
 1

 

Evaluation of in silico algorithms for use with ACMG/AMP clinical variant 

interpretation guidelines 

 

 

Rajarshi Ghosh, Ninad Oak and Sharon E. Plon 

Department of Pediatrics, Baylor College of Medicine, Houston, TX 

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2017. ; https://doi.org/10.1101/146100doi: bioRxiv preprint 

https://doi.org/10.1101/146100
http://creativecommons.org/licenses/by/4.0/


 2

 

 

 

Abstract  

The ACMG/AMP variant classification guidelines for clinical reporting recommend 

complete concordance of predictions among all in silico algorithms used without specifying 

the number or types of algorithms. The subjective nature of this recommendation 

contributes to discordance of variant classification among clinical laboratories. Using 

14,819 benign or pathogenic missense variants from the ClinVar database, we compared 

performance of 25 algorithms across datasets differing in distinct biological and technical 

variables. There was wide variability in concordance among different combinations of 

algorithms with particularly low concordance for benign variants. We identified recently 

developed algorithms with high predictive power and robust to variables like disease 

mechanism, gene constraint and mode of inheritance, although poorer performing 

algorithms are more frequently used based on review of the clinical genetics literature 

(2011-2017). We describe high performing algorithm combinations with increased 

concordance in variant assertion, which should lead to more informed in silico algorithm 

usage by diagnostic laboratories. 

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2017. ; https://doi.org/10.1101/146100doi: bioRxiv preprint 

https://doi.org/10.1101/146100
http://creativecommons.org/licenses/by/4.0/


 3

Many in silico methods have been developed to predict whether amino acid substitutions 

result in disease. Use of this type of evidence has become a routine part of assessment of 

novel variants identified through gene-focused projects or as a part of whole exome or 

genome annotation pipelines. In a clinical setting, predictions from in silico algorithms are 

included as one of the eight evidence criteria recommended for variant interpretation by 

the American College of Medical Genetics and Genomics (ACMG) and Association of 

Molecular Pathologists (AMP)1. The ACMG/AMP guideline for use of in silico algorithms 

specifically states: “If all of the in silico programs tested agree on the prediction, then this 

evidence can be counted as supporting. If in silico predictions disagree, however, then this 

evidence should not be used in classifying a variant.” For a given missense variant, 

predictions by numerous algorithms are publicly available e.g. via dbNSFP1 or Variant 

Effect Predictor2 from which a few algorithms are typically chosen for variant 

interpretation and are often used without additional calibration. Different testing 

laboratories use distinct combinations of in silico algorithms for variant interpretation and 

this can lead to discordant interpretations.  For example, in a recent assessment of the 

ACMG/AMP guidelines by the Clinical Sequence Exploratory Research consortium (CSER), 

the frequency of use of in silico algorithm evidence for pathogenic and benign variant 

assertion were 39% and 18% respectively3. The CSER study noted that use of in silico 

algorithms were one major source of discordance among different clinical laboratories and 

that the ACMG/AMP guideline for in silico algorithm usage may be aided by further 

recommendations3.  

Missense variants constitute a major set of variants of uncertain significance (VUS) 

in ClinVar4.  An improved recommendation for use of in silico algorithms is important for 
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reducing the VUS burden in clinical medicine and increasing concordance of variant 

interpretation.   Currently, there is little consensus among clinical labs on how many and 

which algorithms to use for missense variant interpretation. For example, a recent exome 

sequencing study classified variants in 180 medically relevant genes for hereditary cancer 

according to ACMG/AMP guidelines. The authors found that the VUS rate was higher when 

requiring full concordance versus majority agreement among the 13 in silico algorithms 

used5. Other examples from literature demonstrate requiring full concordance among 

three6 to seven7 different algorithms for variant interpretation. However, to our knowledge, 

no analysis has been conducted to assess the applicability of the current ACMG/AMP 

guideline for in silico algorithm usage. Here, using predictions from 25 in silico algorithms 

for 14819 clinically relevant missense variants in the ClinVar database, we highlight 

several limitations of implementing the ACMG/AMP guideline for in silico algorithm usage. 

We find highly variable degree of concordance among different combinations of algorithms 

with particularly low concordance of the predictions of variants reported in ClinVar as 

benign. Using the ClinVar dataset, we identify algorithms with higher predictive power 

whose performances are robust to variables such as disease mechanism, level of constraint 

and mode of inheritance.  

 

Results: 

Concordance among in silico algorithms 

To identify the extent of concordance among in silico algorithms for known 

pathogenic and benign variants, we obtained 14,819 missense variants from ClinVar for 

which the rationale for pathogenic or benign assertion has been provided by at least one 
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submitter (one star status in ClinVar), primarily clinical laboratories, and annotated these 

variants with scores and predictions from 25 algorithms using dbNSFP (v3.2)8 or the 

respective authors’ websites.  We generated a matrix of binary predictions (pathogenic or 

benign) for these variants with scores from the 18 algorithms, for which thresholds of 

pathogenicity were publicly available (Fig. 1A, Supplementary Table 1, see Methods). We 

found that when using this large number of algorithms that only 4% of the benign and 1% 

of pathogenic variants had concordant assertions across all them (Fig. 1A, Table 1). We 

obtained similar results when we restricted our analysis to benign and pathogenic variants 

in ClinVar that had identical assertions from at least two independent laboratories (two 

stars - Fig. 1B, Table 1) suggesting that errors in ClinVar assertions by a single submitter 

contributes little to the low level of concordance among algorithms. We then computed the 

pairwise differences among all the algorithms separately for 7346 benign and 7473 

pathogenic variants in our dataset (see Methods). We found that on average, two 

algorithms tend to differ from each other significantly more in the interpretation of benign 

as opposed to pathogenic variants (p<0.0001, Welch Two Sample t-test) (Fig. 2A). Our data 

suggests that while interpreting large number of variants, full concordance, as suggested by 

the ACMG/AMP guidelines, is less likely to be achieved even when using only two 

algorithms, particularly for benign variants, consistent with earlier observation of poor 

correlations among predictors by Thusberg et al 9. 

To assess the level of concordance among the most commonly used algorithms we 

reviewed algorithm use in the medical genetics literature between January 2011 and 

January 2017 (see Methods). We found that Polyphen10 and SIFT11  are cited most 

frequently followed by MutationTaster12, CADD13, PROVEAN14, Mutpred15 and Condel16. We 
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did not detect any consistent pattern of combinations among these algorithms. In general, 

there seemed to be a bias in usage of some of the 25 algorithms while others, especially the 

more recently developed algorithms, are used less frequently. Predictions from five 

commonly used algorithms (Polyphen, SIFT, CADD, PROVEAN and MutationTaster) 

resulted in higher concordance relative to all 18 algorithms, but with 79% for pathogenic 

variants and only 33% for benign variants (Table 1).  

In addition to lack of full concordance in prediction, we identified 815 of 7346 

(11.1%) benign variants in ClinVar for which all five commonly used algorithms predicted 

the variant to be pathogenic and conversely 68 of 7473 (0.9%) pathogenic variants in 

ClinVar were predicted benign by all algorithms, referred to here as false concordances 

(Table 1). In fact, 18.1% (1333/7346) of benign variants were assessed as pathogenic by 

the majority of the 18 algorithms including 79 variants where the benign classification of 

the variant had been reviewed by a ClinVar recognized expert panel (3-star review status) 

suggesting that these are benign and not misclassified variants.  In comparison, 4.9% 

(373/7473) of ClinVar pathogenic variants were deemed to be benign by the majority of 

algorithms (Supplementary Table 2). Evaluating only three commonly used algorithms 

(Polyphen, SIFT and CADD) resulted in higher concordance for pathogenic (84%) and 

benign (46%) variants, however, coupled with an increase in false concordances (Table 1). 

Not surprisingly, we failed to identify any combinations of algorithms that resulted 

in false concordance of zero and true concordance of 100% among the 18 algorithms 

whose default predictions are publicly available.  We generated all possible combinations 

of three (n=816), four (n= 3060) or five (n=8568) algorithms and obtained their true and 

false concordance rates across the 14,819 variants. As before, there was a lower false 
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concordance rate and a higher true concordance rate for pathogenic variants relative to the 

benign variants (Fig. 2B).  Overall, the concordance among combinations ranged from 85% 

to 67% for a pair to five algorithms, respectively (Table 2). We noted that the best 

performing combinations of algorithms were different for benign and pathogenic variants 

(Supplementary Table 3). For example, for benign variants the best performing 

combinations of three algorithms consisted of VEST317, REVEL18 and MetaSVM 19 with a 

true concordance rate of 81.3% and a false concordance rate of 2.8 %, whereas for 

pathogenic variants the same combination resulted in a 70% true concordance and a 5.4 % 

false concordance. For pathogenic variants, the best performing trio combination consisted 

of MutationTaster, Mcap20 and CADD (Supplementary Table 3). We obtained similar results 

for combinations of four or five algorithms (Supplementary Table 3). In general, many 

different combinations performed better for pathogenic than benign variants (Fig. 2B).  

Taken together, our results suggest that a given combination of algorithms (using 

the publicly available threshold scores) will perform quite differently across benign and 

pathogenic variants with a significant chance of erroneous assertion due to false 

concordance among algorithms.  These false concordances could potentially bias the 

variant interpretation towards a VUS classification if all the other available variant data 

suggests the opposite assertion.  

Further analysis of algorithm prediction and concordance.  

For some algorithms such as Eigen21, hEAt 22, GERP23 etc. cut-offs defining pathogenic or 

benign assertion are either not recommended or inferred arbitrarily.  We therefore used 

the actual output scores provided by all 25 algorithms as a continuous variable to identify 

algorithms whose predictions are likely to be concordant independent of the algorithms 
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internal cut-offs. A hierarchical clustering of the normalized output scores of 14,819 

missense variants for each of the algorithms revealed seven clusters (Fig. 2C). All the 

largely evolutionary conservation algorithms such as phyloP24, phastCons25, GERP26 and 

Siphy27 belong to different clusters from the metapredictors REVEL, MetaSVM and MetaLR 

(Fig. 2C).  

Comparison of performance of in silico algorithms 

To identify well-performing algorithms with prediction abilities that are robust to the 

nature of a variant, gene constraint and underlying disease mechanism, we quantified 

performance of the in silico algorithms on multiple test datasets by determining the area 

under the receiver operator characteristic curve (AUC) (see Methods).  

We analyzed two overlapping datasets differing in the confidence of variant 

assertions. These were 14,819 ClinVar variants that are assigned at least one star review 

status and 2966 ClinVar variants with concordant scores from at least two laboratories 

(two stars - see Methods). For both datasets, we observed wide variation in performance of 

the algorithms with AUCs ranging from 0.5 to 0.96 (Fig. 3A). We identified several 

algorithms with AUC ≥0.9 in these datasets that did not differ significantly in their 

performance between >1 or >2 star datasets (Fig. 3A).  

We next sought to identify algorithms whose performance did not differ whether a given 

variant resulted in gain-of-function (GOF) or loss of function (LOF) of a gene product by 

analyzing datasets enriched in activating/GOF mutations in oncogenes and LOF mutations 

in TSG which are both pathogenic in cancer development28 (see Methods). We also 

separately evaluated 1169 benign and 1427 pathogenic variants in genes linked to diseases 

with primarily recessive mode of inheritance as another proxy for a dataset enriched in 
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LOF variants. We did not observe significant differences in performance of algorithms in 

the GOF and LOF datasets including across the high performing algorithms (Fig. 3A).  

Additionally, we analyzed variants in genes that are primarily linked to diseases with 

dominant mode of inheritance. The latter dataset is likely a mixture of LOF and GOF 

variants.  Again, there was no major departure from the rank-order of the top five 

performing algorithms that we observed in the other datasets (Fig. 3A).  

Finally we explored whether the performance of algorithms were affected by the 

level of constraint on a gene, as defined by the comparing the expected and observed 

missense variants in ExAC29 (missense Z scores). We obtained variants in genes with high, 

intermediate or low level of constraint by a missense Z score threshold of >2.5, between 0 

to 2.49 or less than zero respectively. We did not observe any major changes in the rank- 

order of the algorithms (Fig. 3A). 

Taken together our analyses suggests that the performance of the majority of 

algorithms in current use are unlikely to be affected significantly as a function of the nature 

of a variant or the level of constraint on the gene. The high-performing algorithms are 

robust to these variables and are more likely to give rise to consistent interpretation across 

different variant datasets.  

Evaluation of potential circularity in algorithm analysis 

There is significant concern that the result of analyses such as that described here 

may arise from circularity in data used. For example, REVEL, a meta-predictor whose 

features includes 13 out of the 25 algorithms that we analyzed18, performed best in all nine 

datasets described above. It was possible that the variants we used to assess performance 

of REVEL and other algorithms described here were also included in its training sets, which 
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for REVEL included some of the ClinVar and HGMD variants available until October 2015. 

This type of circularity inflates the performance measures of some algorithms and is 

referred to as type I circularity30. To examine the possibility of type 1 circularity inflating 

the performance of algorithms that were trained on HGMD and ClinVar variants, we 

compared performance of all the algorithms in six additional datasets: A) ClinVar Oct2015 

to Dec2016: This dataset consists of ClinVar missense variants with ≥1-star review status 

that were released between October 2015 and December 2016. B) ClinVar Sept 2016 to 

March 2017: This even more recent set of missense ClinVar variants with ≥1 star is absent 

in ClinVar data releases prior to September 2016. The A and B datasets consists of newer 

variants that are likely to be absent in the training sets of algorithms that were developed 

earlier. In addition, the newer ClinVar variants are also more likely to have been classified 

using ACMG/AMP 2015 guidelines, which recommends only “supporting” weight for in 

silico evidence towards pathogenicity classification.  Thus, it is likely that the clinical 

laboratory primarily relied on independent clinical and genetic data to come to the final 

variant assertion. C) predictSNPselected30 is a benchmark dataset that does not contain the 

CADD training data.   D) REVEL test set exclude the variants in HGMD and ClinVar that were 

used for training REVEL18. E) and F) Minus MetaSVM/LR trainset: We removed all the 

variants that were used in training the metapredictors MetaSVM and MetaLR19 from our 

ClinVar variant set. These datasets consisted of variants designated >1-star (E) or >2-

star(F) review status in ClinVar.  The resulting predictions of these datasets which removed 

variants used in training different algorithms did not demonstrate a major change in the 

rank order of the top five algorithms that exhibited an AUC>0.9 with REVEL performing the 

best in these datasets (Fig. 3B, Supplementary Fig. 1).  
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We next tested if the top performing algorithms suffered from type 2 circularity30 , 

which has been described as a caveat introduced due to the reliance of an algorithm’s 

performance on the distribution of pathogenic or benign variants in a protein. Thus, in a 

variant dataset where there are proteins with only pathogenic variants or only benign 

variants (unbalanced dataset) some algorithms tend to perform better than in a dataset 

that have equal number of pathogenic and benign variants per gene (perfectly balanced), 

even if this is not what is biologically present. To this end we compared performance on an 

unbalanced dataset (Varibenchselected30) and a balanced dataset which includes equal 

number of pathogenic and benign variants per protein in ClinVar (see Methods). Consistent 

with earlier results30 we found that FATHMM31 is particularly sensitive to this type of 

circularity. In other words, there is drop in performance of FATHMM in analysis of a 

dataset that is perfectly balanced (Balanced dataset * in Supplementary Fig. 2). We also 

detected evidence for potential type 2 circularity for algorithms such as MetaSVM/LR and 

MCAP (Balanced vs varibench for MetaSVM, MetaLR and MCAP, bootstrap p value <0.0001, 

Supplementary Fig. 2). Thus, caution should be used in interpreting scores using 

algorithms such as FATHMM as the prediction efficacy is partly dependent on pathogenic 

and benign variant distributions in any given gene.  

Discussion 

The ACMG/AMP guideline for use of in silico algorithms in a clinical setting suggests 

full concordance among multiple algorithms for this type of evidence to be used in 

missense variant classification without further clarification of the number or choice of 

algorithms. As we have shown, such usage leads to discrepancies arising mainly because of 

the lack of specification. Our review of the literature reveals that the metric for 
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concordance is not consistent across different laboratories. While some studies have 

adhered to the ACMG/AMP guidelines for strict concordance, others have used a majority 

vote rule. It has been reported that use of the strict ACMG criteria gave rise to a higher rate 

of VUS5 and increased discrepancies among laboratory classifications3.  The lack of a 

standard guidance for incorporating in silico algorithms could potentially lead to increased 

VUS burden and inter-lab discrepancies.  

In addition, we find that frequently used algorithms are older and vary in performance. Our 

analyses identified several high performance relatively newer algorithms which are 

infrequently used such as REVEL, VEST3 etc. Many of these algorithms are ensemble 

predictors incorporating many older algorithms as features. The performances of these 

algorithms are robust to technical artifacts, levels of constraint on genes, the underlying 

nature of variants and Mendelian inheritance pattern. Thus, laboratories may benefit from 

modifying pre-existing variant interpretation pipelines that currently use older algorithms.   

The ACMG/AMP guideline encourages use of multiple algorithms. Conversely, we 

observed an increase in the discordant calls as more algorithms are used to infer variant 

pathogenicity thus hindering the use of in silico evidence. An alternative is to use 

metapredictors that in effect combine multiple individual predictors to generate a score.  

These metapredictors satisfy the concept underlying the multiple algorithm criteria; of 

note, combining them with their constituent predictors for variant interpretation may not 

be ideal. 

In general, we show, using author recommended thresholds for variant assertion, a 

substantial increase in likelihood of discordance, particularly for benign variants. We found 

that for pathogenic variants, the concordance among algorithms were higher most likely 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2017. ; https://doi.org/10.1101/146100doi: bioRxiv preprint 

https://doi.org/10.1101/146100
http://creativecommons.org/licenses/by/4.0/


 13

due to the tendency of several algorithms to call a variant pathogenic leading to incorrect 

inferences. Consistent with this, we found several variants for which multiple algorithms 

made concordant assertions that were opposite to what is reported in ClinVar. Although 

this could be a result of misclassification in ClinVar, we found that a ClinVar designated 

expert panel has interpreted some of these variants. These false concordances are another 

source of error for variant interpretation. The problem of false concordance both increases 

the VUS rate and highlights why it may be inappropriate to increase the ACMG/AMP 

evidence strength for computational algorithms from “supporting” to “moderate” or 

“strong”. We independently identified combinations of algorithms that tend to be more 

concordant via a hierarchical clustering of the output scores of all algorithms. The 

clustering pattern suggested that it is probably best to make inferences separately for 

evolutionary conservation algorithms e.g. GERP and metapredictors. Combining them is 

likely to result in discordant calls. Another alternative may be to calibrate the thresholds 

with known variants in genes under consideration. 

 Our results are not designed to identify a single algorithm for use across all genes 

although data suggests that high performing algorithms perform well across many different 

gene and mutation mechanism type. In addition, gene specific algorithms or gene specific 

calibration of algorithms using well-characterized set of benign and pathogenic variants 

may perform better than the general approach described here. We note that several 

algorithms are very sensitive to the multiple sequence alignment32. The performance of 

SIFT and other algorithms within our analyses and others such as Align-GVGD33 could 

potentially be improved if gene-specific curated alignments are provided. 

The analyses and the data presented in this article highlights problems associated 
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with the strict use of ACMG /AMP guidelines for in silico algorithm usage, provides the 

necessary data and framework for optimization of the ACMG guidelines and offers methods 

to potentially reduce the burden of variants of uncertain significance in clinical variant 

interpretation.  

 

Online Methods: 

Code and data availability: All the data necessary to produce the figures in the 

manuscript and the associated code are included as supplemental data. The code is also 

available here: http://rpubs.com/thisisrg/supp_code_17 

Variant data and annotation: 

We downloaded the variant_summary.txt files from the ClinVar ftp site for variant used in the 

analysis.  In this manuscript we used the files 

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar//tab_delimited/archive/variant_summary_2016-

09.txt.gz  

and ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar//tab_delimited/archive/variant_summary_2016-

12.txt.gz along with their corresponding xml files. We removed all variants whose review status 

were “no assertion criteria provided”. We also excluded any variants of uncertain significance 

from our analysis. We next considered only the missense variants and filtered out all the other 

classes of variants such as frameshift, termination, silent, non-coding etc. Finally, we collapsed 

the Likely pathogenic and Pathogenic variants in one group and Likely Benign and Benign 

variants in another group. Thus, our final data of 14819 variants had two levels of clinical 

significance: Pathogenic and Benign (Supplementary data 1). 

Algorithms and scores: 
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We annotated these variants with 25 algorithm scores using dbNSFP and authors’ publicly 

available websites (Supplementary table 1). To generate binary predictions, we used the 

threshold recommended by dbNSFP3.2 or by the algorithms’ authors. Certain algorithms 

such as MutationTaster, Mutation Assessor, and Polyphen   have thresholds such that it 

generates more than two classes. We collapsed the “probably damaging” and “possibly 

damaging” classes variants of Polyphen into a single “damaging” class. For MutationTaster 

we collapsed the “A” (disease causing automatic) and “D” (disease causing) classes into a 

single “damaging” class, while the "N" ("polymorphism") or "P" 

("polymorphism_automatic") were collapsed into a single “Tolerated” class. For 

MutationAssessor that generates four predictions, the high ("H") or medium ("M") 

categories were treated as “Damaging” whereas the low ("L") or neutral ("N") categories 

were treated as “Tolerant”. LRT predictions in dbNSFP gives three classes namely 

“Damaging”, “Neutral” and “Unknown”. We treated the “Unknown” labels as no data 

available or NA in our analysis. For certain algorithms such as SIFT, MutationTaster, 

PROVEAN and FATHMM multiple scores for a given variant corresponding to different 

transcripts are provided by dbNSFP. We used the most damaging score predicted by the 

corresponding algorithm for a given variant in our analyses.  

Literature search 

To identify the frequency of usage of algorithm from the year 2011 to 2017 we conducted a 

literature search in PubMed (search date Jan 19, 2017) using PubmedReminer 

(http://hgserver2.amc.nl/cgi-bin/miner/miner2.cgi)  using the following search string:  

"humans"[MeSH Terms] AND Medical Genetics[filter] AND ("SOMATIC"[ALL FIELDS] OR MISSENSE[ALL FIELDS] OR GERMLINE[ALL 

FIELDS] OR ("mutation"[MeSH Terms] OR "mutation"[All Fields]) OR VARIANT[All Fields] OR ("polymorphism, genetic"[MeSH Terms] 

OR ("polymorphism"[All Fields] AND "genetic"[All Fields]) OR "genetic polymorphism"[All Fields] OR "polymorphism"[All Fields]) AND 

(dbnsfp[all fields] OR POLYPHEN[ALL FIELDS] OR SIFT[ALL FIELDS] OR VEST3[All Fields] OR METASVM[ALL FIELDS] OR METALR[ALL 

FIELDS] OR CONDEL[ALL FIELDS] OR CADD[ALL FIELDS] OR MUTATIONASSESSOR[ALL FIELDS] OR PROVEAN[ALL FIELDS] OR 

FATHMM[ALL FIELDS] OR EIGEN[ALL FIELDS] OR MUTPRED[ALL FIELDS] OR "REVEL"[ALL FIELDS] OR DANN[All Fields] OR LRT[All 
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Fields] OR MUTATIONTASTER[All Fields] OR GERP[All Fields] OR VEST3[All Fields] OR Genocanyon[All Fields] OR fitcons[All Fields] OR 

phastcons[All Fields] OR phylop[All Fields]) AND ("2011/01/01"[PDAT] : "2017/12/31"[PDAT]) NOT (18570327[UID] OR 

19734154[UID] OR 20052762[UID] OR 20642364[UID] OR 23990819[UID] OR 22077404[UID] OR 21763417[UID] OR 21457909[UID] 

OR 21480434[UID] OR 21412949[UID] OR 23033316[UID] OR 22949387[UID] OR 22689647[UID] OR 22539353[UID] OR 

27577208[uid] OR 27468419[uid] OR 27357839[uid] OR 27224906[uid] OR 27148939[uid] OR 27147307[uid] OR 27128317[uid] OR 

23620363[UID] OR 23315928[UID] OR 27841654[uid] OR 27721395[uid] OR 27760515[uid] OR 27564391[uid] OR 27995669[uid] OR 

24487276[UID] OR 24205039[UID] OR 25073475[UID] OR 25684150[UID] OR 26555599[uid] OR 27776117[UID] OR 26426897[uid] 

OR 26332131[uid] OR 27666373[UID] OR 26982818[uid] OR 26892727[uid] OR 26885647[uid] OR 26866982[uid] OR 26727659[uid] 

OR 26681807[uid] OR 26633127[uid] OR 26677587[uid] OR 26504140[uid] OR 26269570[uid] OR 26015273[uid] OR 24675868[uid] 

OR 24648498[uid] OR 24651380[uid] OR 24453961[uid] OR 24451234[uid] OR 24338390[uid] OR 24332798[uid] OR 25979475[uid] 

OR 25967940[uid] OR 25851949[uid] OR 25599402[uid] OR 25587040[uid] OR 25557438[uid] OR 25552646[uid] OR 25535243[uid] 

OR 25519157[uid] OR 25393880[uid] OR 23020801[uid] OR 22937107[uid] OR 22747632[uid] OR 22322200[uid] OR 22261837[uid] 

OR 22110703[uid] OR 22192860[uid] OR 21925936[uid] OR 21919745[uid] OR 21814563[uid] OR 25117149[uid] OR 24980617[uid] 

OR 24718290[uid] OR 24194902[uid] OR 23954162[uid] OR 23935863[uid] OR 23819846[uid] OR 23843252[uid] OR 23836555[uid] 

OR 23462317[uid] OR 23424143[uid] OR 23357174[uid] OR 21685056[uid] OR 21520341[uid] OR 20866645[uid] OR 20689580[uid] 

OR 20625116[uid] OR 20084173[uid] OR 19602639[uid] OR 19105187[uid] OR 18990770[uid] OR 18654622[uid] OR 18325082[uid] 

OR 18384978[uid] OR 18195713[uid] OR 18186470[uid] OR 18179889[uid] OR 18005451[uid] OR 17989069[uid] OR 17537827[uid] 

OR 27058395[uid] OR 26567478[uid] OR 26095143[uid] OR 22997091[uid] OR 22038522[uid] OR 20660939[uid] OR 20224765[uid] 

OR 19217021[uid] OR 18361419[uid] OR 18210157[uid] OR 17349045[uid] OR "REVIEW"[PUBLICATION TYPE] OR "REVIEW 

LITERATURE AS TOPIC"[MESH TERMS] OR REVEL[AU] OR DANN[AU] OR 26566084[uid] OR 26328548[uid] OR 26054510[uid] OR 

24369116[uid] OR 23824587[uid] OR 22974711[uid] OR 20717976[uid] OR 20613780[uid] OR 18797516[uid] OR 23223146[uid] OR 

26025364[uid] OR 26961892[uid] OR 26098940[uid] OR 25878120[uid] OR 25340732[uid] OR 24740809[uid] OR 24442417[uid] OR 

24266904[uid] OR 24065196[uid] OR 24037343[uid] OR 23571404[uid] OR 23148107[uid] OR 21827660[uid] OR 21536091[uid] OR 

21107268[uid] OR 19648217[uid] OR 19116934[uid] OR 18615156[uid] OR 18463975[uid] OR 18252211[uid] OR 18161052[uid] OR 

24482837[uid] OR 23274505[uid] OR 22940547[uid] OR 22912676[uid] OR 21575667[uid] OR 19786005[uid] OR 19562469[uid] OR 

19444471[uid] OR 19255159[uid] OR 19142206[uid] OR 19138047[uid] OR 18991109[uid] OR 18602337[uid] OR 18552399[uid] OR 

18541031[uid] OR 18357615[uid] OR 18203168[uid] OR 17722232[uid] OR 17456336[uid] OR 17431481[uid] OR 17375033[uid] OR 

17375033[uid] OR 17375033[uid] OR 17375033[uid] OR 28093075[uid]) 

 

Briefly we restricted our analysis to the medical genetics literature and excluded reviews 

and technical papers reporting discovery and comparative analysis of algorithms as 

defined by the above search term. We obtained 507 of articles that mentioned an algorithm 

in the Title or abstract. The number of articles per algorithm term was used as a proxy for 

the usage of algorithms used in our analysis. 

Concordance analysis: 

To determine concordance among algorithms we obtained the publicly available thresholds 

(Supplementary table 1) to define a dataset of pathogenic and benign prediction for each 

variant. We next generated all possible pairwise combinations of algorithms and 

determined the proportion of variants for which they agree with each other. Next we also 

generated all possible combinations of algorithms with 3, 4 or 5 members and determined 

the concordance with ClinVar assertions for each of these pairs. We also determined the 

fraction of variants for which algorithms in each combination was concordant but the 
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assertion was opposite to that designated in ClinVar. We refer to these instances as false 

concordances. A list of such combinations and their true and false concordances are 

provided in the Supplemental data 2-6. 

Clustering: 

The scores for 25 algorithms for each of the 14,819 variants were used to cluster the 

algorithms using pvclust package in the R programming environment. We identified the 

most confident clusters by using 50000 bootstrap replicates of the data , Euclidean distance 

as a measure of  similarity and ward’s D2 method of hierarchical clustering as implemented 

in the pvclust function34. We called clusters as stable if they had a 0.99 or above probability 

of having the same members in the bootstrap replications. The final rendering of the plot 

was done using the dendextend35 package in R.  

Performance analysis: 

We compared the performance of each of the algorithms on all datasets separately by 

estimating the area under the curve (AUC) of a receiver operator characteristic (ROC) 

curve and its 99% confidence interval using the OptimalCutpoints library in R.  We 

estimated significant differences between any two AUCs by using 10000 stratified 

bootstrap replicates of the datasets in question (where each replicate contained the same 

number of benign and controls than in the original sample), calculating AUC for each 

replicate for each and then testing for the statistical significance as implemented in the 

library pROC in R. 

Datasets: 

All the data are available as supplemental data files or are available from the respective 

authors. We provide brief descriptions of the datasets that we used below: 
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ClinVar one star: 14,819 ClinVar variants (7346 benign and 7473 pathogenic variants) that 

are assigned one star or above (meaning at least 1 laboratory (primarily clinical 

laboratories) have provided their rationale for variant assertion).  

ClinVar 2 star: 2966 (1914 benign and 1052 pathogenic) ClinVar variants with two star 

status or above. These variants have concordant assertions from at least two independent 

laboratories. 

ClinVar Oct 2015 to December 2016: This dataset contains 6949 (4093 benign and 2856 

pathogenic) variants in ClinVar that were obtained from the variant_summary.txt file 

released in December 2016 after removing the variants that were present in the October 

2015 data release.  

ClinVar Sept 2016 to March 2017: This is a set of 3792 benign and 1310 pathogenic 

missense variants with one star or above ClinVar review status. These were obtained by 

filtering out the variants in the variant_summary.txt file in ClinVar from September 2016 

from the variant_summary.txt files from March 2017 in ClinVar. 

Oncogene variants: This dataset consists of 87 benign and 321 pathogenic variants in 

oncogenes as defined by genes having a high oncogene score and a low TSG score as 

described in 28. 

Tumor suppressor gene variants: This dataset consists of 502 benign and 532 pathogenic 

variants in tumor suppressor genes as defined by genes having a high TSG score and a low 

oncogene score as described in 28. 

Dominant: This dataset contains variants in genes that were associated with dominant 

mode of inheritance as determined by both36 and37. There were 480 benign and 1591 

pathogenic variants in this dataset. 
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Recessive: This dataset contains variants in genes that were associated with recessive 

mode of inheritance as determined by both 36 and 37. There were 1169 benign and 1429 

pathogenic variants in this dataset. 

REVEL testset: This is the test dataset that contained ClinVar variants (Test Data 2) as 

described in 18. 

MetaSVM/LR testset: This dataset consisted of 12496 (6275 benign and 6221 pathogenic) 

ClinVar variants (with one or more review status in ClinVar) which did not include the 

variants used in the training sets of MetaSVM/LR. 

predictSNPdsel: This is a benchmark dataset as described in30. It does not contain CADD 

training data. 

Varibenchselected: This is a highly unbalanced dataset as described in 30. According to the 

authors, more than 98% of all proteins in this dataset contain variants that are either 

“pathogenic” or “neutral”. 

Balanced dataset: This dataset contained 4192 variants in ClinVar (one star or above 

status) with each gene having the same number of benign and pathogenic variants.   

 

Figure legends  

Figure 1: Concordance among predictions of 18 algorithms for variants in ClinVar. 

Binary predictions made by 18 algorithms for each pathogenic or benign variants in 

ClinVar are shown in upper and lower panel respectively. Each variant is along a row and 

an orange and a green tile depicts a pathogenic or benign call by the corresponding 

algorithm. 14819 variants with ClinVar review status one star or above (A) and 2966 

variants with ClinVar review status two star or above (B) are shown. 
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Figure 2: Concordance among algorithms. 

A)  Distribution of proportion of variants that had concordant calls by any given pair of 

algorithms (among 18 algorithms) for benign (green) and pathogenic (orange) variants in 

ClinVar.  

B) Scatterplots of true concordance (variant assertion matches ClinVar assertion) vs False 

Concordance (Variant assertion does not match ClinVar assertion) for combinations of 3, 4 

or 5 algorithms at a time. An orange and a green point depicts the true and false 

concordance of a combination for benign and pathogenic variants, respectively, in ClinVar. 

C) Hierarchical clustering of 25 algorithms with scores for 14819 variants in ClinVar. Red 

rectangles indicate robust clusters with an AU p-value of >0.99 (see methods).  

 

Figure 3: Performance analysis of algorithms. The AUC of a ROC are plotted for 25 

algorithms. Vertical dotted line indicates a AUC of 0.9 and 99% confidence intervals for 

each AUC are shown. Blue dots indicate AUC>0.89.  A) AUCs of the algorithms across five 

different datasets shown in the panels and described in text. B) AUCs of the algorithms 

across five different datasets (represented in panels) shown in the panels to address type I 

circularity as described in text.  

 

Table 1: Concordance estimates for benign or pathogenic variants with all 18 or a subset of 

algorithms shown in the last column. 

Table 2: Concordance among combinations of algorithms  

 

Supplementary material. 
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Supplementary Figure 1:  Variability in performance of algorithms shown in each panel 

across all analyzed datasets. Performance is measured using AUC and depicted along the y 

axis. The algorithms are sorted by their performance and the datasets the color coded as 

outlined in the legend. The horizontal dotted red line shows an AUC of 0.8. 

Supplementary Figure 2: Performance analysis of algorithms. The AUC of a ROC are 

plotted for 25 algorithms. Vertical dotted line indicates a AUC of 0.9 and 99% confidence 

intervals for each AUC are shown. AUCs of the algorithms across four different datasets 

(represented in panels) to address type II circularity as described in text. 

Supplementary Table 1: Description of algorithms used in the analyses.  

Supplementary Table 2: Number of variants and their review statuses for which majority 

of algorithm assertion was opposite to that in ClinVar. 

Supplementary Table 3: Concordance among different combination of algorithms. 

Supplementary datasets: 

Supplementary data 1: ClinVar dataset of 14819 variants from September 2016 

Supplementary data 2: True and false concordances for combinations of 2 algorithms 

Supplementary data 3: True and false concordances for combinations of 3 algorithms 

Supplementary data 4: True and false concordances for combinations of 4 algorithms 

Supplementary data 5: True and false concordances for combinations of 5 algorithms 

Supplementary data 6: Dataset with variants in Oncogene and TSG 

Supplementary data 7: Dataset with variants in genes associated with dominant or 

recessive inheritance. 

Supplementary data 8: Variants in ClinVar txt files (October 2015 to December 2016) 

Supplementary data 9: Variant in ClinVar txt files (September 2016 to March 2017) 
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Supplementary data 10: No training variants MetaSVM/LR 

Supplementary data 11: Dataset with variants in genes with different missense Z cutoff 

Supplementary data 12: Balanced dataset 

Supplementary data 13: Benchmark dataset: predictSNPsel 

Supplementary data 14: Benchmark dataset: varibenchsel 

Supplementary data 15: Compiled AUCs of algorithms for different datasets.  

Supplementary data 16: Data after hierarchical clustering using pvclust . 

Supplementary data 17: Code used for generating Figures and some of the supplemental 

data. 
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