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Abstract

RNA regulation is significantly dependent on its binding protein part-
ner, which is known as the RNA-binding proteins (RBPs). Unfortunately,
the binding preferences for most RBPs are still not well characterized, es-
pecially on the structure point of view. Informative signals hiding and
interdependencies between sequence and structure specificities are two
challenging problems for both predicting RBP binding sites and accurate
sequence and structure motifs mining.
In this study, we propose a deep learning-based method, iDeepS, to si-
multaneously identify the binding sequence and structure motifs from
RNA sequences using convolutional neural networks (CNNs) and a bidi-
rectional long short term memory network (BLSTM). We first perform
one-hot encoding for both the sequence and predicted secondary struc-
ture, which are appropriate for subsequent convolution operations. To
reveal the hidden binding knowledge from the observations, the CNNs are
applied to learn the abstract motif features. Considering the close rela-
tionship between sequences and predicted structures, we use the BLSTM
to capture the long range dependencies between binding sequence and
structure motifs identified by the CNNs. Finally, the learned weighted
representations are fed into a classification layer to predict the RBP bind-
ing sites. We evaluated iDeepS on verified RBP binding sites derived
from large-scale representative CLIP-seq datasets, and the results demon-
strate that iDeepS can reliably predict the RBP binding sites on RNAs,
and outperforms the state-of-the-art methods. An important advantage
is that iDeepS is able to automatically extract both binding sequence and
structure motifs, which will improve our transparent understanding of
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the mechanisms of binding specificities of RBPs. iDeepS is available at
https://github.com/xypan1232/iDeepS.
Keywords: RNA-protein, CLIP-seq, convolutional neural network, long
short term memory network.

1 Introduction

RNA-binding proteins (RBPs) are highly involved in various regulatory pro-
cesses, e.g. gene splicing and localization [7]. Understanding the roles of in-
dividual RBPs in gene regulation requires the detailed characterization of the
binding preferences, which are short regions on RNAs, also called sequence mo-
tifs. Currently, there are many high-throughput technologies, e.g. RIP-seq and
CLIP-seq, to determine binding sequence motifs of individual RBPs. However,
they are time-intensive and costing.

The available high-throughput data of a large number of reliable RBP bind-
ing sites can serve as a gold standard for training and testing of less-expensive
and faster prediction models [26, 1]. Many sequence-motif discovery tools have
been developed. For example, the widely used MEME model fits a mixture
model using expectation maximization to discover multiple sequence motifs [2].
MatrixREDUCE infers the sequence-specific binding motifs for transcription
factors [8].

However, pervious studies have shown that many RBPs bind to RNA molecules
by recognizing specific sequences, but also secondary structure contexts [14, 24].
The sequential motifs alone cannot fully explain the binding preference of the
RBPs. For instance, the amyotrophic lateral sclerosis associated protein FET
binds to its RNA target within hairpin loops structure [16].

Considering the impact of structure context on RBP binding preferences,
some tools have been developed to identify binding RBP binding sites by taking
also secondary structure into consideration. For instance, MEMERIS searches
for RNA motifs enriched in regions with high structural accessibility [14]. Li et
al., integrate the accessibility of RNA regions around the RBP interaction sites
to identify accessible sequence motifs [24]. CapR models the joint distribution
of residue positions and secondary structures to identify the binding sites un-
der different structure context [9]. RNAcontext trains machine learning models
using sequence and accessibility information to infer sequence and structure mo-
tifs [18]. GraphProt [26] integrates the RNA sequence and secondary structural
contexts using a graph kernel model to investigate the RBP binding preferences,
and it represents input sequences using over 30,000 dimensional graph features.
Recently, the iONMF [35] integrates kmer sequence, secondary structure, CLIP
co-binding, Gene Ontology (GO) information and region type using orthogo-
nal matrix factorization to predict binding sites. However, the above methods
require domain knowledge to construct the input features.

Alternatively, deep learning methods are fully data-driven. They automat-
ically learns high-level features from simple input features, it simultaneously
does feature engineering and model learning. Recently deep learning proved
to be very successful in many research areas, e.g image recognitions [21, 13].
Also, promising performances were demonstrated on predicting RNA-protein
interactions and binding sites [1, 29, 37]. For instance, DeepBind applies CNNs
to automatically capture the binding sequence motifs [1]. Furthermore, our
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previous iDeep model predicts the RBP binding sites on RNAs and sequence
motifs using the hybrid CNNs and DBNs through integrating multiple sources
of representations [28]. However, similar to DeepBind [1], it can discover only
the sequence binding preferences. Deepnet-rbp incorporates structure features
into predicting the binding sites using deep belief networks (DBNs). It includes
the RNA structure information, obtained from another tool, as a count vector
of k-mers [37]. A disadvantage of Deepnet-rbp is that it requires complicate
steps to estimate the binding preference.

In this study, we propose and evaluate a novel deep learning method, called
iDeepS, which consists of CNNs and a bidirectional LSTM. This method iden-
tifies the sequence and structure binding motifs simultaneously. To the best of
our knowledge, iDeepS is the first CNN-based study to easily capture both the
sequence and structure binding motifs.

2 MATERIALS AND METHODS

We design the computational approach iDeepS (Figure 1) to predict the RBP
binding sites on RNAs. We use sequences of RBPs binding sites derived from
CLIP-seq dataset, apply one-hot encoding for the sequences and predicted sec-
ondary structures, and feed these into CNNs and a BLSTM to predict RBP
binding sites. Finally, we extract the sequence and structure motifs from the
learned convolution filters of the CNNs and evaluate them against known veri-
fied motifs.

2.1 Datasets

In this study, we train deep learning models for RBP binding sites derived from
CLIP-seq data [35] available at (https://github.com/mstrazar/ionmf). This
CLIP-seq dataset consists of 19 proteins with 31 experiments. For each experi-
ment, each nucleotide within clusters of interaction sites derived from CLIP-seq
were considered as binding sites. The negative sites were sampled from genes
that were not identified as interaction in any of 31 experiments. In each ex-
periment, a total 24,000 samples are used for training, 6,000 samples for model
optimization and validation, and the other 1,0000 samples for independent test-
ing.

2.2 Encoding sequence and structure

The RNA sequence is used as an one-hot representation encoded into a binary
matrix, whose columns correspond to the presence of A, C, G, U and N [1,
38]. Given a RNA sequence s = (s1, s2, ..., sn) with n nucleotides and sequence
motif detector with defined size m, the binary matrix M for this sequence is
represented as follows:

Mi,j =

 0.25 if si−m+1 = N or i < m or i > n−m
1 if si−m+1 is (A,C,G,U) (1)
0 otherwise

We use abstract secondary structure annotation from RNAshapes [34] im-
plemented in https://github.com/fabriziocosta/EDeN . The RNAshapes
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Figure 1: The flowchart of iDeepS. For each experiment, iDeepS inte-
grates two CNNs (one is for sequences, the other is for structures predicted
by RNAshape from sequences) to predict RBP interaction sites and identify
binding sequence and structure motifs, followed by the bidirectional LSTM,
which learns the long range dependencies between learned sequence and struc-
ture motifs. Finally, the outputs from bidirectional LSTM are fed into a sigmoid
classifier to predict the probability of being RBP binding sites
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have six generic shapes: stems (S), multiloops (M), hairpins (H), internal loops
(I), dangling end (T) and dangling start (F). For each sequence s, we obtain the
structure shapes str = (str1, str2, ..., strn) by RNAshapes, which are converted
into a binary matrix R with columns corresponding to the presence of F, H, I,
M, S, T, and, and with k representing the predefined structure motif size.

Ri,j =

 0.16 if i < k or i > n− k
1 if stri−k+1 is (F,H, I,M, S, T ) (2)
0 otherwise

2.3 Convolutional neural network

The Convolutional Neural Network (CNN) [20] is inspired by the animal visual
cortex. It consists of convolution, activation, and max-pool layers.

The one-hot encoding matrix derived from RNA sequences and structures
are the inputs to the CNNs and are used to learn the weight parameters of
the convolution filters. The convolution layer outputs the matrix inner product
between input matrix and filters. After convolution, a rectified linear ReLU is
applied to sparsify the output of the convolution layer and keep only positive
matches to avoid the vanishing gradient problem [27]. Finally, a max pooling
operation is used to reduce the dimensionality and yield invariance to small
sequence shifts by pooling adjacent positions within a small window.

Before feeding into the next layer, the CNNs of sequence and structure are
merged into one layer. The subsequent layers of the iDeepS act jointly on the
merged sequence and structure layers.

2.4 Long Short Term Memory networks

LSTM belongs to the class of recurrent neural network [15], it incorporates
long-term dependent information to assist the present prediction. In this study,
LSTM is used to identify informative combinations of the extracted sequence
and structure motifs [30], which projects the original input into a weighted
representation.

As the LSTM sweeps across each element of the input, it first decides which
information should be excluded by a forget gate layer based on previous inputs.
Then an input gate layer is used to determine which information should be stored
for next layer, and update the current state value. Finally, an output gate layer
determines what parts of state value should output. Taking a sequence {x}Tt=1

as input, the LSTM have the hidden states {h}Tt=1, cell state {C}Tt=1, and it
outputs a sequence {o}Tt=1. The above steps can be formulated as follows:

ft = σ(Wfxt + Ufht−1 + bf ),

it = σ(Wixt + Uiht−1 + bi),

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc),

ot = σ(Woxt + Uoht−1 + bo),

ht = ot � tanh(ct)

where � denotes element-wise multiplication, the σ is the Logistic Sigmod func-
tion and tanh is the tanh function to push the values to be between -1 and 1.
Wf , Wi, Wo, Uf , Ui and Uo the weights and bf , bi, bc and bo the bias.
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In iDeepS, bidirectional LSTM (BLSTM) is used, i.e., it sweeps from both
left to right and right to left, and the outputs of individual directions are con-
catenated for subsequent classification.

2.5 Identifying the binding sequence and structure motifs

To explore the learned motifs, we investigate the convolve filters of sequence
and structure CNNs in iDeepS. We convert them into position weight matrices
(PWM) [1, 19], which are matched against input sequences and structures to
discover binding motifs.

Assuming we have a sequence or structure Sm and a convolve filter with
size L, if the activation value Amfi of filter f at position i is greater than 0.5
maxmiAmfi, then this sequence or structure in windows L centring the position
i is selected to align sequence motifs using WebLogo [6].

Amfi = ReLU(
∑
l=1

D∑
d=1

wfld ∗ sm,i+1,d) (3)

where ReLU(x) = max(0, x), wf is the weights of filter f, m is the length. For
sequence motifs, D is 4. For structure motifs, D is 6.

To verify the predicted sequence motifs, we align them against 102 known
motifs in study [31] from CISBP-RNA using the TOMTOM algorithm [10] with
p-value <0.05. For some proteins, currently there are still no verified motifs in
the CISBP-RNA database, we investigate them via the literatures.

Furthermore, we also calculate motif enrichment scores of predicted sequence
and structure motifs using AME in the MEME suite [2]. Take sequence motifs as
an example, it first scans the predicted motifs against the input sequences, and
do the same for the shuffled sequences as the background sequences. Then we
compare them to calculate the enrichment scores. We do the same enrichment
analysis for predicted structure motifs.

2.6 Implementation

The iDeepS is implemented in python using keras 1.1.2 library https://github.

com/fchollet/keras. We set the maximum number of epochs to 30, and the
batch size to 50. The validation dataset is used to monitor the convergence dur-
ing each epoch of the training process, so the training process can be stopped
early. The model is trained by back-propagation using categorical cross-entropy
loss, which is minimized by RMSprop [36]. In addition, we also employ multi-
ple techniques to prevent or reduce over-fitting, e.g. batch normalization [17],
dropout [33] and early stopping.

The number of motifs for both sequence and structure CNNs is set to 16
as suggested by DeepBind [1]. As indicated in iDeep [28], ReLU leads to in-
formation loss for some bits in motifs. As proposed by DeepBind, the the
filter length (motif width) should be 1.5 times the verified motif width, which
is 7 in CISBP-RNA database [31]. Therefore, we choose a filter length of 10 in
this study. When converting the filters to PWMs, we only use the first 7 bits of
10.
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2.7 Baseline methods

There are many computational methods developed for predicting RNA-protein
binding sites [1, 25, 26, 35]. In this study, we compare iDeepS with the state-of-
the-art sequence-based methods DeepBind [1], Oli [25], iONMF [35] and Graph-
Prot [26]. DeepBind, uses a sequence CNN with the same architecture as iDeepS
to predict RBP binding sites. For GraphProt (v1.1.3), it encodes the sequence
and structure into high-dimensional graph features, which are fed into a SVC
to classify RBP bound and unbound sites. In this study, we use a window size
80 in GraphpProt and the other parameters are set to the default. iONMF
uses matrix factorization to predict RBP binding sites by integrating different
sources of features [35]. Oli uses linear SVC to classify RBP binding sites based
on tetranucleotide frequency features [25]. The performance is measured using
the area under the receiver operating characteristic curve (AUC).

3 RESULTS

In this study, we evaluate iDeepS on large-scale RBP binding sites from CLIP-
seq. We evaluate the performance of iDeepS for predicting binding sites on
RNAs, and compare it with the state-of-the-art methods. Furthermore, we
identify the binding sequence and structure motifs using CNNs integrated in
iDeepS.

3.1 Performance of iDeepS

To demonstrate the advantage of iDeepS, we compare it with the sequence-based
DeepBind and Oli across the 31 experiments. iDeepS results in an average AUC
of 0.86, which is a little better than 0.85 of DeepBind. The performance of Oli
[25]is much lower than iDeepS, with an average AUC 0.77 across 31 experiments,
which performs worse with a big margin than iDeepS (AUC 0.86). For some
proteins, Oli’s performance is close to random guessing, e.g. protein hnRNPL
with AUC 0.39. As showed in Figure 2 (More details are in Supplementary
Table S1), iDeepS outperforms DeepBind on 25 of 31 experiments, and Oli on
all experiments. It is interesting to note that the three methods have large
performance differences across individual experiments. For iDeepS, the AUCs
ranges from 0.59 for protein Ago2-MNASE to 0.98 for protein HNRNPC. For
Ago2 protein, iDeepS cannot yield high performance. The reason is that Ago2
binding specificity is primarily mediated by miRNAs [3], the expressed miRNAs
have an high influences Ago2-RNA interactions, which results in a more variable
binding motifs than RBPs which bind RNAs directly.

We also compare iDeepS with structure-profile-based GraphProt, which demon-
strates better performance than RNAcontext [26]. Across the 31 experiments,
GraphProt yields the average AUC of 0.82, which is worse than 0.86 of iDeepS.
As shown in Figure 2, iDeeps achieves better AUCs than GraphProt on 30 of
31 experiments. Our method improves the AUCs for some proteins with large
margin. For example, iDeepS yields the AUC 0.77 for protein Ago/EIF, which is
an increase of 12% compared to AUC 0.69 of GraphProt (Supplementary Table
S1).

In addition, iDeepS outperforms iONMF (reported average AUC 0.85 on
the same data) using multiple sources of data, including k-mer frequency, sec-
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Figure 2: The AUCs of iDeepS, DeepBind, Oli and GraphProt across
31 experiments. The performances are evaluated on the same training and
independent testing set across 31 experiments (x-axis) for iDeepS,DeepBind, Oli
and GraphProt. For Oli and DeepBind, only sequences are used. For iDeepS
and GraphProt, sequences and predicted structures are used.

ondary structure, GO Information and gene type [35]. They also report that
the iONMF surpasses the GraphProt and RNAcontext. The results further in-
dicate that iDeepS can outperform other methods integrating other sources of
hand-engineered features not derived from structures and sequences.

In summary, iDeepS not only on average achieves better performance than
other peer sequence-based methods, it also outperforms other approaches inte-
grating multiple sources of features. Our results demonstrate that iDeepS bene-
fits strongly from learning the combination of high-level sequence and structure
features for predicting binding sites for RBPs.

3.2 Insights in sequence-structure motifs

A big advantage of iDeepS is that it also provides the biological insights, e.g.
learned binding motifs, of the RBPs by investigating the learned models. As
compared to GraphProt, which requires a complicate postprocessing step, iDeepS
easily converts learned parameters of the convolved filters and allows for iden-
tification of the sequence and structure motifs.

In this study, we infer the binding motifs across 31 experiments. Of them, 19
experiments have known sequence motifs in CISBP-RNA database or literatures.
As shown in Table 1, iDeepS is able to discover experimentally verified sequence
motifs for the 19 experiments. Of them, 15 are matched against CISBP-RNA
with significant E-value cutoff 0.05 provided by TOMTOM [10]. The remaining
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4 proteins resembles the motifs reported by other studies, which are based on
the visual inspection. iDeepS discovers repeated UG dinucleotides motifs for
TDP-43, which contains this dinucleotide repeats in 80% of the 3’UTR region
by microarray analysis [26, 4], and captures a known motif, which plays a crucial
regulator in germline development [32], for QKI with significant E-value 0.00008.
The motif for PUM2 has been found with AU-rich sequence motif by iDeepS,
which is close to the motifs identified based on top sequence read clusters [12].
The results show that the identified sequence motifs by iDeepS are aligned with
verified motifs.

Another advantage of iDeepS is that it enables discovery of structure motifs,
which is not possible for iDeep [28]. iDeepS has demonstrated that most of
proteins have preferences to generally structured regions. As shown in Table 1,
the proteins in ELAVL protein family prefers to binding to stem-loop structure,
which is consistent with the in vivo and in vitro binding data [11]. iDeepS
also predicts that the protein U2AF2 prefers to binding to U-rich internal loop
structures and hnRNPL proteins bind to external region with AC-rich, which
agrees with the finding in [26].

Of particular interest, we further investigate the identified motifs for FUS,
MOV10 and IGF2BP1-3 (Figure 3), who have no sequence motifs in CISBP-
RNA database. FUS has been found to bind to AU-rich stem-loop structure
(Adjusted p-value: 1.55e−2 for structure motif) according to study [16], which
is captured by iDeepS (Figure 3A). In addition, we also found the similar mo-
tifs to GraphProt for protein MOV10 with AU rich stem region (Figure 3 B,
Adjusted p-value: 3.89e−3 for structure motif), and IGF2BP1-3 protein with
CA dinucleotides multi-loop region (Figure 3C, Adjusted p-value: 5.01e−5 for
structure motif). iDeepS discover another AC-rich stem-loop motif identified in
[23] for Ago2 (Figure 3D, Adjusted p-value: 4.28e−2 for structure motif), which
is different from the motif of Ago2 listed in Table 1. Compared to GraphProt,
iDeepS is able to discover multiple binding sequence and structure motifs for
each protein.

We also discovered many novel motifs we could not verify against currently
available knowledge. All discovered sequence and structure motifs by iDeep and
and their enrichment score are available at https://github.com/xypan1232/

iDeepS/tree/master/motif. For instance, iDeepS captures novel motifs for
RBP EIF4A3 and NSUN2 (Figure 3E and F), their sequence motifs are enriched
with adjusted p-value 5.18e−53 and 1.53e−8, respectively. Similarly, their struc-
ture motifs are enriched with adjusted p-value 4.20e−3 and 7.02e−5, respectively.
They both show preference to harpin loop region. These discoveries have not
been found by any studies, and need to verified in future studies.

3.3 Added value of BLSTM

To demonstrate the added value of BLSTM, we assess the iDeepS against a
variant using only CNNs without the BLSTM layer. As shown in Figure 4,
iDeepS yields better performance for most of 31 experiment. After taking the
standard deviation of differences into consideration, iDeepS still significantly
outperform the models only using CNNs on 10 experiments. The results indicate
that BLSTM is able to capture better motifs for predicting RBP binding sites,
which supports that the BLSTM can learn long-term dependencies.
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Figure 3: The identified novel binding sequence and structure motifs by
iDeepS for RBPs. A. protein FUS. B. protein MOV10. C. protein IGF2BP1-
3. D. protein Ago2. E. protein EIF4A3. F. protein NSUN2. In the structure
motif logos, they are labelled as follows: stems (S), multiloops (M), hairpins
(H), internal loops (I), dangling end (T) and dangling start (F)
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Figure 4: The difference of predictive performance using CNN +
BLSTM and only CNN. On the y-axis the performance of the full model
with CNNs and BLSTM is shown. The x-axis shows the performance of the
model using only the CNNs without BLSTM. The two red lines indicate the
standard deviation of the difference between only using CNN and using CNN
+ BLSTM.

DeepBind achieves an average AUC of 0.85 across 31 experiments by only us-
ing sequence CNN, which is a little better than 0.84 of simply concatenating the
outputs from sequence and structure CNNs. The reason is that the structure in-
formation is predicted from sequences, leading to redundant information, which
might hurt the model training. Both the model perform worse than iDeepS
(AUC: 0.86) with BLSTM layer after sequence and structure CNNs. The re-
sults indicate BLSTM can learn long-term dependencies between sequence and
structure motifs, which reduce the impact of redundant signals on training mod-
els for predicting RBP binding sites.

4 DISCUSSION AND CONCLUSIONS

In this study, we present a fully automatic deep learning based method iDeepS
to infer both sequence and structure preferences of RBPs. The captured motifs
align well with the previously reported binding motifs obtained from CISBP-
RNA and literatures. Besides, iDeepS also discovers some novel motifs. The
BLSTM layer in the iDeepS algorithm ascertains the long-term dependencies be-
tween sequence and structure motifs, which improves its predictive performance.
We evaluated iDeepS on large-scale RBP binding sites derived from CLIP-seq
datasets. iDeepS is able to predict the RBP binding sites on RNAs with higher
accuracy than the state-of-the-art methods. Compared to existing black-box
machine learning algorithms, iDeepS is able to find human-understandable se-
quence and structure binding motifs, which are expected to provide important
clues for understanding the biological functional mechanisms of RNA and its
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binding protein RBP.
The training dataset in this study are originally downloaded from iONMF

[35], in which the training positive binding sites are derived from CLIP-seq
dataset, and the negative binding sites are constructed from genes that were
not identified as interaction in any of 31 experiments. It has a stringent criteria
to create the negative sites, even some genes may bind to certain RBPs but not
bind to other RBPs. In this study, we use the same preprocessing to construct
the training set for different RBPs. However, for some RBPs, iDeepS also
fails in those cases where other existing tools also have low AUC values. The
reason behind it is the quality of training dataset for this RBP might be low.
Thus we need further improve the data quality with different strategies for
different RBPs. In addition, different RBP families have different RNA-binding
specificities, thus the training set is constructured per RBP.

The iDeepS not only can be used to predict RBP binding targets from RNA
sequences, but also capture the binding preference. When there are available
RNA sequences with potential target sites for RBPs of interest, then these se-
quences can be fed into iDeepS models. The iDeepS estimates the probability
of those RNA sequences bound to certain RBPs. On the other hand, iDeepS
also can identify the binding sequence and structure motifs. The captured se-
quence and structure context are an important basis for further research on
their clinical impact. For example, these findings could contribute to discov-
ering the mechanisms of diseases involving RBPs. Some structure specificities
increase the possibility of the disruption of the structures within binding sites,
which might cause diseases, e.g. protein FMR1 in fragile of X syndrome [9].
Furthermore, iDeepS has the potential application on predicting the effects of
mutations. For example, we can mutate the nucleotides of binding sites, then
use iDeepS to predict whether the new binding sites have a big shift compared
to experimentally verified sites.
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Table 1: iDeepS captures known sequence motifs and structure motifs.
The predicted sequence motifs are compared them against known motifs in study
[31] from CISBP-RNA database and literatures. E-value is the expected number
of false positives for the predicted motifs against known motifs using TOMTOM.
The structure motifs are labelled as follows: stems (S), multiloops (M), hairpins
(H), internal loops (I), dangling end (T) and dangling start (F). Note that these
listed logos do not represent the full extent of the matched motifs.

Protein Known motifs Reference iDeepS sequence logo E-value iDeepS structure logo
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