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Abstract (150 words) 32 

 The 5th epidemic wave in 2016-2017 of avian influenza A(H7N9) virus in China caused more 33 

human cases than any previous waves but the factors that may explain the recent range expansion 34 

and surge in incidence remain unknown. We investigated the effect of anthropogenic, poultry and 35 

wetland information and of market closures on all epidemic waves (1-5). Poultry predictor 36 

variables recently became much more important than before, supporting the assumption of much 37 

wider H7N9 transmission in the chicken reservoir, that could be linked to increases in 38 

pathogenicity. We show that the future range expansion of H7N9 to northern China may translate 39 

into a higher risk of coinciding peaks with those of seasonal influenza, leading to a higher risk of 40 

reassortments. Live-poultry market closures are showed to be effective in reducing the local 41 

incidence rates of H7N9 human cases, but should be paired with other prevention and control 42 

measures to prevent transmission.  43 
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Introduction 44 

 A novel avian influenza A (H7N9) virus emerged in spring 2013 in China. The third and fourth 45 

epidemic waves of human infections, in the winters of 2014/2015 and 2015/2016 respectively, 46 

showed an apparent reduction in incidence compared to spring 2013 and winter 2013/2014 47 

epidemic waves. However, during the winter of 2016/2017, the incidence rose, growing to levels 48 

never observed before and reaffirming concerns of a pandemic threat posed by the H7N9 virus 49 

(Wang et al. 2017; L. Zhou, Ren, et al. 2017; Uyeki, Katz, and Jernigan 2017). Since 2013, more 50 

than 1412 human cases of H7N9 virus have been reported, mostly located in eastern China, with a 51 

case fatality risk ranging between 30% and 40% (Yu, Cowling, et al. 2013; Xiang 2016; Z.-Q. Wu et 52 

al. 2017). This can be compared to the case fatality risk of H5N1 highly pathogenic avian influenza 53 

(HPAI) human infections (53.5%) (Lai et al. 2016). Within China, HPAI H5N1 human cases had a 54 

fairly scattered distribution and the majority of cases occurred in the past. In contrast, the annual 55 

incidence of H7N9 is higher and distributed in highly populated areas of China (Artois et al. 2016; 56 

Bui et al. 2017), making it a virus of particular human health concern. 57 

 The H7N9 virus that caused the first epidemic wave in March 2013 originated from multiple 58 

reassortment events of avian influenza viruses from domestic poultry and wild birds (Lam et al. 59 

2013) including six internal genes originating from H9N2 strains from chickens. Mainly restricted to 60 

Yangtze River Delta in eastern China including urban areas of Shanghai and Jiangsu and Zhejiang 61 

provinces in the first wave, the spatial range of H7N9 human cases increased during the second 62 

wave along the coast into Guangdong province in southern China (Xiang et al. 2016). Interestingly, 63 

recent results from phylogeographic inference suggested that the H7N9 virus sequences of the 64 

third wave in central Guangdong likely resulted from local persistence of the virus rather than re-65 

introduction from elsewhere (H. Zhu et al. 2016). The authors suggested that H7N9 has become 66 

established and enzootic in different and separate parts of China. The H7N9 virus genotypes of the 67 

first wave could have evolved to multiple regional lineages during the second and third waves, 68 

reassorting with local avian influenza viruses (Lam et al. 2015; H. Zhu et al. 2016). 69 

 While the epidemiological characteristics of human cases are well described, there is poor 70 

information on the distribution of H7N9 in its reservoir hosts, chickens. Indeed, humans are not a 71 

natural reservoir but an occasional host of H7N9 and the human cases act as sentinels, 72 
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presumably reflecting the circulation of H7N9 in bird populations (H. Zhu et al. 2016). The 73 

surveillance of H7N9 in poultry is difficult because the majority of the virus has a low pathogenicity 74 

in chickens (Pantin-Jackwood et al. 2014; Kalthoff et al. 2014) and surveillance can therefore not 75 

be based on clinical signs and needs to involve active and targeted sampling. This may change in 76 

the future due to the recent evolution of an highly pathogenic strain of H7N9 (W. Zhu et al. 2017; 77 

Ke et al. 2017; L. Zhou, Tan, et al. 2017). However, to date, investigations on the spatial 78 

distribution of virus reservoirs have remained inconclusive. The distribution of human cases 79 

therefore represents the most effective way to study the spatial distribution of H7N9 virus 80 

(combined with surveillance findings from birds and environment) and to try gaining knowledge on 81 

underlying spatial risk factors associated with the human exposure. Another important aspect of 82 

the epidemiology of H7N9 human infections is the role of measures that were taken to close, clean 83 

or disinfect live-poultry markets (LPM) to reduce the transmission of the virus along the poultry 84 

value-chain, and to reduce human exposure. Many different measures ranging from permanent 85 

closures to a weekly day-off with disinfection have been implemented in different provinces and at 86 

different times within each epidemic waves. So, market closure, alongside other factors may have 87 

an influence on disease risk in space and time. For example, a shift in the spatial distribution of 88 

human cases from the urban areas to rural areas may have been related to the implementation of 89 

LPM closures in cities after the first wave (Xiang et al. 2016). 90 

Besides market closure and disinfection measures, three sets of factors may have a significant 91 

influence on spatial variation in H7N9 incidence. 92 

 First, the visits to LPM are clearly the main known risk factor of H7N9 infection at the human 93 

case level (Yu et al. 2014; Yuan et al. 2015; J. Wu et al. 2016) and LPM represent a key interface 94 

between human, poultry and to some extent, peri-domestic birds. At a higher level, LPM networks 95 

may support the persistence of H7N9 virus because chicken movements through the network of 96 

LPM and poultry farms may facilitate H7N9 spread and persistence (X. Zhou et al. 2015). In 97 

previous studies, we showed that a high density of LPM in some specific areas could regionally 98 

increase the risk of H7N9 infection for humans at the market level (Gilbert et al. 2014, 9), which 99 

translated into higher risk at the county level quantified in several studies (Fang et al. 2013; Fuller 100 

et al. 2014; Li et al. 2015). So, the first set of spatial risk variables, termed “anthropogenic 101 
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variables”, included the distribution of LPMs and human population density. The latter was included 102 

as it may be a good surrogate for some surveillance and reporting bias or for some anthropogenic 103 

transmission mechanisms.  104 

 Second, 69%-80% of H7N9 human cases of the five epidemic waves reported exposure to live 105 

poultry prior to infection, including LPM (52%–60%) and backyard poultry (13%-40%), and these 106 

figures remained fairly stable with time (Wang et al. 2017). Whilst the majority of those exposures 107 

may correspond to LPM visits, other opportunities for contact with poultry along the production and 108 

value chain could take place. For example, poultry workers in Beijing were shown to be at a higher 109 

risk of H7N9 infection than the remaining population of the city (Yang et al. 2016). In the general 110 

epidemiology of avian influenza emergence, poultry is at the interface between human population 111 

and waterfowl, migratory birds and peri-domestic birds (Kapan et al. 2006; Lam et al. 2015; Peiris 112 

et al. 2016; Bahl et al. 2016) and may itself become a reservoir if the circulation of avian influenza 113 

viruses through the production and value-chain cannot be prevented. Poultry-related variables 114 

were found to be significant predictors of H7N9 risk in several previously published studies (Gilbert 115 

et al. 2014; Li et al. 2015; Xu et al. 2016; Artois et al. 2016).  116 

However, until recently H7N9 was rarely found in poultry farms through active surveillance and a 117 

better understanding of how poultry plays a role in the spread of H7N9 is still needed. During the 118 

5th wave, outbreaks in farms started to be reported with higher numbers and these higher 119 

detections may be linked to the emergence of the H7N9 HPAI, which makes passive surveillance 120 

more effective through apparent clinical signs. Hence, domestic poultry remains the most likely 121 

disease reservoir thus we included a second set of predictor variables, termed “poultry” variables 122 

including the density of chickens and ducks, as these may regionally influence the risk of H7N9 123 

virus transmission to humans. 124 

Third, although the most conservative hypothesis remains that human infections would be 125 

linked to the circulation of H7N9 in domestic chicken reservoirs with occasional human exposure in 126 

LPMs, one can not excluded that wild birds may have taken part in the transmission. The virus 127 

precursors of the H7N9 virus in China were found in a wide variety of bird species, wild and 128 

domestic (Lam et al. 2013), and avian influenza viruses circulating in wild bird represent a gene 129 

pool that may recombine with H7N9 viruses and allow better adaptation and persistence. There is 130 
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little information on the wild host specificity of H7N9, and data on the distribution of wild bird 131 

species is generally fairly coarse, with populations varying strongly according to the season. 132 

Because of those uncertainties, proxy variables are required to investigate the possible effect of 133 

wild birds on H7N9 transmission to humans, and the third set of predictor variables related to 134 

inland water/wetland presence as an indicator of wild water bird distributions.  135 

 The aim of this paper was to study the spatial variation of H7N9 incidence in the human 136 

population during the 5 epidemic waves in relation to anthropogenic, poultry and wild bird habitat 137 

predictor variables on one hand, and in relation to market closure measures on the other hand. 138 

The effect of risk factors and market closures had to be analysed separately because market 139 

closures were often implemented reactively at the time of epidemics in counties or provinces where 140 

incidence was rising. The spatial distribution of market closure measures does in fact correspond 141 

well with areas where a high number of cumulative cases were observed over the entire series of 142 

epidemics, and constitutes a confounder effect because the distribution of market closure 143 

measures would itself be a strong spatial predictor of incidence. Hence, the analysis of market 144 

closure measures and other risk factors were carried out separately. 145 

 Finally, the analysis was repeated over the five epidemic waves of infection, which allowed the 146 

investigation how different predictor variables were linked to H7N9 infection over time, the spatial 147 

distribution of repeated re-occurrences, and the year-to-year variation in predictability of H7N9 148 

infections. 149 

 150 

 151 

Results 152 

A GLMM models was built to study the association between LPM closure measures and the daily 153 

incidence rate (DIR) of H7N9 human cases, by contrasting counties with no measures, counties 154 

with measures but before they were taken, and counties with measures and increasing levels of 155 

closing days. The GLMM models with the closing status were always more explanatory than 156 

intercept-only models based on Akaike information criterion (AIC), and the results of the 157 

comparison of DIR according to the closure measures are presented in Figure 1. A detailed 158 

analysis of these results shows that, with the exception of waves 1 and 4, the DIR computed for 159 
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counties with different levels of closing measures were significantly lower than the DIR computed 160 

in the same counties before the closure(s) (Before C). The DIR computed for counties which did 161 

not implemented any measures but experienced at least one human case in their wave was also 162 

comparatively high. The comparison of the weekly numbers of the H7N9 human cases between 163 

counties concerned by LPM closures measures and counties free of LPM closures is presented in 164 

Fig. 2. Note that in both Fig. 1 and Fig. 2, DIR in counties without any measures was estimated 165 

from counties with at least one human case, so the set of countries from which these estimates 166 

were derived changed from wave to wave. During all epidemic waves, there remained a fairly high 167 

DIR in counties that did not implement any measures, even after the peak of new measures had 168 

passed, highlighting that market closure measures only concerned a fraction of counties where 169 

they may have been efficient in reducing the number of human cases.  170 

 171 

A Poisson boosted regression tree (BRT) models was built to predict the DIR of H7N9 human 172 

cases as a function of a set of anthropogenic (LPM density, human population density), poultry 173 

(poultry density, chicken to duck ratio) and water bird habitat (distance to water, proportion of water 174 

in the county) predictor variables. Table 1 presents the relative contribution (RC, a measure of the 175 

importance of predictor variables in the BRT models, which quantifies the weighted proportion of 176 

use of the variables in the trees) of the different predictor variable of the BRT models in the 177 

different epidemic waves. It can first be noted that the RC of anthropogenic predictor variables 178 

were generally high (w1 = 40.61%; w2 = 50.12%; w3 = 39.26%; w4 = 17.61%; w5 = 17.94%) but 179 

decreased strongly after the third epidemic wave. In parallel, the RC of poultry predictors increased 180 

and was greatest in the last epidemic wave (w1 = 10.47%; w2 = 5.83%; w3 = 2.64%; w4 = 28.54%; 181 

w5 = 41.83%). In this last epidemic wave, the most important predictor variables were by 182 

decreasing order of RC the Chicken to Duck ratio (27.28%), the LPM density (16.04%), the poultry 183 

density (14.55%) and the distance to open lakes and reservoirs (6.16%). Fig. 3 presents the BRT 184 

profiles of these four predictor variables in the different epidemic waves (the other profiles are 185 

provided as supplementary information Fig. 2). The chicken to duck ratio had a significant RC only 186 

in waves 4 and 5, when it showed a positive association with incidence up to a ratio of 187 

approximately 30. The LPM density profile of wave 5 also showed a positive association with the 188 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/146183doi: bioRxiv preprint 

https://doi.org/10.1101/146183


LPM density, levelling-off at a density of 0.01, and with a relatively similar profile to the other 189 

epidemic waves. The 5th wave tended to associate lower incidence with the highest densities (> 190 

0.03), in contrast to previous epidemic waves. The poultry density profile changed gradually over 191 

time, with an increasing RC, and the incidence rate in wave 5 is predicted to increase strongly in 192 

counties with a very high density of poultry (> 60,000 heads/km²). Finally, the profile of the distance 193 

to lakes showed a decreasing association, which in the range 0 – 100 km.  194 

The assessment of the BRT models goodness of fit is presented in Table 2, and with the exception 195 

of the 4th epidemic waves, the predictability of the models were moderate with cross-validation 196 

correlation coefficients within a range from 0.42 to 0.55. In presence/absence term, the models had 197 

a good discriminatory capacity with AUC ranging from 0.78 to 0.92 but this decreased over the 198 

years (w1 = 0.92; w2 = 0.85; w3 = 0.83; w4 = 0.86; w5 = 0.78). This difference in predictability 199 

highlights that it is apparently easier to predict the presence or absence of a human case than it is 200 

their number. Epidemic wave 4 was quite specific, longer in time but of lower intensity with a lower 201 

total number of human cases than during the other waves, which may explain the lower 202 

predictability. The evaluation of the temporal extrapolation capacity of the different models is 203 

presented in Table 3. The AUC metrics decrease when a prediction of a given wave is tested for its 204 

ability to predict the presence of H7N9 human cases in the following years and AUC values never 205 

drop below 0.74. 206 

 Figure 4 shows the distribution of the top-three predictor variables (Live-poultry market density, 207 

poultry density and chicken to duck ratio) in relation to the distribution of the past and last epidemic 208 

wave. The RGB composite plot (Fig. 4a) highlights areas where all three predictor variables were 209 

high and where H7N9 persisted over time (Fig. 4b), as indicated by the number of years during 210 

which each county experienced at least one human case. First, in a large areas surrounding the 211 

Yangtze River delta, poultry production is largely dominated by chicken production to the north of 212 

the Taihu Lake, high live-poultry market density to the east of the Taihu Lake on the urban areas of 213 

Wuxi, Suzhou and Shanghai and includes several small hotspots of high poultry production in a 214 

large area that surrounds the Taihu Lake. Second, the RGB composite plots highlight three 215 

additional urban areas with high LBM density and high poultry density: the Guangdong province, 216 

the Tianjin and the Beijing urban areas and the Chongqing urban area. These different areas 217 
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highlighted in the RGB maps visually correspond to areas of high H7N9 re-occurrence displayed in 218 

Fig. 4b. Indeed, the count of number of years with at least one human case helps to visualise the 219 

distinction between counties with repeated reoccurrences from counties with sporadic infections. 220 

These areas include southern Jiangsu, Shanghai and northern Zhejiang provinces, as well as 221 

Guangdong counties located around Hong Kong but to a lesser degree than the areas in and 222 

around Shanghai. Fig. 4c highlights that the spatial pattern of wave 5 showed a marked geographic 223 

expansion from these previous hotspots of persistence, with a 90 counties reporting H7N9 for the 224 

first time (50.85% of the total number of counties infected in wave 5). One can also measure why 225 

live-poultry density was a lower predictor in wave 5 than in previous waves, as these newly 226 

infected counties do not match green areas depicted in Fig. 4a. 227 

The heat maps presented in Fig. 5 show that until now, the majority of H7N9 human cases have 228 

taken place in February to March (Fig. 5B) with a latitudinal gradient. The seasonality of common 229 

influenza A infection shows different levels of seasonality in China (Fig. 5C), with the province 230 

north of 34.1 degrees showing a much stronger annual winter seasonality of infection than more 231 

southern provinces, with a peak in December – February. By comparing figure 5B to 5C, once can 232 

visualise that so far, the peaks of H7N9 and seasonal influenza have not yet been strongly 233 

coinciding in space and time. However, a geographic range expansion of H7N9 infections in the 234 

northern provinces, keeping its current seasonality, would bring the H7N9 and seasonal influenza 235 

incidence peaks to coincide much more extensively.  236 

 237 

Discussion 238 

The results of our spatial models demonstrate a significant shift over time from anthropogenic to 239 

poultry predictor variables linked to H7N9 human cases. This shift was already apparent in the 4th 240 

epidemic wave, although fewer human cases were reported. More specifically, the predictive 241 

power of poultry variables increased over time and was greatest in the last epidemic, pointing to 242 

areas with very high chicken densities and high chicken to duck ratios. A recent study on H7N9 243 

human cases showed an increase in semi-urban and rural cases in the last wave, and a 244 

comparatively higher number of middle-aged cases (Wang et al. 2017). However, apart from the 245 

overall increase in cases, the study did not suggest any other major epidemiological differences, 246 
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and other authors made similar observations when comparing waves 1-4 (Wang et al. 2017; Xiang 247 

et al. 2016; Xiang 2016). Our results do not contradict the observation of a higher number of 248 

human cases in peri-urban and rural areas, because high poultry production regions are typically 249 

located in peri-urban and rural settings. But they strongly support the hypothesis that the H7N9 250 

virus may have spread in the chicken reservoir much more extensively in the last two epidemic 251 

waves than previously, with a particularly marked geographical range expansion in the last 252 

epidemic wave. This observation based on human case can be linked to the emergence of HPAI 253 

H7N9 that was reported early 2017 in southern China (W. Zhu et al. 2017). Recently published 254 

results showed that human cases of HPAI H7N9 were already found beyond Guangdong, in Hunan 255 

and Guangxi in early 2017 (L. Zhou, Tan, et al. 2017). In parallel, there was a comparatively higher 256 

number of reports of H7N9 positives found in poultry farms this year in comparison to previous 257 

epidemic waves, including reports of HPAI H7N9 in northern China, in Tianjin (FAO Empres 2017). 258 

The precise role of the gain in pathogenicity on the range expansion of H7N9 is yet unclear, as of 259 

the main mechanisms of transmission along the poultry production and value chain networks. 260 

However, the fact that such a range expansion took place in parallel to the emergence of a highly 261 

pathogenic variant can hardly be coincidental.   262 

It should be borne in mind that the measure of predictor weights in the model is relative, i.e. the 263 

sum of relative contribution equals to 1, so if poultry variables become better predictors of H7N9 264 

incidence in human, the RC of other variable would decrease, even if their effect on the predicted 265 

incidence remained fairly constant. This seems to be the case for the LPM variable, as the BRT 266 

profiles remained fairly stable, suggesting that the role of LPMs in the transmission may have 267 

remained important, and adding up with the increasing contribution of the poultry predictors to lead 268 

to the highest incidence observed in the 5th wave. In other words, the contribution of LPMs may 269 

have remained high, but its combination with increasing transmission along the poultry production 270 

and value chains may be responsible for the geographical range expansion and higher incidence 271 

of the 5th wave.  272 

Although some of the highest incidences were observed along Taihu Lake, the predictive capacity 273 

of water bird-related predictor variables appeared to have a much lower influence on the predicted 274 

incidence than anthropogenic and poultry variables. Wetlands constitute favourable ecosystems for 275 
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the emergence of new avian influenza viruses, especially when intensive poultry farming is taking 276 

place in nearby landscapes, forming ideal interfaces for wild-domestic and domestic-wild 277 

transmission. Many interfaces combining wetlands, intensive poultry farming and rice paddy fields 278 

are present in south-eastern China and may have played a role in the initial emergence of the 279 

H7N9 virus in the Shanghai area (Liu et al. 2013). However, as the virus spread more abundantly 280 

in the domestic chicken reservoir in the following epidemic wave, the contribution of wild birds to 281 

overall disease circulation may be fairly low, which is reflected by the low relative contribution of 282 

the water bird proxy variables.  283 

The predictive capacity of the incidence models was only moderate, and this can naturally be 284 

explained by the fact that these spatial models didn’t account for the variability in incidence linked 285 

to market closure measures. This is confirmed by the fact that the predictions of presence/absence 286 

were generally better, because presence cannot be influenced by market closure measures (as 287 

they followed human cases rather than preceding them), and few counties implemented market 288 

closure measures in the absence of human cases.  289 

 290 

The geographical range expansion and increases in incidence of human cases in the 5th wave of 291 

H7N9 brings serious human health concerns. First, repeated human infection by avian influenza 292 

viruses increase the chances of adaptation to improved human to human transmission. Second, 293 

the provinces affected by earlier H7N9 epidemic waves do not have a strong seasonal influenza A 294 

peak in January and February (Yu, Alonso, et al. 2013) that matches the peak of H7N9 cases (Fig. 295 

5). However, if the H7N9 virus continues to expand its range northward, in areas with a strong 296 

influenza A peak in January and February, there will be a higher chance of local coincidence of 297 

peaks of incidence between human cases of H7N9 and seasonal influenza A virus. This may 298 

enhance the chances of co-infections that could lead to the emergence of reassortants with the 299 

capacity to easily transmit between humans. Third, the extent of the geographical range of the 300 

expansion is not yet fully known and in the absence of new measures, it may spread further within 301 

China, and internationally through poultry value-chains.  302 

 303 
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Preventing human infections has so far mostly relied on market closures, and our results based on 304 

the 5 waves tend confirm the efficiency of the reduction reported in previous studies. For example, 305 

(2014) showed that the closure of LPM reduced the mean daily number of infections by a factor 306 

ranging between 97% and 99% during the first epidemic wave in 4 cities of central-eastern part of 307 

China (Shanghai, Hangzhou, Huzhou, and Nanjing). However, as highlighted in Fig. 2 showing the 308 

perpetuation of epidemics despite market closures, with relatively high incidences in counties with 309 

no measures, the implementation of LPM closing measures and their efficiency is fairly 310 

heterogeneous in space and time and, with the exception of permanent closure, was most often 311 

implemented reactively in areas directly affected by H7N9 human cases. Live-poultry market 312 

closing measures may have a direct effect on the local circulation of the virus in the market 313 

networks and value-chain and on the human exposure. However, the poultry trade network in 314 

China is extensive and complex and poultry sold in a market may come from many different 315 

sources distributed throughout the country (Martin et al. 2011; Soares Magalhães et al. 2012; X. 316 

Zhou et al. 2015). For example, an interview of 25 live poultry traders in southern China Magalhaes 317 

et al. (2012) showed that in February, 4 LPM were linked to 122 poultry sources with an average 318 

distances between the poultry source and LPM of 803 km. Live poultry traders could recoup the 319 

loss of sales points by enlisting nearby or more distance areas that were less concerned by LPM 320 

closing measures. An interesting aspect of the study of Magalhaes et al. (2012) is that the 321 

geographic extent of the poultry source/LPM network appears highly dependent of the period of the 322 

year and maximal in February and around the Chinese New Year festivities. More recently, a 323 

similar analysis was done in Yangtze River delta and surrounding areas (central-eastern China) 324 

and showed selected LPM from Shanghai, Nanjing, Hangzhou, Huzhou, Hefei and Chuzhou had 325 

large catchment areas with poultry being brought from adjacent provinces (from January to April) 326 

(X. Zhou et al. 2015). So, unless LPM is paired with poultry movement controls or pre-movement 327 

testing policies, the measure may be effective locally but may also have implications on the risk of 328 

disease spread to other areas.  A second aspect is that the reactive nature of market closure in the 329 

most severely affected areas necessarily implies a significant delay. By the time human cases 330 

become detected in sufficient numbers to trigger a reactive market closure decision, the disease 331 

has had many opportunities to spread through the market networks to other areas not necessarily 332 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/146183doi: bioRxiv preprint 

https://doi.org/10.1101/146183


concerned by the measure. This probably explains why many human cases continue to be 333 

reported in counties with no measures for several weeks after the peak of market closure 334 

measures. 335 

 336 

Conclusion 337 

 A major shift was observed between the predictor variables of H7N9 human cases during the 338 

course of the five epidemic waves, with poultry predictor variables becoming more important than 339 

anthropogenic predictor variables, particularly in waves 4 and 5. This result strongly supports a 340 

recent and significant geographical expansion of H7N9 viruses, and their circulation in the poultry 341 

reservoir. This could have been paired with a higher pathogenicity and result in the observed 342 

increase in frequency of reports in poultry farms. 343 

 The current range expansion of H7N9 to more northerly latitudes may increase the chances of 344 

H7N9 peaks coinciding in both space and time with those of seasonal influenza A infection, leading 345 

to higher risk of co-infections and reassortments. 346 

LPM closure measures appear to be effective in reducing the daily incidence rates of H7N9 347 

human cases in counties where they are implemented, especially when these measures are 348 

permanent, or implemented for a sufficiently long period. They do not, however prevent the 349 

reporting of human cases in other areas, so their impact appears mostly to be local. In addition, 350 

such measures drive poultry trade elsewhere, e.g. in peri-urban areas or the countryside, with 351 

related human exposure risk. 352 

 Reducing H7N9 circulation in poultry and humans may require significantly more preventive 353 

and control measures than those currently in place. The following, for example, could be 354 

considered: i) pro-active rather than reactive market closure measures in areas and periods 355 

predicted to be at high risk, based on restrospective space-time modelling of previous waves of 356 

infections, ii) better surveillance, prevention and control of H7N9 along the poultry production and 357 

value-chain networks, iii) poultry movement bans or pre-movement testing policies, and iv) the 358 

development and use of vaccination to prevent or reduce H7N9 circulation in poultry, following the 359 

experience of China’s mass-vaccination of poultry against the HPAI H5N1.  360 

 361 
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Material and methods 362 

Data 363 

H7N9 human cases and seasonal Influenza  364 

All confirmed H7N9 human cases during the period from March 2013 to 18th April 2017 were 365 

analysed. These were surveillance data from the national system centralised by the China Centre 366 

for Disease Control and Prevention (China CDC). A detailed description of case definitions, 367 

surveillance for identification of cases, and laboratory testing for A H7N9 virus have been provided 368 

elsewhere (Cowling et al. 2013; Yu, Cowling, et al. 2013; Qin et al. 2015). For each case, the 369 

information about place of residence and date of onset of symptoms were used. Indeed, this study 370 

predicted that exposure lead to symptoms within 6.5 days (95% confidence interval: 5.9, 7.1), so 371 

6.5 days have been subtracted from the date of onset of symptoms to estimate the dates of first 372 

contact with the virus (Virlogeux et al. 2015). Finally, in order to compare the seasonality of H7N9 373 

human cases with that of common influenza A in space and time, we used data from the national 374 

sentinel hospital-based influenza surveillance network, providing the weekly proportion of 375 

laboratory-confirmed influenza cases by virus type from specimens tested in 30 Chinese provinces 376 

during the period January 2013 – March 2017. More information on the sentinel network from 377 

which these data were derived can be found in Yu et al. (2013). 378 

 379 

Live poultry markets and closing measures 380 

A database recording the location of LPMs, type of market closure measures, with starting and end 381 

date, implemented since the first wave was compiled by the authors. The database was initially 382 

assembled by combining i) data from the official website of the Ministry of Agriculture of China and 383 

agricultural bureaus at province and prefecture level, ii) a database of points of interest from the 384 

official gazetteer issued by the National Administration of Surveying, Mapping and Geoinformation, 385 

and iii) several unpublished data sources obtained through data mining, internet searches and 386 

direct contacts with provincial Agricultural bureaus.  387 

A database recording the type, starting date, end date and location of market closure measures 388 

that were implemented since the first wave was compiled by the authors. A total of 38 types of 389 

measures over different periods of time were implemented in response to the H7N9 human 390 
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infections, as listed in SI Table 1, and the market closure were implemented at the county or 391 

district level. The database was used in two different ways. First, data on permanent market 392 

closures was used to update a yearly distribution of LPM locations, by annually removing the 393 

permanently closed markets out of the 8,943 retail and wholesale poultry market locations of the 394 

full LPM database. Second, the range of closure measures was reclassified according to the 395 

proportion of closing days (from 1 day per month to permanent closure), and used to estimate 396 

different types of incidence, as detailed in the analysis section below.  397 

 398 

Spatial predictors 399 

The first set of predictor variables included the LPM density (LPM/km2) and human population 400 

density (people / km2). However, some counties do not have LPMs but the people living there may 401 

easily go to surrounding counties. In addition, the role of LPM density may act at a higher level by 402 

providing a network of markets through which the disease could spread and persist. So, the LPM 403 

density was computed by means of a Gaussian smoothing kernel function with the optimal 404 

bandwidth found by Gilbert et al. (2014). For each wave, the LPM density estimate only included 405 

markets from counties without permanent LPM closure, hence resulting in a different LPM density 406 

distribution per epidemic wave. For human population, we used the human population density from 407 

the 2010 census (China Data Center).  408 

The second set of predictor variables included poultry, chicken and domestic duck density from a 409 

recently published database with the reference year 2010 (Artois et al. 2016). This new data set 410 

was produced using the Gridded Livestock of the World methodology (Robinson et al. 2014; 411 

Nicolas et al. 2016) applied to an extensively improved data set compiled by the authors. However, 412 

at the county level, there was a very high correlation between duck and chicken density.  So in 413 

order to reduce collinearity and make the results more easily interpretable, we built two alternative 414 

predictor variables: the poultry density (chicken + duck heads / km2) and the chicken to duck ratio 415 

(chicken heads / duck heads), which were found to be much more independent. 416 

The last set of predictors dealing with water bird habitat included two variables. First, the distance 417 

to the largest lakes and reservoirs (km), which represents the distance between the county 418 

centroids and the nearest lakes (area ≥ 50 km²) or reservoirs (storage capacity ≥ 0.5 km³) (Lehner 419 
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& Döll 2007), and second, the proportion (%) of county covered by wetlands, which was derived 420 

from the hybrid wetland map for China (Ma et al. 2012). 421 

Climatic data were not tested in this analysis, for a number of reasons. First, the mechanism by 422 

which they may influence human cases is unclear. For example, influenza A human infections 423 

generally peak in January-February in Northern China, and in April to June in the southernmost 424 

regions (Yu, Alonso, et al. 2013), which does not fit the peak of H7N9 cases in southern China. 425 

Seasonality of H7N9 poultry infections is unknown, but apparent for avian influenza poultry 426 

infections by HPAI H5N1 viruses. However, continental-scale climatic spatial variables failed to 427 

provide robust HPAI H5N1 models in comparison to host-related variables (Dhingra et al. 2016). 428 

Second, spatial model pools human cases data over a relatively long period of times with changing 429 

conditions that would be more fully taken into account in spatio-temporal models, alongside other 430 

variables varying in time such as poultry trade, for example, but these investigations go beyond the 431 

scope of the present study.  432 

 433 

Analyses 434 

The five H7N9 epidemic waves had different durations and starting dates. So, in order to make the 435 

estimates of incidence comparable, the use of a similar epidemic start and end date for all waves 436 

was not justified. Using an epidemic period determined by the first and last case would also be 437 

somewhat misleading because the difference between the minimum and maximum is a very 438 

sensitive indicator of a distribution spread. So, the duration of each epidemic was set as the period 439 

separating the 5th from the 95th percentiles of the days of onset of illness in each wave. 440 

 441 

Our first set of analyses focused on the impact of LPM closure on incidence. Daily incidence rates 442 

(DIRs) were computed and compared at county level before and after different sets of measures 443 

were put in place for the 5 epidemic waves of H7N9. The DIR was defined as the number of new 444 

human cases per county population per day over the timespans (number of cases / (population * 445 

number of days)). These DIRs were estimated according to different levels of market closures. 446 

First, we estimated the DIR in counties without market closures over the full duration of the 447 

epidemic wave, but where at least one human case was notified during the epidemic wave (NoC). 448 
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Second, the DIR was estimated in counties where there was at least one closing measures during 449 

the epidemic wave, but in the period preceding the implementation of the first one (BeforeC). Third, 450 

DIRs were estimated in counties after the implementation of the first measure and until the end of 451 

the epidemics, and we contrasted different levels of closures in that period: low (< 25 % of closing 452 

days), intermediate (25 – 75 % of closing days) and high (> 75% of closing days). A generalized 453 

linear mixed effect models (GLMM) followed by a multiple comparison procedures (Bretz et al. 454 

2011) was used to compare the DIRs according to the different types of closure. The GLMM 455 

models were formulated with Poisson distribution taking into account the county level as random 456 

effects (two observations of the same county, before and after the closure, may be considered 457 

separately in the models and represent a bias to the assumption of independence of observations). 458 

All DIR estimates were done only in counties where the H7N9 virus was reported at least one time 459 

over the 5 epidemic waves, such as to exclude the counties in regions that were never reported as 460 

infected. Furthermore, DIR estimated from very short period of times may have very variation due 461 

to the stochasticity of case reports. So, the GLMM model only included DIR estimates out of 462 

durations higher than 20% of the full epidemic wave duration.  463 

 464 

Our second set of analyses involved the development of Poisson Boosted regression tree (BRT) 465 

models to predict the daily incidence rate of H7N9 virus in human population as a function of the 466 

set of predictor variables. The models were developed using the number of human cases as 467 

dependent variable with an offset term corresponding to the product of human population by the 468 

duration of the epidemic. We build one model per epidemic wave to be able to compare the effect 469 

of predictor variables, and to assess the predictive capacity from one wave to another. Each 470 

epidemic wave model was developed using a 4-fold cross-validation procedure (Elith, Leathwick, 471 

and Hastie 2008) and the Pearson correlation coefficient between the predicted and the observed 472 

response was used as a measurement of the predictive capacity of models. The contribution of 473 

each predictor variable to the model was quantified in two ways. First, the relative contribution (RC) 474 

of each variable is a measure of its overall importance in the model and corresponds to the number 475 

of times a variable is selected for splitting the regression trees, weighted by a factor on the quality 476 

of the splitting (Friedman and Meulman 2003). This number is expressed in relative frequency so 477 
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the sum of RC of the individual variables should equal to 1. Second, for each variable and model, 478 

we estimated the partial dependence plots, or BRT profiles, which provide a graphical description 479 

of the predicted effect of a predictor variable on the response (the incidence rate) after accounting 480 

for the average effects of all other predictor variables in the model (Elith, Leathwick, and Hastie 481 

2008).  482 

The presence of spatial autocorrelation in the model residuals was tested using spline 483 

correlograms (BjØrnstad and Falck 2001) and the approach of Crase, Liedloff, and Wintle (2012) 484 

was used when autocorrelation was present in the model residuals. An autoregressive term 485 

containing a spatial average of the initial model residuals is build, and added as predictor variable 486 

of a new model. The goodness of fit metrics were both estimated from the models without the 487 

autoregressive term and with the autoregressive term set to zero. Finally, in order to account for 488 

sources of uncertainty in data splitting for the cross-validation, the analysis was bootstrapped with 489 

30 independent BRT run for a total of 120 cross-validations (30 runs × 4-folds) per wave. The six 490 

variables, namely the LPM density, the human population density, the poultry density, the chicken 491 

to duck ratio, the distance to open lakes and reservoirs, and the proportion of land covered by 492 

water were tested in all models.  493 

In order to test the capacity of the models to discriminate between the presence and the absence 494 

of human cases at county scale, the predicted incidence rate was also converted into a probability 495 

of having at least one human case in the county. As the population per county (n) was high and the 496 

mean probability of having a H7N9 human cases (p) is very low: B(n, p) ~ P(n*p). Therefore, the 497 

probability of having at least one human case per county was estimated with a Binomial distribution 498 

as following: 499 

P(X > 0) = 1 - (1 - p)nd 500 

where nd is the population times the number of days in the epidemic duration; and p is the 501 

incidence rate predicted by the Poisson BRT model. 502 

Finally, we also wanted to evaluate the temporal extrapolation capacity of the BRT models, and 503 

each model trained with the data of a given epidemic wave was evaluated in its ability to predict 504 

the H7N9 human cases from the following epidemic waves. The observed presence or absence of 505 

human cases at the county level in a given epidemic wave was compared to the predicted 506 
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probabilities of human case present of the previous years’ model with the area under curve of the 507 

ROC plot. 508 
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Figures  708 

 709 

Figure 1 Daily incidence rate estimated during the different epidemic waves in counties with no 710 

closing measures but having at least 1 cases during the epidemic wave (No C.), in counties with 711 

measures, but before the first closing measure (Before C.) and with different proportion closing 712 

days after the first measures. 713 

 714 
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 716 

Figure 2 Daily incidence rates in counties with or without closing measures (only including counties 717 

with at least one human case over each epidemics). The black dots with varying size are indicative 718 

of the number of new closing measures in each 20 days time interval. 719 

 720 
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 722 

Figure 3 Marginal effect plots of the top-4 predictor variables on the predicted incidence rate, with 723 

the change in relative contribution over time indicated by the bars on the top of each plot, showing 724 

the increasing relative contribution of the poultry predictor variables. The smoothed line on the top 725 

left part of each plot is indicative of the distribution of each variable.  726 

 727 
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 728 

Figure 4 Distribution of predictor variables and H7N9 infections. A. Red-Green-Blue visualisation of 729 

poultry density (red), live-poultry market density (green) and chicken / duck ratio (blue), with dark 730 

areas corresponding to low values in all three predictors, and white areas to high values in all three 731 

predictors. B. Number of years with at least 1 human case per county. C Distribution of the 5th 732 

wave of human infections over previous ones.733 
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 734 

 735 
Figure 5 Seasonality of H7N7 infections in comparison to seasonal influenza. A. epidemic curve for 736 

H7N9; B seasonality for H7N9; C seasonality for seasonal influenza. 737 
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Table 1 Relative contribution of the different BRT models across the different epidemic waves 739 

    Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

Anthropogenic (sum of RC) 40.61 50.12 39.26 17.61 17.94 

 

LPM density  38.68 ± 0.76 49.48 ± 0.4 11.02 ± 0.89 13.59 ± 0.77 16.04 ± 0.16 

 

Human pop. density  1.93 ± 0.17 0.64 ± 0.03 28.24 ± 0.55 4.02 ± 0.24 1.9 ± 0.06 

       Poultry (sum of RC) 10.47 5.83 2.64 28.54 41.83 

 

Chicken to duck ratio  5.29 ± 0.15 4.34 ± 0.05 0.72 ± 0.11 19.96 ± 0.42 27.28 ± 0.34 

 

Poultry density  5.18 ± 0.16 1.49 ± 0.04 1.92 ± 0.17 8.58 ± 0.32 14.55 ± 0.11 

       Water habitat (sum of RC) 2.21 3.94 9.75 5.95 7.67 

 

Prop. of wetlands 0.55 ± 0.05 1.34 ± 0.06 1.81 ± 0.12 0.8 ± 0.05 1.51 ± 0.05 

 

Distance to  lakes 1.66 ± 0.07 2.6 ± 0.09 7.94 ± 0.31 5.15 ± 0.19 6.16 ± 0.07 

  
     Autoregressive term 46.7 ± 0.6 40.11 ± 0.34 48.35 ± 0.77 47.9 ± 1.22 32.55 ± 0.26 

              

 740 

 741 
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Table 2 Goodness of fit metrics of the BRT models across the different epidemic waves 743 

 744 

 

Pearson Corr. Coefficient AUC 

  Training Training_Auto CV Training Training_Auto 

wave 1 0.785 ± 0.012 0.552 ± 0.002 0.477 ± 0.015 0.923 ± 0.001 0.907 ± 0.002 

wave 2 0.753 ± 0.004 0.326 ± 0.007 0.548 ± 0.013 0.85 ± 0.001 0.849 ± 0 

wave 3 0.582 ± 0.011 0.495 ± 0.004 0.42 ± 0.013 0.831 ± 0.003 0.814 ± 0.001 

wave 4 0.44 ± 0.012 0.293 ± 0.006 0.259 ± 0.008 0.856 ± 0.001 0.832 ± 0.001 

wave 5 0.61 ± 0.002 0.527 ± 0.002 0.447 ± 0.009 0.778 ± 0.001 0.755 ± 0 

 745 

 746 
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Table 3 Cross-predictability of the models trained with the different epidemic waves applied to the 748 

others, as measured by the AUC. 749 

 750 

  

Applied to 

    wave 1 wave 2 wave 3 wave 4 wave 5 

Predictions of 

     

 

wave 1 0.91 0.81 0.78 0.84 0.79 

 

wave 2 - 0.85 0.78 0.83 0.76 

 

wave 3 - - 0.82 0.82 0.74 

 

wave 4 - - - 0.83 0.75 

  wave 5 - - - - 0.76 
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