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Abstract

iCLIP and eCLIP techniques facilitate the detection of protein-RNA interaction sites at high resolution, based on
diagnostic events at crosslink sites. However, previous methods do not explicitly model the specifics of iCLIP and
eCLIP truncation patterns and possible biases. We developed PureCLIP, a hidden Markov model based approach,
which simultaneously performs peak calling and individual crosslink site detection. It explicitly incorporates RNA
abundances and, for the first time, non-specific sequence biases. On both simulated and real data, PureCLIP is more
accurate in calling crosslink sites than other state-of-the-art methods and has a higher agreement across replicates.

Link: https://github.com/skrakau/PureCLIP.

Background

Interactions between RNAs and RNA binding pro-
teins (RBPs) play essential roles in both transcrip-
tional and post-transcriptional gene regulation. RBPs
bind on several sites of both coding and non-coding
RNAs with directed but somewhat fuzzy binding affin-
ity for both RNA sequence and structure. In order
to fully understand regulatory processes mediated by
RBPs it is crucial to accurately determine the full land-
scape of interactions for a protein of interest. State-of-
the-art technologies using crosslinking and immunopre-
cipitation combined with high-throughput sequencing
(CLIP-seq) allow a genome-wide binding site detection
with high resolution. The most commonly used proto-
cols in this field are HITS-CLIP [6], photoactivatable-
ribonucleoside-enhanced CLIP (PAR-CLIP) [13] and
since 2010 individual-nucleotide CLIP (iCLIP) [15].
All methods use UV light, which causes the forma-
tion of crosslinks at protein-RNA interaction sites.
These crosslinks subsequently increase the probability
for base transitions, deletions and truncations during
the reverse transcription. Such diagnostic events can
be used to localize the crosslink position. However,
due to the ligation of an adapter at the 5" end of the
RNA fragments, HITS-CLIP and PAR-CLIP methods
only capture cDNAs which are entirely read by the re-
verse transcriptase, i.e. not truncated. The fraction
of truncated and thus lost fragments is typically over

80% [27].

iCLIP-seq uses a cleavable adapter in combination
with an additional circularization step, which allows all
cDNA fragments to be amplified and sequenced. As
a consequence, valuable information about the exact
crosslink site can be retained from truncated cDNAs,
or more precisely from the read start sites they cause.

Recently, various improvements to the protocol were
proposed to alleviate previous limitations [12,24]. An-
other protocol called eCLIP was published in 2016 [30].
Similarly to iCLIP, it provides single-nucleotide reso-
lution by capturing truncated cDNAs but, due to the
optimization of several steps, improves the specificity
of called binding sites. To date, eCLIP datasets for
more than 120 different proteins have been published
as part of the ENCODE consortium [3,25]. While pre-
vious CLIP-seq experiments often had matched IgG
control experiments, which suffer from sparsity and
high amplification rates [30], the eCLIP-seq protocol
is designed to generate a size-matched input control.
This input control is sampled prior to the immunopre-
cipitation and thus contains the signal of non-specific
background.

In order to infer target-specific RBP binding regions
from iCLIP/eCLIP data, it is crucial to account for dif-
ferent sources of biases, such as transcript abundances,
crosslinking sequence preferences [27] and mappabil-
ity. The crosslinking sequence bias can also be ob-
served within the eCLIP input data, since it “repre-
sent[s] RNAs crosslinked to many different RBPs and
should reflect the sequence preferences at crosslink sites
that are common to a mixture of RBPs” [12]. Haber-
man et al. showed that certain polypyrimidine rich
k-mers, which they call crosslink-associated (CL) mo-
tifs are enriched at read start sites in both input and
target eCLIP data compared to upstream regions [12].

Besides background noise such as signal coming from
sticky RNA fragments or non-specific crosslink events
within CL-motifs, the binding of background proteins
constitute a major challenge for the analysis of CLIP-
seq data. A recent study analysing previously pub-
lished PAR-CLIP datasets showed that if no control
dataset is used for correction, up to 45% of the called


https://github.com/skrakau/PureCLIP
https://doi.org/10.1101/146704

bioRxiv preprint doi: https://doi.org/10.1101/146704; this version posted June 7, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

binding sites overlap with background binding sites [9].
Background binding regions that are common to sev-
eral CLIP-seq datasets have been systematically iden-
tified [21] and can be used for validation of called bind-
ing sites. These findings demonstrate the importance
of control experiments, such as input experiments, to
reduce the number of false positives at such regions.

Several tools have been developed for the computa-
tional analysis of HITS-CLIP and PAR-CLIP data [,

,29], but very few tools have been developed which
are tailored for the specific analysis of iCLIP/eCLIP
data. In addition, previous methods for CLIP-seq
data analysis do not fully take into account possible
sources of bias, such as transcript abundances and
non-specific CL-motifs, which heavily affect iCLIP and
eCLIP data [12, 28], thereby returning a high number
of false calls. The tool Piranha [29] performs strand-
specific peak-calling without explicitly normalizing for
non-specific background signal. It models the under-
lying bin-wise read count distribution to compute a
genome-wide significance threshold above which peaks
are called. CLIPper [30] is also a strand-specific peak-
calling method designed by members of the ENCODE
consortium for the analysis of the published eCLIP
datasets. It incorporates annotations from the refer-
ence genome and computes significance thresholds on
a gene-by-gene basis. Both tools, Piranha and CLIPper
are peak calling methods which do not detect individ-
ual crosslink sites. Their limitation is that they po-
tentially miss low affinity binding regions with a clear
iCLIP truncation pattern due to the arbitrary setting
of a threshold on the number of reads. In addition, they
are sensitive to call peaks caused, for example, by arte-
facts within high abundant RNAs. The method CITS
on the other hand aims to call individual crosslink sites
from iCLIP-seq data [31]. It clusters reads based on
their start sites and uses a statistical test to detect sites
within such clusters containing a significant fraction of
read starts. A drawback of this method is that it does
not explicitly model the relation between read start
counts and the read coverage generated by pulled-down
iCLIP fragments. As a result, it might be also sensitive
to artefacts within highly abundant RNAs. In contrast,
PIPE-CLIP [2] is an online pipeline for the analysis
of HITS-CLIP, PAR-CLIP and iCLIP data designed
to separately call peaks and crosslink sites, which are
subsequently merged. Although constituting a power-
ful idea, one drawback of this method is that it is not
designed to include control experiments in the analysis.
In addition, being designed to be an online method, its
application for transcriptome-wide analysis is not prac-
tically feasible. As described above, both CLIP-seq
peak calling methods and individual crosslink site de-
tection methods come with advantages and disadvan-
tages, but currently no method exists which addresses
peak-calling and individual crosslink site detection si-
multaneously, while correcting for possible biases.

We have developed PureCLIP, a method to cap-

ture target-specific protein-RNA interaction footprints
from iCLIP/eCLIP-seq data. PureCLIP calls individ-
ual crosslink sites considering both regions enriched
in protein-bound fragments and iCLIP/eCLIP spe-
cific truncation patterns. Our method uses a non-
homogeneous Hidden Markov model to incorporate ad-
ditional factors into the model, such as non-specific
background signal from input experiments and CL-
motifs in order to reduce the number of false positives.
We have exhaustively validated the superiority of Pure-
CLIP over several existing methods in various settings.
First, we have designed a realistic iCLIP /eCLIP simu-
lation setup and demonstrated that, over a wide range
of simulation parameters, PureCLIP is up to 7-15%
more precise than other methods in detecting target-
specific crosslink sites. Second, in the lack of an exper-
imental gold standard, we have selected 4 datasets of
published iCLIP /eCLIP data for evaluation where the
RBP motif or the predominant binding region of the
RBP is known. We consistently observed that Pure-
CLIP is better than other methods in determining bona
fide binding site locations. In particular, the incorpora-
tion of covariates, such as input signal and CL-motifs,
increases the precision of PureCLIP up to 8-10% com-
pared to previous methods. Third, the replicate agree-
ment of target-specific crosslink sites called by Pure-
CLIP is up to 8-20% higher than other methods, in-
dicating that PureCLIP is highly specific in crosslink
site detection.

Results

Overview of the approach

PureCLIP aims to detect individual crosslink sites orig-
inating from interactions between RNAs and the pro-
tein targeted by the experiment. In order to accom-
plish this, we address two objectives: (1) detect regions
enriched in mapped reads caused by pulled-down RNA
fragments and (2) detect crosslink sites where a sig-
nificant fraction of read starts accumulate at the same
position, originating from truncated cDNAs (Fig. 1).

In the following we give an overview on how we de-
rive this information, assuming that the input data are
iCLIP/eCLIP-seq reads which have been mapped to
either a genome or a transcriptome and PCR dupli-
cates have been removed. The output of PureCLIP
consists of individual crosslink sites associated with a
score. Since multiple crosslink sites can occur within
one binding region, the crosslink sites are optionally
merged.

Hidden Markov model

CLIP-seq data features a spatial dependency between
neighbouring positions. In order to infer crosslink sites
from the observed data we look at it as a segmenta-
tion problem and address this using a hidden Markov
model (HMM). The HMM has a single-nucleotide res-
olution and each position can be categorized either as
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Figure 1: Overview of PureCLIPs approach. a) PureCLIP starts with mapped reads from a target iCLIP/eCLIP experiment
and derives two signals: the pulled-down fragment density and individual read start counts. Based on these two observed signals
it infers for each position the most likely hidden state. The goal is to identify all sites with an ‘enriched & crosslink’ state.
Individual crosslink sites can then be merged to binding regions. b) Additionally, information from input control experiments
can be incorporated. The fragment density is used to correct for non-specific background signal, which reduces the number
of false calls. ¢) Furthermore, PureCLIP can incorporate information about CL-motifs, in order to reduce false calls caused by

non-specific crosslinks.

‘non-enriched’ or ‘enriched’ , indicating whether the
position is enriched or not in protein bound fragments.
In addition, each position can also be categorized as
‘non-crosslink’ or ‘crosslink’, indicating whether it rep-
resents a crosslink site or not. This combination re-
sults in four hidden states: (1) ‘non-enriched & non-
crosslink’; (2) ‘non-enriched & crosslink’, (3) ‘enriched
& non-crosslink’ and (4) ‘enriched & crosslink’ (Fig. 1).
State (2) corresponds to non-specific crosslink sites and
it is included in the model for mathematical complete-
ness. We are interested in all sites with a hidden state
(4), i.e. sites that are enriched in pulled down RNA
fragments and show the truncation pattern (Fig. 1a).

In order to detect ‘enriched & crosslinked’ sites,
PureCLIP uses two signals derived from the mapped
reads: (1) the pulled-down fragment density, which is
a smoothed signal derived from the read start counts
and holds information about the enrichment within the
current region; (2) and the read start counts them-
selves, which hold information about potential trunca-
tion events (Fig. 1). One type of distribution is used
to model the pulled-down fragment density, with one
set of parameters for the ‘non-enriched’ state and one

for the ‘enriched’ state, assuming that the ‘enriched’
state is more likely to cause high fragment density
values than the ‘non-enriched’ state. Similarly, read
start counts are modelled under the assumption that
the ‘crosslink’ state is more likely to generate a higher
fraction of reads starting at one position than the ‘non-
crosslink’ state. In order to account for differently cov-
ered regions, the parameters of the read start count dis-
tributions at individual positions depend on the pulled-
down fragment density.

The fragment density distributions and the read
start count distributions are combined to obtain the
emission probabilities of each of the four hidden states.
For each position we can then address the question:
which of the four hidden states did most likely cause
the observed data?

Incorporation of additional factors into the Pure-
CLIP model

The observed signals can be biased by a number
of different factors, such as transcript abundance or
crosslinking sequence preferences. An important fea-
ture of PureCLIP is the incorporation, into the HMM
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framework, of position-wise external data to correct
for such biases. We do this by using generalized linear
models (GLMs) and model this separately for different
types of covariates.

We expect regions within highly abundant RNAs to
show more read start counts than regions within less
abundant RNAs. This holds for both target binding
regions and for regions with non-specific background
noise. To normalize for this, information from input
control experiments can be included to influence the
emission probability distributions of the ‘non-enriched’
and ‘enriched’ states. With this, we aim to reduce the
number of false positives for highly abundant RNAs
(see Fig. 1b) while increasing the sensitivity for less
abundant RNAs.

Furthermore, we expect a higher number of read
start counts, for example, at positions within CL-
motifs. Thus, in order to correct for the crosslinking
sequence bias, information about CL-motifs can be in-
corporated (see Fig. 1c¢) to influence the ‘non-crosslink’
and ‘crosslink’ emission distributions.

Evaluation of PureCLIPs performance in
comparison to previous strategies

Evaluating a method’s performance in analysing CLIP-
seq data is not trivial, since no gold-standard of bind-
ing regions or crosslink sites exists. We addressed this
task by (1) assessing the precision and recall of Pure-
CLIP in basic mode, i.e. without additional covariates,
in calling individual crosslink sites on simulated data.
(2) We then used real iCLIP and eCLIP datasets of
proteins with known binding characteristics, such as
known sequence motifs or known predominant bind-
ing regions. We assess the ratio of sites called by each
method which falls within these motifs or inside those
binding regions. Called crosslink sites within such re-
gions are defined as true positives. Here we applied
PureCLIP in four different settings: in basic mode, in-
corporating input signal, incorporating CL-motifs and
incorporating both input signal and CL-motifs simulta-
neously. Although extremely valuable, this evaluation
approach is limited by the fact that it is unknown how
far the protein of interest can also bind to alternative
motifs or outside the defined bona fide binding regions.
For this reason, (3) we also assessed the agreement of
called crosslink sites between eCLIP replicates.

We compared PureCLIP against a range of previous
strategies, most importantly CITS [31], which similarly
to PureCLIP can call individual crosslink sites rather
than broader peak regions. Additionally, since to this
date, no other tool exists that addresses both peak
calling and crosslink site detection simultaneously for
truncation based CLIP-seq data, we combine the peak-
calling methods Piranha [29] and CLIPper [17] with
CITS. More precisely, we use the intersection of the
called peaks and the CITS crosslink sites. While this
intersection depends on the selected p-value thresholds
for both methods, the resulting sites are scored in two

different ways, using either the score from the peak-
calling method (referred to with the term Piranha®c
or CLIPper®®) or from CITS (referred with CITS®¢)
(for details see Materials and Methods). With this we
aim to cover the range of currently available strate-
gies for detecting protein-RNA interactions at single-
nucleotide resolution. To ensure a comparative assess-
ment which is as impartial as possible, we also com-
pared PureCLIP also with combination based on dif-
ferent p-value thresholds and found that it does not
affect the results (see Additional file 1, Fig. S4).
Additionally, we applied the simplest possible ap-
proach, namely calling all sites with a read start count
above a certain threshold. This gives us an under-
standing of how different methods perform in different
scenarios compared to this naive approach. In the fol-
lowing we refer to this as the simple threshold method.

PureCLIP outperforms previous strategies
on simulated iCLIP/eCLIP-seq data

Since the only available CLIP-seq simulator [14] is lim-
ited to PAR-CLIP and HITS-CLIP data, we imple-
mented our own simulation workflow to mimic the ex-
perimental steps of iCLIP and eCLIP protocols. Start-
ing from real RNA-seq data and known binding regions
of a certain protein, our simulation aims to reproduce
the characteristics of iCLIP/eCLIP data as accurately
as possible. To simulate target signal, our workflow
uses aligned RNA-seq data, ‘pulls-down’ a certain frac-
tion of the fragments that cover a known binding re-
gion, and then applies truncations according to a given
rate (for more details see Methods). Furthermore, non-
specific binding of background proteins is simulated —
using published common background regions, and ran-
dom noise from RNA-seq data is added.

To evaluate PureCLIP’s performance under different
conditions, we produced three different datasets. For
these we used varying ‘pull-down’ rates for the target
signal, i.e. either 100% or 50% of the RNA fragments
that overlap a target binding region are selected and
further modified where required. Reducing the pull-
down rate enables us to get an idea how the different
methods perform for proteins with overall lower bind-
ing affinities. Additionally, we simulated non-specific
background binding for two of the datasets (see Fig. 2).

For the evaluation, we define a called crosslink site
as a true positive if a target crosslink site was simu-
lated at the same position. The precision of a method
is calculated as the fraction of true positives among the
called crosslink sites. We first investigated the preci-
sion versus the number of true positive crosslink sites.
The results in Figure 2 (top) demonstrate that Pure-
CLIP reaches a higher precision in detecting individual
crosslink sites than previous strategies for all simula-
tion settings. In particular for the top ranking sites,
it has a far better precision compared to other meth-
ods, while being comparable to ‘CITS*¢ + CLIPper’ for
more sensitive settings. However, it is worth mention-
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ing here, that sensitive settings which are characterized
by a precision below 50% are generally not of interest.

Furthermore, we investigated whether the crosslink
sites called by PureCLIP could be used to recover tar-
get binding regions (i.e. known binding regions in
which crosslink sites were simulated) or if they clus-
ter within a few regions with high fragment density. A
target binding region is counted as a true positive, if
it could be recovered with at least one called crosslink
site. The precision is defined as the percentage of called
crosslink sites within target binding regions. For all
simulation settings the results show that PureCLIP re-
covers binding regions with higher precision compared
to previous strategies (Fig. 2, bottom).

Note that our method depends on the bandwidth
used for the smoothing of the read start counts. The
optimal bandwidth depends on the coverage and the
given cDNA length distribution, e.g. the longer the
cDNAs the larger the optimal bandwidth. For this
evaluation we used a bandwidth of 50 bp, which is
also used for the real data analysis. The results shown
in Fig. S5 in Additional file 1 demonstrate that Pure-
CLIP reaches a higher precision robustly for a range of
different bandwidth parameters, compared to previous
strategies.

PureCLIP detects bona fide binding re-
gions with higher precision compared to
previous strategies

We used publicly available eCLIP (PUM2, RBFOX2,
U2AF2) [30] and iCLIP (U2AF2) [32] datasets to mea-
sure the performance of the different strategies in call-
ing crosslink sites within bona fide binding regions. For
PUM?2 and RBFOX2 these binding regions were de-
fined by their known sequence motifs (see Additional
file 1, Fig. S1), while for U2AF2 we make use of its
known predominant binding region ~ 11 nt upstream
of 3’splice sites [32]. Here, a sequence motif based def-
inition of the binding region is not applicable, since
U2AF2 binds to poly(U) tracts, which coincide with
non-specific CL-motifs.

For the PUM2 data, all strategies revealed an ac-
cumulation of called crosslink sites at the 5 end of
PUM2 motif occurrences and another slightly weaker
accumulation towards the 3’ end (Fig. 3a, left panel).
For RBFOX2 eCLIP data we observe an accumulation
of called crosslinks at the two guanines within the mo-
tif (Fig. 3b, left panel). These crosslinking patterns are
in agreement with previous studies [31] [30] and, since
crosslinks do not preferentially occur at guanines, are
most likely caused by target-specific protein-RNA in-
teractions.

PureCLIPs performance without incorporating
external data as covariates

We first investigated the precision of PureCLIP in basic
mode, i.e. without the incorporation of any covariates,
where calls are considered true positives if they fall

within the motif area or upstream of 3’ splice sites.
We observed that PureCLIP outperforms all other
methods even without covariates in three out of four
datasets, as shown in Figure 3 (right panel). Interest-
ingly, when applying strategies that merge results from
peak-calling tools and CITS, using the peak-calling
scores for ranking (‘Piranha®¢ + CITS’, ‘CLIPper®® +
CITS’), we always get a lower precision than when us-
ing the CITS crosslink site detection score for ranking
(‘Piranha + CITS*¢’, ‘CLIPper + CITS*<’).

Incorporation of input control data improves
crosslink site detection

We expect the observed smoothed read start counts to
be biased by different factors, among others by RNA
transcript abundances. The published eCLIP datasets
come with input control experiments [30], which pro-
vide information about the non-specific background
signal, i.e. RNA fragments crosslinked to background
proteins. We observe significant correlations between
the fragment density of the eCLIP target dataset and
the input dataset with Pearson correlation coefficients
ranging from 0.36 to 0.42 (p-values < 2.2e-16) (see Ad-
ditional file 1, Fig. S3a). Therefore, the incorporation
of input signal into the PureCLIP framework gives us
the possibility to indirectly normalize for transcript
abundances, crosslinking preferences and other local
biases.

In detail, the PureCLIP framework uses the eCLIP
input signal to model the emission probabilities of the
‘non-enriched’ and ‘enriched’ states for the observed
data, i.e. the pulled-down fragment density. This
means that instead of using one global emission prob-
ability distribution for the ‘non-enriched’ or ‘enriched’
states, the position-wise input signal is used to model
the expected mean parameter of each of the two emis-
sion probability distributions (see Additional file 1,
Fig. S3b). With this we aim to reduce the number
of false positives, for example, within highly abun-
dant RNAs while increasing the sensitivity within lowly
abundant RNAs. The evaluation based on bona fide
binding regions from real data shows that incorporat-
ing the input signal improves the precision of Pure-
CLIP for all eCLIP datasets and over all sensitivity
thresholds (Fig. 3 a-c, right panel). In particular for
the top ranking sites, it greatly improves the precision
by reducing the number of false positives in regions
showing high non-specific background signal.

Incorporation of CL-motifs greatly improves
crosslink site detection

Another major bias within CLIP-seq data is caused
by crosslinking sequence preferences, which influence
the individual read start counts. This also gives rise
to non-specific crosslink events at sites with no direct
interaction between the target protein and the RNA.
Since our method is designed to detect crosslinking pat-
terns, it also detects a certain fraction of non-target
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Figure 2: Accuracy on simulated iCLIP-seq data. Precision and number of true positive crosslink sites (top) and of binding
regions (i.g. regions with at least one crosslink site, bottom) on three different simulation settings. Characteristics of each
simulation are reported at the bottom. The leftmost point of each curve corresponds to the highest precision level that the
corresponding method can report. The curves of ‘Piranha + CITS*¢" overlap with CITS.

crosslink sites. For PUM2 and RBFOX2, both having
known sequence binding motifs distinct from reported
CL-motifs [12], we observed that 33% and 37% of the
top 1000 sites called by the basic version of PureCLIP
overlap with regions harbouring a CL-motif.

In order to reduce the number of such potential false
positives, we incorporate information about CL-motifs
into our model. This can be particularly helpful to fil-
ter out non-specific crosslink sites when the protein of
interest preferentially binds sequences that are clearly
distinct from CL-motifs. For this purpose, CL-motifs
have to be learned first and we do this directly from
the data: (1) we call crosslink sites in the eCLIP input
data, (2) we then learn CL-motifs on these sites using
DREME [I] and (3) we apply FIMO [11] to compute
the occurrences of those motifs and their scores within
the reference genome or transcriptome. These position-
wise scores are then incorporated into the HMM frame-
work of PureCLIP to model the emission probabilities
of the ‘non-crosslink’ and ‘crosslink’ state for the ob-
served data, i.e. the read start counts. This enables
a correction for the crosslinking sequence bias at CL-
motif positions. As an example, the four most en-
riched CL-motifs from the analysis of PUM2 eCLIP
input data are shown in Fig. 4.

The results demonstrate that for PUM2 (Fig. 3b)
and in particularly for RBFOX2 eCLIP data (Fig. 3a)
the incorporation of CL-motif scores greatly improves
the precision in calling crosslink sites within bona fide

binding regions. Interestingly, the simultaneous incor-
poration of the input signal and CL-motif scores im-
proves the precision of PureCLIP even further (Fig. 3a,
b). Moreover, we can see that for the protein U2AF2,
whose sequence motif coincides with CL-motifs, the
performance of PureCLIP stays robust and is not im-
paired by the incorporation of CL-motif scores. Al-
together, we could see that when incorporating CL-
motifs PureCLIP consistently performs better than
previous strategies in positioning called sites either at
the known binding motif or ~ 11 nt upstream of 3’
splice sites for U2AF2 (Fig.3a-d).

2 2

e i

bits

AlT
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Figure 4: CL-motif analysis of PUM2 eCLIP input data. Logo
representation of the four top scoring motifs among the first
5000 PureCLIP crosslink sites called on the input dataset. Mo-
tifs were detected with DREME and a 10 bp window around
the crosslink sites. As previously reported [12], polypyrimidine
rich motifs are overrepresented.

PureCLIP has a higher agreement of called
sites between eCLIP replicates compared
to previous strategies

Besides using known binding regions for evaluation,
we aimed to assess the performance of the different


https://doi.org/10.1101/146704

bioRxiv preprint doi: https://doi.org/10.1101/146704; this version posted June 7, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

== PureCLIP: basic === PureCLIP: CL-motifs ms= simple threshold ~ === Piranha + CITS® === CLIPper + CITS*
m== PureCLIP: input signal PureCLIP: input signal + CL-motifs w=mm CITS Piranha®*+CITS === CLIPper®+CITS

a) PUM2 eCLIP

v
——————UGUAAAUA
——————————UGUAAAUA
UGUAAAUA —————————— 60
50
75
R 40 |
s
o 9o ¥
g} 50 8 30 ()
o Q
o5 a 20
10
: r..____
0 500 1000 1500 2000
Motif start position Calls within motif + 2 bp
b) RBFOX2 eCLIP
l:.l CAU
UGCAYG ————————————————
100 20
75 ES
a— < 15 &—————\
S S
o 50 @
o 3 10
<
o
25 //_/—/——
51 V7
0
-10 0 10 0 500 1000 1500 2000
Motif start position Calls within motif + 2 bp
c) U2AF2 eCLIP
601
400
504
300 S
E & 401
3 ®
O 200 o
2 301
o
100 201
0 v T T — 10— - - - -
40 30 20 10 0 0 5000 10000 15000 20000
Distance to 3' splice site Calls located 11 * 4 nt upstream of 3' ss
d) U2AF2 iCLIP
50 1
4001
40
300 ®
€ § 301
o iy
2001 3]
© 2 204
o
1001 104
04 - - - - - - - - -
40 30 20 10 0 0 10000 20000 30000 40000 50000
Distance to 3' splice site Calls located 11 £ 4 nt upstream of 3' ss

Figure 3: Accuracy in detecting bona fide binding regions. Left panel: a) distribution of the closest PUM2 motif start positions
relative to the crosslink site for the top 1000 sites called by each method. Position 0 represents the crosslink site. b) Same as
a), but for RBFOX2 motif start positions. c) - d) Distribution of the distances of the top 5000 sites called by each method
with respect to 3’ splice sites. Right panel: Precision of the called sites for all methods at different sensitivity settings (not

only for the top sites). The leftmost point of each curve corresponds to the highest precision level that the corresponding
strategy can report.
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methods independently of that information, since in
the end the exact binding regions and crosslink sites
remain unknown. For this reason we explored the
agreement of called crosslink sites between eCLIP repli-
cates, assuming that target-specific binding events are
more likely to be observed in both replicates than non-
specific noise. We applied all methods to the individual
eCLIP replicate datasets and measured for each sensi-
tivity threshold how many of the x called crosslink sites
in replicate 1 overlap with the top = ranking crosslink
sites in replicate 2.

We found that besides target-specific binding events
also other factors contribute to this replicate agree-
ment, such as the binding of highly abundant back-
ground proteins at highly abundant RNAs or the
crosslinking sequence bias (see Additional file 1, Sec-
tion 7). To ensure that the computed replicate agree-
ment represents an unbiased measure of the method’s
precision, we only consider sites that are enriched over
the input and located outside of regions known be
prone to background binding (published in [21]). In the
following, we refer to this as the bias corrected replicate
agreement (see Methods for details). To further pre-
vent contribution from common non-specific crosslinks,
for PUM2 and RBFOX2 we only counted sites which
are not located within CL-motif occurrences. The
U2AF2 iCLIP data is excluded from this evaluation,
since no input control experiment is available and thus
the bias corrected replicate agreement can not be com-
puted.

Our evaluations show that PureCLIP has a higher
bias corrected replicate agreement for the top ranking
sites compared to previous strategies, in all four Pure-
CLIP settings and over all three eCLIP datasets, as
depicted in Figure 5. Furthermore, the performance of
PureCLIP in basic mode is at least comparable to other
methods, while PureCLIP incorporating input signal
and CL-motifs strictly outperforms all other methods.
While the individual use of these covariates already
improves the agreement, the best results are obtained
when both of them are incorporated simultaneously.

Notably, other strategies show a particularly low bias
corrected replicate agreement within their top ranking
sites. For strategies based on peak calling scores, this
might be due to peaks corresponding to background
binding regions. However, except for the simple thresh-
old method, the top ranking sites of all other strategies
show a lower agreement already before this bias correc-
tion in comparison to our method (Fig. S6a, S7a, S8a).

PureCLIP captures strongest interaction
footprints, not top ranking peaks

All previous crosslink site detection strategies, and in
particular those based on peak calling scores such as
‘Piranha®*¢ + CITS’ and ‘CLIPper®® + CITS’, call more
sites in regions of high fragment density than Pure-
CLIP in both basic mode and with the addition of co-
variates (Fig. S6f and S7f). Further, the results show

that these strategies also call far more sites within
known common background binding regions than Pure-
CLIP, even when not incorporating covariates. At
the same time other strategies have far less ‘bias cor-
rected’ agreeing calls between the two eCLIP replicates
(Fig. 5). This indicates that the sites within the highest
peaks are not necessarily corresponding to reproducible
target-specific crosslink sites. These findings are in line
with the results of the evaluation based on bona fide
binding regions (Fig. 3 ), where strategies based on
peak-calling scores (‘Piranha’¢ + CITS’, ‘CLIPper®*
+ CITS’) perform worse than corresponding strategies
based on crosslink site detection scores (‘Piranha +
CITS®*®’, ‘CLIPper + CITS*¢’). In other words, most
of the CITS sites within top ranking peaks are not lo-
cated within regions matching the known binding char-
acteristics of the proteins, and are thus likely to be false
positives.

Discussion

The detection of target-specific protein-RNA interac-
tion sites from single-nucleotide resolution CLIP-seq
data is a remaining challenge. Previous methods for
the analysis of such data typically suffer from a large
fraction of false positives, as they are sensitive to dif-
ferent sources of biases. Peak callers such as Piranha,
which call regions enriched in read coverage without ex-
plicitly modelling read start counts at truncation sites,
are prone to capture high background signal which does
not originate from target-specific crosslink events. On
the other hand, CITS calls sites with a significant frac-
tion of read starts, but it can not distinguish, whether
such sites are caused by target-specific crosslinks or by
non-specific crosslinks within highly abundant regions.
In addition, CITS does not account for biases, such
as different transcript abundances or the crosslinking
sequence bias, which can increase the number of false
positives.

To overcome these limitations, we propose a new
statistical approach called PureCLIP. PureCLIP calls
crosslink sites considering both regions enriched in
protein-bound fragments and the specifics of iCLIP/
eCLIP truncation patterns. It also explicitly mod-
els possible sources of bias, such as non-specific back-
ground signal and crosslinking sequence bias in order to
reduce the number of false positives. Both these points,
and in particular the incorporation of CL-motifs, which
represent the non-specific crosslink sequence bias, are
an innovation in comparison to existing methods.

A comprehensive evaluation based on simulated and
real data has shown that, already in basic mode Pure-
CLIP reaches a higher precision compared to previous
strategies in almost all cases. Moreover, on real data
the incorporation of input signals and CL-motifs addi-
tionally improves the precision of PureCLIP in captur-
ing crosslink sites within bona fide binding regions. For
the analysis of PUM2 and RBFOX2 data, it is worth
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noting that for the 50 top ranking sites (Fig. 3a,b, right
panel) the precision of PureCLIP including the input
signal is much higher in comparison to PureCLIP in ba-
sic mode or to previous strategies. The results indicate
that the top ranking sites called by other strategies are
likely to be caused by non-specific background signal,
which is resolved by PureCLIP when incorporating in-
put signal.

PureCLIP incorporating CL-motif scores strictly
outperform all other strategies over all four datasets.
In fact, PureCLIP’s precision in this setting increases
especially for the eCLIP datasets of proteins whose se-
quence motifs do not coincide with CL-motifs, namely
PUM2 and RBFOX2 (Fig. 3). For RBFOX2 eCLIP
data, the increase is particularly remarkable. This
is also the only dataset where PureCLIP, without in-
corporating CL-motifs, shows a lower precision than
strategies that make use of the CITS crosslink site de-
tection score (Fig. 3b). The main reason is that Pure-
CLIP in basic mode is more sensitive than CITS in
also calling non-specific crosslink sites on this particu-
lar dataset (see Fig. S7d). In general a high sensitivity
is desired, since we also want to detect crosslink sites
for low-coverage regions, for example within IncRNAs
or for proteins with lower binding affinity. In addition,
false positives can be reduced by the incorporation of
CL-motifs. Interestingly, when incorporating both in-
put signal and CL-motifs simultaneously, PureCLIPs
precision increases even further, highlighting the huge
benefit of the incorporation of both covariates into the

model.

Compared to previous strategies, PureCLIP achieves
a higher agreement in calling RBP-bound sites between
eCLIP replicates for bona fide crosslink sites. These are
sites where the fragment coverage is enriched over the
input signal, which do not overlap known background
binding regions and, for PUM2 and RBFOX2, which
are not located within CL-motif occurrences. Inter-
estingly, the simple threshold method, which detects
crosslink sites by applying a cutoff on the read start
counts, has the worst performance of all on both simu-
lated and real data, as expected, but by far the highest
replicate agreement for all datasets when not explic-
itly accounting for biases. This indicates that, beside
target-specific crosslink sites, other factors also con-
tribute to this ‘raw’ replicate agreement, and that in
order to obtain a meaningful evaluation of all methods,
one needs to compute a ‘bias-corrected’ replicate agree-
ment. These results also strongly suggest, that it would
be valuable for the analysis of iCLIP /eCLIP data to ex-
plicitly include replicate information (as already sug-
gested by [28]), but importantly that this needs to be
done carefully while addressing possible sources of bi-
ases.

It is also important to stress that for all analysed
eCLIP datasets PureCLIP calls far fewer crosslink sites
within regions of high fragment density (Fig. S6f, S7f,
S8f) and within known common background binding
regions [21] (Fig. S6e, S7e, S8e) compared to all other
strategies. This even holds for PureCLIP in basic
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mode. Taken together with PureCLIP’s general higher
precision, these findings demonstrate how important it
is for the analysis of CLIP-seq data not only to call
peaks, but also accurately model the counts of individ-
ual read starts, indicating potential truncation events.
This unique feature of PureCLIP enables the distinc-
tion between target-specific interaction footprints and
non-specific crosslink patterns within high abundant
background binding regions.

Although the main objective of PureCLIP is to de-
tect individual target-specific crosslink sites, it is some-
times desirable to identify larger binding regions for
the protein under study. In the current version, Pure-
CLIP can merge crosslink sites to larger binding regions
based on their genomic distance. Further work will be
needed in the future to address this task in a more
sophisticated manner. However, results on simulated
data demonstrate that individual crosslink sites also re-
cover a large number of simulated binding regions with
higher precision compared to the other strategies.

Currently, PureCLIP allows to incorporate covari-
ates that influence either the emission probabilities of
the pulled-down fragment density or the read start
counts. Besides information on common background
binding regions and replicate agreement, mappability
information is a promising candidate that will be in-
vestigated further inside the PureCLIP model. Fur-
thermore, the PureCLIP framework can be extended
in the future to include covariates that directly influ-
ence transition probabilities between states, adapted
to model other types of CLIP-seq diagnostic events or
even other types of high-throughput data, such as RNA
methylation.

Conclusions

More and more high-resolution CLIP-seq datasets are
being generated, but the precise determination of
protein-RNA interaction sites from iCLIP/eCLIP has
been challenging so far. Extensive evaluations demon-
strated the superiority of PureCLIP over several pre-
vious strategies in detecting target-specific crosslink
sites, both on simulated data as well as on real datasets.
PureCLIP is able to precisely capture protein-RNA in-
teraction footprints, while not relying on the highest
peaks and being able to correct for biases, such as
transcript abundances and crosslinking sequence pref-
erences. It therefore provides a promising method to
analyse these datasets, also for proteins with lower
binding affinities or proteins binding to low abundant
RNAs, such as IncRNAs.

Materials and Methods

Preprocessing of iCLIP/eCLIP datasets

We analysed four published eCLIP datasets targeting
the proteins PUM2, RBFOX2 and U2AF2 and one
iCLIP dataset targeting U2AF2 (see Additional file 1,
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Table S1 for details).

First, possible adapter contaminations at 3’ ends
were removed using TrimGalore on the iCLIP
dataset [16] (v0.4.2, based on cutadapt), and by run-
ning cutadapt twice on the eCLIP datasets [18] (v1.12).
The later was done in order to correct for possi-
ble double ligation events [30]. Subsequently, reads
shorter than 18bp were discarded. Next, the reads
were mapped against the human genome (hgl9) us-
ing STAR [7] (v2.5.1b), a read aligner designed for
RNA-seq data with setting ‘--alignEndsType End-
ToEnd’, ‘--scoreDelOpen -1’ for gap penalty, and ‘--
outFilterMultimapNmax 1’ to discard reads mapping
to multiple locations.

PCR duplicates were removed based on the read
mapping positions and the random barcode sequences
(also called UMIs). This is important, as PCR amplifi-
cation rates are high, in particular for iCLIP datasets.
To address this, we used UMI-tools [20], a network
based de-duplicating method (in ‘--paired’ setting),
which is able to handle errors within barcode se-
quences.

All evaluated datasets come as two replicates. When
assessing each method’s capability to recover bona fide
binding regions, we pooled the reads of the two repli-
cates, whereas they were analysed separately when
evaluating the agreement between called sites. Due
to the differences in the two library preparation proto-
cols [15] [30], we used either the 5-end read (iCLIP),
or the 3’-end read (eCLIP) of the sequenced fragment
for the analysis.

iCLIP /eCLIP-seq data simulation

In order the evaluate our method’s performance, we
developed a workflow to simulate realistic iCLIP-seq
data starting from aligned RNA-seq data and known
binding regions. The workflow simulates the main
steps of the iCLIP/eCLIP protocols (see Fig. 6) as
follows:

1. Fragmentation: To obtain RNA fragment
lengths comparable to those of iCLIP experiments
(30-300 bp, as described in [24]) we first simulate
new fragment lengths using a normal distribution
(mean: 165 bp, standard deviation: 50 bp).

2. Binding regions: We use genome-wide PUM?2
motif occurrences computed with FIMO [11], in
order to obtain a realistic distribution of binding
regions (for details see Additional file 1, Section
2).

3. Crosslink sites: Within each binding region
i, ¢; crosslink sites are drawn uniformly (¢; €

1,...,4)).

4. Pull-down: RNA fragments overlapping binding
regions, are ‘pulled down’ with a certain rate. For
this study we either used a pull-down rate of 1.0 or
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of 0.5, i.e. all or half of the overlapping fragments
are used.

Reverse transcription: For each fragment, one
of the following modifications can be applied to
the 5’-end read:

a. The read start is shifted to one of the simu-
lated crosslink sites within the current bind-
ing region according to a given truncation
probability (set to 0.7).

The read start is shifted to any other position
within the fragment according to a given off-
target truncation probability (set to 0.1).

Size selection: To obtain a broad range of
cDNA lengths we keep reads with underlying
fragment lengths between 30-140 nt (as recently
recommended in [12]).

1) RNA-seq data: 2) Simulation of binding regions
Simulation of iCLIP using given list,

RNA fragment lengths e.g.motif occurences

% UGUAAAUA UGUAAAUA

3) Simulation of crosslink sites
within binding regions

4) Pull-down overlapping
fragments according
to probability

5) Apply iCLIP specific
modifications:
shift read starts

Figure 6: Simulation of iCLIP/eCLIP data.
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In addition to the RBP binding signal, we also simu-
lated background noise, that can be for example caused
by sticky RNAs [9] or by the binding of non-specific
background proteins [9]. We did this by applying the
described steps on the list of known common back-
ground binding regions published in [21], while varying
‘pull-down’ rates, truncation probability and the num-
ber of crosslink sites within a region. We supplement
those regions with reads randomly sampled from RNA-
seq data (1%). Further details of the used simulation
are described in Additional file 1, Section 2.

PureCLIPs Hidden Markov Model
PureCLIP uses a Hidden Markov model (HMM) to in-
fer crosslink sites from aligned single-nucleotide CLIP-
seq data. At each position ¢, it utilizes two types of in-
formation (Fig. 7a): the pulled-down fragment density
Cy, which is used to infer whether the position is ‘en-
riched’ or ‘non-enriched’ in protein bound fragments,
and the read start count K;, which is used to infer
whether it is a ‘crosslink’ or ‘non-crosslink’ site. The
four resulting hidden states are (1) ‘non-enriched &
non-crosslink’ , (2) ‘non-enriched & crosslink’ , (3)‘en-
riched & non-crosslink’ and (4) ‘enriched & crosslink’ .
For the sake of clarity, we separate them into two state
variables: one represents the enrichment state

S — {

and one represents the crosslink state:

S — {

Our goal is to identify positions that are ‘enriched &
crosslinked’ (see state (4) in Fig. 7a). While transitions
between all four states are allowed, we model distinct
emission probability distributions for each state.

0
1

if ‘non-enriched’

(1)

if ‘enriched’

0 if ‘non-crosslink’

X @

if ‘crosslink’ .

Joint emission probabilities and inference

We exploit the hierarchical structure of the two ob-
served signals, i.e. the pulled-down fragment density
(Ct) and the count of read starts (K;), for specifying
the model. First, we model the value of the fragment
density C}, both for the ‘non-enriched’ and the ‘en-
riched’ state, with a left-truncated gamma distribution

(LTG)

P(Ct = C¢ | S(l) = 51) =
S1 € {0,1},

3)

fLTG(Ct; Hsy s )\51 ) tp)a

where ps, and A;, denote the mean and the shape pa-
rameter of the distribution and ¢p the truncation point.
The parameters ps, and Ag, need to be learned, while
tp is fixed (see Additional file 1, Section 3.1 for details).
The gamma distribution is a popular and flexible choice
to model non-negative continuous values and thus we
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Figure 7: Summary of the HMM modelling framework. a) Starting from mapped reads (bottom), observations are deduced
(read start count and pulled-down fragment density) and combined with additional covariates (top) to reconstruct the most
likely sequence of hidden states (middle). b) Graphical representation of the corresponding non-homogeneous HMM.

use it for the fragment density values. We use a trun-
cated gamma distribution as a practical solution as we
do not want to consider positions which have a very
low or no abundance.

When looking at the read start counts K, we expect
an increased count at ‘crosslink’ sites due to underly-
ing truncation events. Therefore, we model the read
start counts K; for both the ‘non-crosslink’ and the
‘crosslink’ state. For state so the probability to ob-
serve k; read starts is computed given the number of
fragments n; covering the current region and the prob-
ability ps, for each read to start at position t. n; is
unknown but we can use a surrogate value n; directly
deduced from the positions pulled-down fragment den-
sity ¢; by a simple rescaling (for details see Additional
file 1, Section 3.2.1). We model the emission probabil-
ity distribution with a zero-truncated binomial distri-
bution (ZTB)

P(kt\ct,st@) =
So € {O, 1}.

(4)

52) - fZTB(kt;ﬁtapsz)v

The probability parameters py and p; need to be
learned, where p; reflects a protein specific truncation
rate at ‘crosslink’ sites. A zero-truncated binomial dis-
tribution is preferred here as we do not want to fit the
distributions to the large number of sites with no read
starting.

Given the emission probability distributions for the
four states, we compute the probability of a joint ob-
servation. Note that C; and K; are not conditionally

independent, but since n; is directly deduced from c;
the emission probability for the joint observation can
be factorized accordingly (see Fig 7b for a graphical
summary):
P(Ctakt|St(1) = 5135152) = 52) =
P(er]S;" = s1) - Plkiler, S = s2) =
frra (e sy, Asy tp) - fzr (ks T, Ps,)-

()

Finally, we use posterior decoding to determine the
most likely hidden state for each position, and with
that all ‘enriched & crosslink’ sites (s; = s = 1).
Each such called crosslink site comes with an associ-
ated score, namely the log posterior probability ratio
of the first and second most likely state:

P(1st likely state|Yy.7) (©)
P(2nd likely state|Yy.r) )’

score; = log (

where Y7.7 denotes the observed data for all positions.
In a second step, the called crosslink sites can be fur-
ther combined to binding regions based on their dis-
tance.

We use the Baum-Welch algorithm [20] to learn the
parameters of the HMM, i.e. the transition probabili-
ties and the parameters of the four emission probability
distributions (see Additional file 1, Section 3 for details
on the implementation). For the parameter estima-
tion of the emission probability distributions, only sites
with at least one read starting are considered. More-
over, to reduce the computational costs, we trained the
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HMM on a subset of the chromosomes (Chrl - Chr3
for pooled data, Chrl - Chr6 for individual replicates).
This had no impact on the quality of the estimates.

Estimation of the pulled-down fragment density
To model the fragment density, we cannot use
positions-wise read counts, since they will be strongly
influenced by truncation events in the neighbourhood.
Instead we apply a smoothing on the read start counts
c to estimate the density of pulled-down fragments at
each position. This is done using a kernel density es-
timation (KDE) [19] with a Gaussian kernel function
K. The latter assigns a higher weight to nearby read
starts, while still considering read starts which are fur-
ther away, thereby providing a better estimate for the
underlying pulled-down fragment density. We compute
the smoothed signal at position ¢ using

(),

where h is the kernel bandwidth and positions within
four bandwidths are considered.

1

Ct = —

t—1
h

t+4h
/

> ¢

)
i=t—4h

(7)

PureCLIPs
Markov model
We incorporate position-wise external data as covari-
ates into the HMM by using generalized linear mod-
els. Numerical optimization techniques are then used
within the Baum-Welch algorithm to find the parame-
ters that maximize the conditional expectation of the
data.

hidden

non-homogeneous

Incorporation of non-specific background signal
Without additional information, we assume that the
fragment density ¢; follows, for each enrichment state
s1, a left-truncated gamma distribution

crl StV = 51 ~ LTG (1, Aay s ). 8)

If an non-specific background signal is given, e.g. from
an input control experiment, PureCLIP incorporates
this as position-wise covariates into the model. This is
done using a (left-truncated) gamma generalized linear
model (GLM). The objective is to learn the correlation
between the covariate b and the mean parameter p,, of
each enrichment state s;. The underlying multiplica-
tive effect of the background signal b; on the expected
mean [, + is modeled using a log link function:

)

Note that for each enrichment state s; we assume to
have a constant shape A,, across the entire range of
covariate values.

A numerical optimization is performed within the
Baum-Welch algorithm to learn the parameters «y, o,
a1 and A, (see Additional file 1, Section 4.1). In
this study we used the log fragment density of the in-
put experiments as covariates, computed using a KDE

log(lu’slxt) = asl,o + asl,lbt'
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with the same bandwidth as used for target fragment
density, i.e. 50 bp.

Incorporation of CL-motif scores

Without additional given information, the read start
counts k; are modeled using a zero-truncated binomial
distribution

ke|S{? = 55 ~ ZTB(its, ps,) (10)
for each enrichment state s5. If we assume that we have
learned m enriched CL-motifs from the input data (de-
scribed in the next section), then we can compute for
each position ¢ and motif s € 1,...,m a corresponding
motif match score z;; >= 0, containing information
about the positions crosslinking affinity. PureCLIP
uses a logistic regression for each crosslinking state s
to model the expected binomial probability parameter
Ds, based on the position-wise CL-motif score x; ¢

Psa,t
ln %2 = ﬂSQ,O + /Bsz,ix’i,t (11)
1 _p327t
t=arg max xj;, Tz >=0
j€lom ’

Since the majority of positions has no CL-motif match,
i.e. a CL-motif score of 0, we compute 3;, ¢ using these
sites as it was done in the basic PureCLIP model. Fur-
ther, since we assume that each site only matches one
CL-motif (i.e. the motif with the highest score is cho-
sen) the parameters fs, 1,...,8s,,m are learned inde-
pendently of each other using the Brent’s method (see
Additional file 1, Section 4.2).

Computation of CL-motif scores

The computation of position-wise CL-motif scores,
that can be used as covariates by PureCLIP, is done
in a preprocessing step. (1) We call crosslink sites on
the input data using the basic version of PureCLIP (2)
We run DREME (meme suite v4.11.3) [1] with the pa-
rameters ‘-norc -k 6 -4’ on 10 bp windows spanning the
called input crosslink sites, while using 10 bp windows
20 bp upstream and downstream as control (DREME
uses Fisher’s Exact test). (3) We use FIMO (meme
suite v4.11.3) [11] with the parameters (--thresh 0.01
--norc) to compute occurrences of those motifs within
the genome and their corresponding scores. If one posi-
tion has overlaps with multiple CL-motif occurrences,
the one with the highest score is chosen.

Availability and implementation

PureCLIP is freely available as a command-line tool
implemented in C++ using SeqAn [8], the GSL [10]
and Boost [22]. OpenMP [5] is used for paralleliza-
tion. PureCLIP is licensed under the GPLv3 and
can be downloaded at https://github.com/skrakau/
PureCLIP. Notably, as PureCLIP includes information
from the transcriptomic neighbourhood, it is impor-
tant to use a suitable reference sequence when mapping
the reads. Thus, when analysing iCLIP/eCLIP data
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from proteins known to bind near exon-exon junctions
on mRNAs, reads should be mapped directly against
transcripts (e.g. as done in [12]). For the use of Pure-
CLIP in conjunction with CL-motifs, a precompiled set
of common CL-motifs (learned on pooled PUM2, RB-
FOX2 and U2AF?2 input crosslink sites) is provided on
the website.

Furthermore, we provide the framework to simu-
late truncation based CLIP-seq data, which requires
mapped RNA-seq data and a list of binding regions.
Additionally, background binding can be simulated
based on previously published regions. The output
of this simulation is a BAM file, containing both tar-
get and background reads, as well as BED files con-
taining simulated binding regions and crosslink sites.
The simulation workflow is also freely available un-
der the GPLv3 license and can be downloaded at
https://github.com/skrakau/sim_iCLIP.

Comparison against previous crosslink site
detection strategies

We compared PureCLIP against the following existing
methods: simple threshold, CITS [31], Piranha [29] and
CLIPper [17]. Simple threshold and CITS are meth-
ods to detect crosslink sites at single-nucleotide res-
olution and therefore can be directly compared with
PureCLIP.

Piranha and CLIPper are strand-specific peak-
calling methods and can not be directly compared to
PureCLIP, therefore their performance was assessed in
combination with CITS. In detail, we take the inter-
section between Piranha (p-value threshold 0.001) or
CLIPper (default threshold) reported peaks with CITS
crosslink sites (default p-value threshold) and score the
resulting sites in two different ways: either according
to the peak caller (referred to with the term Piranha®c
or CLIPper®©), or to CITS (referred with CITS®¢).
The assigned scores were used to assess the perfor-
mance of the strategy for different sensitivity thresh-
olds. Further details about the method’s application
and the parameter choice are described in Additional
file 1, Section 5.

Evaluation on real data based on bona fide
binding regions
To assess the performance of the different strategies in
detecting target-specific crosslink sites on the PUM?2
and RBFOX2 datasets, we made use of the sequence
motifs that were described for each of those proteins.
FIMO [11] (--thresh 0.001 --norc) was used to compute
genome-wide motif occurrences. Next, for each called
crosslink site the distance to the closest motif start
site was identified. The precision was defined as the
percentage of all called sites within 2 bp of a motif
occurrence (Fig. 3).

For the protein U2AF?2 its known predominant bind-
ing site, which is ~ 11 nt upstream of 3’ splice sites,
was used for evaluation. Ensembl release 75 annota-
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tions were used to compute the distance of each called
crosslink site to the closest 3’ splice site. The precision
is then defined as the percentage of all called sites that
are located 11 4+ 4 nt upstream of a 3’ splice site.

Computation of bias corrected replicate
agreement

For the evaluation based on the replicate agreement,
only sites with calls at the exact same nucleotide posi-
tion in both replicates were considered as agreeing. In
all comparisons, the replicate dataset with the larger
library size was chosen as a reference for evaluation and
will be referred to as replicate 2 in the following. We
report for each given number of called sites x (corre-
sponding to a certain sensitivity threshold) in replicate
1, the percentage that were also called within the top
x ranking sites in replicate 2.

To compute the bias corrected replicate agreement,
we count only sites that additionally (1) have sufficient
enrichment over the signal obtained on input data,
and (2) are not contained in common background re-
gions [21] or in CL-motifs (for PUM2 and RBFOX2).

To determine the sites whose pulled-down fragment
densities are enriched over the input, we chose an indi-
vidual threshold for each protein dataset based on its
distribution of log-fold enrichments (for details see Ad-
ditional file 1, Section 7). CL-motif occurrences were
obtained with FIMO as described previously, while us-
ing all matches with a score > 0. Common background
binding regions were taken from [21], using only regions
observed in at least 6 different CLIP-seq datasets, and
extending them upstream and downstream by 200 bp.
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Additional Files

Additional file 1 — Supplementary Mate-
rial

The Supplementary Material is provided as a .pdf file
and it contains additional figures and more detailed
information about the computational methods and the
results.
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