easier
to assemble the community, leading to stabler, more
species-rich equilibria.

Empirical consequences

From an empirical perspective, the details of species
interactions are often difficult to observe and mea-
sure. The fact that relevant ecological patterns may
only depend on aggregated properties of the interac-
tions is a positive message: we could make predictions
that are robust to a lack of detailed information, and
that rely on a minimal number of fitted or inferred
parameters.

On the other hand, even when these aggregate,
“disordered” properties do not suffice in themselves,
we suggest that a complex community may be un-
derstood by a combination of simple structure and
disorder. This means that empirical work focusing
on a few exemplary species can effectively capture
the main dimensions of order in an ecosystem, while
most of the surrounding diversity contributes a dif-
fuse, variable background that can be probed with
its own metrics. Coherent global structure has in-
deed been found in large-scale empirical studies in-
volving thousands of interactions [22]. This suggests

that it is possible (as in the mixture model, Fig. 5) to
combine bottom-up and top-down, local and global,
species and ecosystem perspectives, without erasing
the importance of heterogeneity in a community.

Implications for future work

We have shown that, even when we try to build a
detailed picture of an ecological community, its col-
lective dynamics can often be understood from a few
large-scale properties, that do not strictly follow the
intuitive categories of ecological mechanisms (such
as interaction types or network structures). Our
work offers an outlook on what complexity means
in an ecological setting. Predicting the fate of a cer-
tain species at a given locale, e.g. for conservation,
may require knowing about every important feedback
within its environment, biotic and abiotic. But one
rarely needs all these details at once to understand
the aggregate properties of an ecosystem, or the fate
of most species most of the time. Instead, the ex-
haustive study of ecological networks could also pave
the way toward finding new dimensions of simplicity
at the collective level.

The idea of “disorder” that we use here should not
restrict our approach to models with random interac-
tions. Purely random systems are in some sense spe-
cial – the total absence of order is a peculiar feature
in the infinite space of possible communities. Instead,
the results shown here suggest that predictions from
a random model do not strictly require randomness
to hold: they only require that non-random motifs
interfere and lose their influence due to the number
and heterogeneity of interacting components. In such
cases, the equilibrium is only shaped by generic as-
sembly mechanisms that are also present in random
systems. This has allowed us to use a single refer-
ence model to exhaustively explore and predict the
properties of very different types of assembled com-
munities.

The picture that emerges is that complexity – un-
derstood as how difficult a phenomenon is to model
– peaks at intermediate levels of heterogeneity. A
bipartite network or a nested trophic hierarchy may
cause deviations from the basic reference model, re-
flecting the need to add more structure (e.g. our
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mixture model). Yet a highly multipartite network,
such as a complicated web of functional groups and
fluxes, would again tend to resemble a disordered
set of species. Some types of structure, such as
degree distributions, mutualistic network features,
or consumer-resource mechanisms in competition,
do not even seem to cause a significant deviation
from generic collective behavior. Combining disorder
and coherent structure to understand large systems
has deep mathematical underpinnings: Terence Tao
speaks of “ a fundamental dichotomy between struc-
ture and randomness, which in turn leads (roughly
speaking) to a decomposition of any object into a
structured (low-complexity) component and a ran-
dom (discorrelated) component.” [42].

Future work should further ascertain when many
model components can come together to create ei-
ther order or disorder, and how our approach can be
extended to many more settings by extracting the
most essential structural information to complement
the generic disordered dynamics. Finally, while we
have focused on equilibrium properties, the methods
we employed to analyze the reference model can be
extended to its full dynamics [43], and hence, future
investigations could provide an even broader under-
standing of generic dynamics in community ecology.
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toya, Owen L Petchey, Stuart L Pimm, Mike S
Fowler, Kevin Healy, Andrew L Jackson, Miguel
Lurgi, Deirdre McClean, et al. Navigating the
complexity of ecological stability. Ecology Let-
ters, 19(9):1172–1185, 2016.

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2017. ; https://doi.org/10.1101/145862doi: bioRxiv preprint 

https://doi.org/10.1101/145862
http://creativecommons.org/licenses/by-nc-nd/4.0/


[12] David Tilman. Biodiversity: population ver-
sus ecosystem stability. Ecology, 77(2):350–363,
1996.

[13] Russell Lande, Steinar Engen, and Bernt-Erik
Saether. Stochastic population dynamics in ecol-
ogy and conservation. Oxford University Press
on Demand, 2003.

[14] Jean-François Arnoldi, Michel Loreau, and Bart
Haegeman. Resilience, reactivity and variabil-
ity: A mathematical comparison of ecological
stability measures. Journal of theoretical biol-
ogy, 389:47–59, 2016.

[15] Matthieu Barbier. Lecture notes: The cavity
method for large ecosystem assembly. Unpub-
lished paper, 2017.

[16] Robert Mac Arthur. Species packing, and what
competition minimizes. Proceedings of the Na-
tional Academy of Sciences, 64(4):1369–1371,
1969.

[17] Richard Levins and David Culver. Regional
coexistence of species and competition be-
tween rare species. Proceedings of the National
Academy of Sciences, 68(6):1246–1248, 1971.

[18] JE Cohen and CM Newman. A stochastic the-
ory of community food webs: I. models and ag-
gregated data. Proceedings of the Royal Society
of London B: Biological Sciences, 224:421–448,
1985.

[19] J Nathaniel Holland, Donald L DeAngelis, and
Judith L Bronstein. Population dynamics and
mutualism: functional responses of benefits and
costs. The American Naturalist, 159(3):231–244,
2002.

[20] J Nathaniel Holland and Donald L DeAngelis.
A consumer–resource approach to the density-
dependent population dynamics of mutualism.
Ecology, 91(5):1286–1295, 2010.

[21] Vincent Calcagno, Nicolas Mouquet, Philippe
Jarne, and P David. Coexistence in a metacom-
munity: the competition–colonization trade-off
is not dead. Ecology Letters, 9(8):897–907, 2006.
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