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Abstract 
The coordinated activity of muscles is produced in part by spinal rhythmogenic neural circuits, 
termed central pattern generators (CPGs). A classical CPG model is a system of coupled 
oscillators that transform locomotor drive into coordinated and gait-specific patterns of muscle 
recruitment. The network properties of this conceptual model can be simulated by a system of 
ordinary differential equations with a physiologically-inspired coupling locus of interactions 
capturing the timing relationship for bilateral coordination of limbs in locomotion. While most 
similar models are solved numerically, it is intriguing to have a full analytical description of this 
plausible CPG architecture to illuminate the functionality within this structure and to expand it to 
include steering control. Here, we provided a closed-form analytical solution contrasted against 
the previous numerical method. The computational load of the analytical solution was 
decreased by order of magnitude when compared to the numerical approach (relative errors, 
<0.01%). The analytical solution tested and supported the previous finding that the input to the 
model can be expressed in units of the desired limb locomotor speed. Furthermore, we 
performed parametric sensitivity analysis in the context of controlling steering and documented 
two possible mechanisms associated with either an external drive or intrinsic CPG parameters. 
The results identify specific propriospinal pathways that may be associated with adaptations 
within the CPG structure. The model offered several network configurations that may generate 
the same behavioral outcomes.   
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New & Noteworthy 
Using a simple process of leaky integration, we developed an analytical solution to a robust 
model of spinal pattern generation. We analyzed the ability of this neural element to exert 
locomotor control of the signal associated with limb speeds and tested the ability of this simple 
structure to embed steering control using the velocity signal in the model’s inputs or within the 
internal connectivity of its elements.  
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Introduction 
Specialized neural elements in the spinal cord, known as the central pattern generators (CPGs), 
contribute to the generation of periodic coordinated patterns of locomotor activity (Grillner and 
Zangger, 1975). Discovered in deafferented preparations, CPGs do not require sensory signals 
to produce locomotor behavior; however, their pattern is greatly influenced by sensory and 
descending inputs (Yakovenko, 2011; Prochazka and Ellaway, 2012). Specifically, the direct 
electrical stimulation of a brainstem structure called the mesencephalic locomotor region (MLR), 
even in decerebrated animals, produces oscillations in the CPGs and subsequent locomotor 
behavior (Grillner and Wallén, 1985). This locomotor behavior is characterized by the complex 
coordinated actions of multiple muscle groups. It is remarkable that a change in either the 
magnitude or frequency of MLR stimulation can generate all appropriate modifications of these 
patterns. This increase in stimulation expresses a full repertoire of gaits with continuous 
transitions, such as from walking to trotting or galloping in over-the-ground locomotion (Shik et 
al., 1966), or transitioning from slow walking to swimming in amphibians (Cabelguen et al., 
2003), which is faster than walking mode of locomotion. Thus, increasing stimulation input 
current corresponds to an increase in locomotor velocity.  

Many CPG models were developed over the last century (Verzár, 1923; Taga et al., 1991; 
Bashor, 1998; Yakovenko et al., 2005; Rybak et al., 2006; Markin et al., 2010; Barnett and 
Cymbalyuk, 2014a). Simulated model structure and its parameters are usually derived from 
observing the motor output patterns or their changes in response to external inputs or naturally 
occurring variations. These models give rise to the mechanistic descriptions that capture 
biological organization and the processes; however, they generally start as phenomenological 
or statistical representations of observed phase variations or timing in the recorded muscle 
activity. For example, both the limb-based Brown’s CPG (Brown, 1911) and the joint-based 
Grillner’s CPG (Grillner, 1981) are similarly founded on the observations of multiple 
representative electromyographic (EMG) profiles providing insight into the functional 
organization of this circuitry.  

The idea of a CPG as a distributed mechanism that integrates convergent inputs (Grillner and 
Wallén, 1985) has been supported by both computational and experimental studies. Using 
calcium imaging, the spatiotemporal activity of rhythmogenic circuitry was found to be 
functionally distributed with motoneurons in the rostral lumbar and sacral segments of the spinal 
cord (Bonnot et al., 2002; O'Donovan et al., 2005). The spatiotemporal distribution of neural 
activity throughout the lumbar enlargement with descending control and sensory inputs intact 
was visualized by combining the anatomical location of the motoneurons with information about 
their activity during normal locomotion (Yakovenko et al., 2002). This was also supported by 
observations of independent and coupled recruitment of flexor and extensor rhythmogenic 
spinal circuits using selective optogenetic approaches (Hägglund et al., 2013). The 
rhythmogenesis in only flexors or only extensors observed with optogenetics supports the 
computational observation of a switch-like transition between flexors and extensors (or more 
precisely, limb protractors and retractors), which identifies them as distinct network elements 
(Yakovenko et al., 2002). This bilateral, switch-like activation of the motor pools spanning the 
full rostocaudal extent of the lumbosacral enlargement is likely associated with distributed 
rhythm-generating networks responsible for this activity.  

The integration of feedforward predictions and sensory feedback about ongoing execution is the 
optimal solution for generating robust control of complex body morphology (Kuo, 2002). Over 
the course of evolution, the process of optimization within control pathways has likely been 
concerned with the optimization of locomotion, as this is a central behavior that is essential for 
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animal survival (Yakovenko, 2011). One engineering solution to the problem of computing 
predictive commands for complex systems is the use of inverse models (Smith, 1957; Wolpert 
and Ghahramani, 2000). The complex transformation from muscle activations into movement 
kinematics could be internalized for inverse solutions that generate appropriate output for the 
desired kinematic input. It is then not surprising that dedicated rhythmogenic networks for 
locomotion may be embedding the dynamics of body-ground interactions to solve the problems 
of intra- and interlimb coordination (Taga et al., 1991; Full and Koditschek, 1999). The accuracy 
of these embedded neural calculations of musculoskeletal transformation may be fine-tuned by 
experience (Wolpert et al., 1998; Bhushan and Shadmehr, 1999; Kawato, 1999; Ijspeert et al., 
2013). It is important to acknowledge that sensory feedback pathways may also shape the final 
output of motor pathways and compensate for dynamics during locomotion. In addition, there is 
considerable evidence that CPGs integrate sensory inputs together with supraspinal commands 
to generate changes in the timing and magnitude of locomotor activity (Ijspeert, 2008; 
Yakovenko, 2011).  

CPG models offer a unique research opportunity to understand the interplay between these 
neural directives and biomechanical constraints that govern a complex dynamic task. To this 
extent, we have previously used inverse solutions of a CPG model to infer the nature of 
descending inputs (Yakovenko, 2011). The surprising result of these simulations was that the 
input to the CPG was the velocity of each limb. Described mathematically as a system of 
differential equations (Matsuoka, 1985; Schöner et al., 1990; Wallén et al., 1992; Cymbalyuk et 
al., 2002; Rybak et al., 2006; Yakovenko, 2011), CPG models are hard, even impossible, to 
solve analytically in the form of known functions and variables. Still, analytical expressions have 
several advantages over numerical models. Unlike numerical solutions that often suffer from the 
accumulating errors and inversely related computational load, the analytical solutions are 
precise within assumptions taken during their derivation. Even though they are also evaluated, 
their formulation is more efficient and faster than the approximate numerical solutions.  

In this study, we developed a method to obtain an analytical solution to one of the simplest 
implementations of a locomotor CPG. We used this analytical expression to further test the 
ability of this circuitry to embed the regulation of phases appropriate for different speeds and 
control steering with asymmetric gaits. While the identification of pattern generating elements is 
a considerable challenge in experimental techniques, the function of distributed elements of a 
CPG can be probed with computational methods that allow us to monitor and manipulate any 
part of the circuit. We tested two hypotheses in this study: 1) the exact analytical solution exists 
for a bilateral CPG model implemented with a leaky integration process; 2) the intrinsic circuit 
redundancy in a CPG can accommodate the expression of asymmetric gait. The function of 
embedding the asymmetric representations of gait may be relevant for understanding steering 
and short- and long-term adaptations within spinal systems.  

Methods 
Model description 

While a few CPG models of neural activity consider specific ion dynamics using the Hodgkin-
Huxley formulation (Cymbalyuk et al., 2002; Rybak et al., 2006), our model captures gross CPG 
network dynamics, described by T.G. Brown, in a form of gated leaky integration. We expressed 
the input-output relationship using coupled leaky integrators formulated as a system of ordinary 
differential equations (ODEs). The system of ODEs can be expressed in matrix form (Eq. 1), 
with ipsilateral antagonism expressed as abrupt, non-overlapping state transitions. An event 
associated with any given state xi value crossing 1 triggers the resetting of the state to 0 and the 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/146993doi: bioRxiv preprint 

https://doi.org/10.1101/146993
http://creativecommons.org/licenses/by-nd/4.0/


Sobinov and Yakovenko 

 

6 

 

 

start of integration for the ipsilateral antagonist. In Fig. 1, for example, if the left flexor (x1) 
reaches 1, it resets to 0 and turns off, while the left extensor (x2) switches on. 

Equation 1  �� � �� � ��� � ��� � �� 

where x = (x1, x2, x3, x4)
T - state vector, U0 - constant input from intrinsic connections, Gu - 

extrinsic input gains, u - extrinsic inputs, Gl - leak gains, G - weights for connections between 
integrators (rff, rfe, ref, ree weights in Fig. 1). 

 

{Fig. 1. is about here} 

 

To simplify model parameter space, the parameters were coupled assuming symmetrical 
organization across the midline, as seen in Eq. 2. Additionally, the connection between flexors 
(rff) was removed for simulations of walking behavior, where swing phases do not overlap. 

Equation 2 

�� � ����
���
���
���

	 , �� � ����
���
���
���

	 , �� � ����
���
���
���

	 � �, � � 
 0 0 ������ ���0 ������ ��� 0 �. 
We used the fixed-step 4th order Runge-Kutta method with 10-3 s precision for forward 
numerical integration. 

Analytical solution 

The bilateral CPG model produces flexor (swing) and extensor (stance) phases for two limbs in 
relation to extrinsic input and intrinsic structure. To obtain these phases, Eq. 1 needs to be 
integrated in time between the state changes. Numerical integration was previously used 
(Yakovenko, 2011) to generate swing and stance periods. The same transition points can be 
calculated analytically by transforming Eq. 1 into a matrix Cauchy problem: 

Equation 3  

� �� � �� � ���� � 0� � �� � 
where A=Gl+G represents the intrinsic structure of the CPG, B=U0+Guu represents the state-
independent inputs, and x0 is the initial condition. In the case of a non-singular matrix A, this 
system has a vector form solution: 

Equation 4 � � �����	
 � ��� � �	
�� 

where I is the identity matrix. This analytical expression of states x (with dimensionality [4×1] for 
a model of bilateral CPG) describes the progression of all locomotor phases in time between the 
state changes. The remaining task is then to calculate the transition times and corresponding 
phase durations for a full step cycle. Eq. 4 was evaluated for all three possible bilateral 
combinations of concurrent flexor-extensor activity during a full step cycle, namely: i) left flexion 
and right extension (states x1 and x4), ii) left extension and right extension (states x2 and x4), 
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and iii) left extension and right flexion (states x2 and x3). States may have repeated more than 
once within the step cycle, when CPG activity was highly asymmetric. The dimensionality of the 
problem can be reduced from 4 to 2 because only two integrators are active at any given time 
with the following parameters: 

Equation 5 

� � ���� ������ ����, � � �
�

�

�, �� � ����
���

� 

where i � {1,2} and j � {3,4} are the indices of the two active integrators. We can then find the 
time of phase transitions τ for a given integrator k by inserting the reduced parameter set (Eq. 5) 
into Eq. 4 and assuming xi or xj is equal to 1. Solving for τ yields the following transcendental 
equation: 

Equation 6 

�� � cosh�#$� � �� � sinh�#$�# � �� � ���� 

where z1, z2, z3, s, q are parameters describing the model configuration. τ was then found 
numerically using Brent’s method and analytically by expanding the hyperbolic functions using a 
Maclaurin series. We used the NumPy ‘roots’ function (Horn and Johnson, 1999) to solve the 
polynomials of power over 2. Next, the periods of activity of flexors and extensors during a step 
cycle were obtained with the following iterative algorithm: 

i. Calculate the time τi when state xi reaches 1. 
ii. Calculate the time τj when state xj reaches 1. 
iii. Calculate the state of all integrators at time point τ=min(τi, τj).  
iv. Reset the state from 1 to 0, deactivate it, and activate the reciprocal ipsilateral state. 

For example, switch from an active left flexor to an active left extensor. 
v. If a full step cycle is completed (all 4 states reached value 1 at least once), stop; 

otherwise, go to step (i). 

 

{Fig. 2. is about here} 

 

Cost function 

The CPG model can generate multiple locomotor behaviors as a function of extrinsic inputs and 
intrinsic interactions (Yakovenko, 2011). Given a desired behavior, e.g. stereotypical 
symmetrical walking (Halbertsma, 1983), the appropriate CPG parameters were found by 
optimizing the cost function (Eq. 7) that expressed the goodness of fit between target 
(experimental) and simulated patterns. In the symmetrical model, we optimized for 6 different 
speeds, from 0.1 to 1.5 m/s (dashed lines in Fig. 2), that were generated with 6 values of u 
(evenly distributed between 0.1 and 1.5 au). Fig. 2 shows the quality of simulated solutions for 
symmetrical walking over a full range of walking speeds. 

Equation 7 '� � (�) � (�* � (�+ � (�, 

where H is the difference of simulated and experimental stance and swing periods. The 
experimental periods were calculated using a best-fit formula obtained empirically (Halbertsma, 
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1983). M is the difference of simulated and desired speed ranges that promotes the converging 
on nontrivial solutions. O is the cost associated with the erroneous co-activation of contralateral 
flexors. C is the degree of asymmetricity between the simulated speeds of the left and right 
limbs. All function components were normalized to the domain between 0 and 1 and relative 
weights (k1, k2, k3, k4)=(1, 0.7, 2, 0.4). C and M components were removed in simulations 
intended to produce asymmetrical gait (see Fig. 6 & 7 in Results). 

Optimization and parameter perturbation 

Globally optimal sets of parameters were found numerically using a combination of the basin-
hopping algorithm (Wales and Doye, 1997) in SciPy (Oliphant, 2007) and several constrained 
local minimizers: the non-linear optimization algorithm COBYLA (Powell, 1964), the truncated 
Newton algorithm (Nocedal and Wright, 2006), the L-BFGS-B algorithm (Byrd et al., 1995), and 
Powell's method (Powell, 1964). First, the global optimal parameter set (z*) was found. During 
optimization, the starting value for the basin-hopping algorithm was obtained from a brute force 
search over the complete parameter space. Other algorithms were then optimized sequentially 
to arrive at the optimal solution (z* = argmin(Jc)). Second, we created a normal multivariate 
distribution to evaluate the nature of close-to-optimal solutions. For this, the distribution was 
defined by the mean at z* and the covariance matrix with the diagonal elements set to 0.01z* or 
the equivalent of the standard deviation set at 1% of the value of the optimal solution. The 
dataset of 105 points was then drawn from this distribution and used in the comparison between 
the analytical and numerical solutions in Fig. 3A. Third, the intermediate solutions of the first 
step corresponding to local minima were selected to determine the full functional range of 
parameters in the model, excluding sets with large cost values (Jc>10). The adjusted for 
symmetricity range for each parameter is shown as the span of the y-axes in Fig. 4. Fourth, we 
used a uniform distribution across the symmetrical full range of parameters to create another 
dataset of 105 values for the analysis of the expanded range comparison shown in Fig. 3B and 
3C. Fifth, we created the parameter dataset perturbed by 10% from z*. Similar to step 2 above, 
we created the normal multivariate distribution with the mean at z* and the covariance diagonal 
elements set to 0.1z*. Sixth, we randomly drew 40 starting seeds and tasked the basin-hopping 
algorithm (set to 200-iterations for each seed) to repeat the optimization using one of the four 
local optimization algorithms. This final step in the analysis generated 160 optimal sets for all 
local algorithms in our analysis. The comparison of parametric distributions is shown for a third 
of the best solutions in Fig. 4. The cut of solutions was necessary to reject expected 
minimization failures with non-converging searches or those terminating with large cost function 
values.  

Phenomenological models of locomotion 

We used several phenomenological models created to describe the relationships between 
different parameters of stepping during locomotion in our analysis. The relationships between 
stance and swing phases relative to cycle duration were taken from the study by Halbertsma 
(1983)(Halbertsma, 1983). The relationship between step cycle duration (Tc) and velocity (V) 
was taken from the study by Goslow et al. (1973), where V=(1.84⋅ Tc ) 

−1.68 (see Fig. 2, bottom) 
(Goslow et al., 1973). Both studies used best-fit functions to describe data from a small sample 
of cats; yet, these relationships have been recently confirmed with a large subject pool (Frigon 
et al., 2015).  

In the analysis of asymmetrical locomotion, we introduced a simple geometrical relationship for 
walking on a curve. The turn radius of an asymmetric bipedal walk (Eq. 8) was expressed as a 
function of hip width (L) and an asymmetry parameter α=Vleft/Vright: 
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Equation 8 

- � .|0 � 1| 
The corresponding heading direction change during a single step can then be stated as: 

Equation 9 2 � arctan ��	�
��������
�

7��, 

where γ denotes the heading direction angle from forward direction; Tc - full step cycle period. 

Results 
Comparison of analytical and numerical solutions 

In this study, the continuous dynamics between phase transitions was demonstrated with a 
simple CPG model expressed as a system of interacting oscillators and solved either 
numerically or analytically using an iterative algorithm (Eq. 4). Analytical solutions were 
validated in simulations producing experimentally observed periods of flexor and extensor 
activations in overground locomotion (for example, see Fig. 2). This model was further extended 
to analyze asymmetric gait and test the ability of this circuit to embed asymmetric gait control.  

A high-precision numerical approach carries a processing cost that usually exceeds that of 
analytical methods. Fig. 3 shows the comparison of the processing cost between the numerical 
and analytical solutions for this model (Eq. 1). The error of evaluating phase transitions with the 
numerical method (blue line) and the analytical solutions using the root-finding algorithm (red 
line) was the same at the precision for numerical integration set to 10-3 s (intersection marked 
with *, Fig. 3A and 3B). The analytical solutions to Eq. 4, found by expanding the hyperbolic 
terms, linear to the 9th power, are shown with shades of gray in Fig. 3. Here, the difference 
between the analytical and numerical estimations of the time of phase transitions was evaluated 
with the root mean square metric of simulation quality. Shown in Fig. 3A, the quadratic 
approximation (gray line marked with a 2) provided similar quality to the analytical solutions (red 
line), with sets of close-to-optimal parameters (in 1% vicinity of the optimal set; see step two in 
section “Optimization and parameter perturbation” in Methods). When the model parameters 
were chosen randomly from the full range of feasible parameters (steps three and four in 
Methods), quadratic solutions did not provide desirable precision and performed worse than the 
numerical method, with other powers only approaching a reasonable threshold of over 10 ms 
error (Fig. 3B), which is the order of a motor unit action potential.  

Fig. 3C shows that the analytical solution was the best choice for precise real-time applications 
of this model, outperforming the numerical method by close to an order magnitude. However, if 
estimation errors of over 10 ms are insignificant in a specific application, e.g. using EMG-driven 
simulations with aggressive low-pass filtering, then high orders of analytical approximations 
could provide appropriate solutions with even lower computational load than the full analytical 
solution. The approximations of powers 3-9 use the eigenvalue approach to find roots of 
polynomials, which is relatively costly but still more precise than some of the comparable 
numerical integrators.  

 

{Fig. 3. is about here} 
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Parametric sensitivity 

A perturbation analysis was used to investigate the parametric sensitivity of suboptimal 
solutions that satisfy Eq. 7. This analysis compared optimal values found by several different 
local minimization methods after a 10% normal parametric perturbation (for details, see steps 
five and six in section “Optimization and perturbation” of Methods). From 160 solutions, the 33% 
with the lowest Jc were: 30 by COBYLA, 1 by L-BFGS-B, 22 by Powell's algorithm, and 2 by 
Truncated Newton's. COBYLA and Powell's algorithms provided 95% of the best solutions in 
this problem. The distribution of parameters in Fig. 4 with similar cost (Jc) across all methods 
indicates that similar outputs could be produced with disparate circuit parameters. The 
parameters in the model were differently conserved across similar solutions: the input weights 
(Gu) had lower variability relative to other parameters, i.e. the static leak (x0), static input (u0), 
and interlimb connection weights (green, rij).  

 

{Fig. 4. is about here} 

 

Behavioral implications of CPG morphology 

The velocity hypothesis states that descending signals to a CPG are the desired speeds of each 
leg. We wanted to test further if the analytical solution to the ODEs would produce the same or 
a different velocity prediction for the modality of inputs. The direct relationship between the 
descending input and the temporal characteristics of stepping (step cycle, swing, and stance 
durations) was extracted from the second-order solution to Eq. 6. Although it has a complex 
non-linear form (Eq. 10), its combination with the solution from Goslow et al. (1973) for the 
relationship between step cycle period and forward velocity produced a linear result shown in 
Fig. 5 (r2=0.999, p<0.001 for left and right limbs). 

Equation 10 

8 � 9 (� � (��(� � :(� � (�� � (�;�.��

 

where ki are configuration-dependent constants, u is descending input, and V is the forward 
velocity of locomotion. 

 

{Fig. 5. is about here} 

 

We further explored the role of this descending command for velocity regulation in the 
generation of asymmetric gait. Asymmetric patterns were simulated by uncoupling the gains for 
the left and right inputs of both flexors and extensors (guf1,gue1,guf2,gue2) in Eq. 2 and varying 
them independently by 33% of the optimal parameter set (Table 1). The C and M components 
responsible for pattern symmetricity and simulated velocity related errors were removed from 
the cost function (Eq.7) in this analysis. The simulated speed of walking for the left and right 
limbs was then calculated from the generated bilateral phases (Fig. 6). The parameter 
asymmetricity led to a steady gradient of the speed differences (α=Vleft/Vright, see Methods). 
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Table 1. Optimal model parameters. The parameter set (z*) for Eq. 2 that satisfies Eq. 7.  

x0f x0e guf gue glf gle u0f u0e rfe ref ree 

0.244 0.376 1.59 2.62 -0.689 0.828 2.26 -0.174 -0.025 2.38 0.418 

 

Figs 6A and 6B show that variation of both inputs (guf, gue) together can produce asymmetric 
walking, α=1.1, with the turn diameter as low as 10 m (calculated from Eq. 8, or heading 
direction γ=10° change per step, see Eq. 9). Only the parameter combinations corresponding to 
the continuous gradient around the midline produced appropriately accurate simulations with 
low Jc (Fig. 6B). Uncoupled inputs to flexors and extensors can similarly generate asymmetric 
gaits, with α up to 1.2 (γ=20°). The gradient of cost for extensors was orthogonal to that for 
flexors in Figs 6D and 6F; the increased possible range of asymmetric speeds was associated 
with increased cost, as indicated in Fig. 6B, with the cost trough extending along the diagonal 
unity. 

 

{Fig. 6. is about here} 

 

Fig. 7 shows that the intrinsic parameters in the model can also produce asymmetric gaits. 
Symmetric connections (e.g. in Eq. 2, rfe=r14=r41) were uncoupled (r14≠r41) and varied 
independently. As in the analysis above, α and Jc were calculated for parameter variations of up 
to ±33% of the optimal value. The connections from flexor to contralateral extensor did not 
provide a suitable gradient of asymmetric walking speeds in the explored range of parameters 
(Fig. 7A). Possible reasons are a low magnitude of the optimal value for this parameter (ref, in 
Table 1) and the near constant relationship between swing duration and locomotor velocity (Fig. 
2). The variation of extensor-to-flexor and extensor-to-extensor parameters (ref, ree) produced 
asymmetric gaits (Fig. 7C and 7E) with a turn diameter of 10 m (heading direction γ=10° per 
step). These were comparable to the above result obtained from the analysis of external inputs. 
The profile of Jc was different for the gaits generated by variation of ree and ref parameters (Figs 
7D and 7F). The extensor-to-flexor parameter ref increased steering angle with a smaller 
increase in cost (Fig. 7F) than that of the extensor-to-extensor parameter, ree (Fig. 7D). 
However, ree could regulate asymmetric gaits over a larger range of velocities than ref, as 
indicated by the diagonally extending trough in the cost function in Fig. 7F. 

 

{Fig 7 is about here} 

 

Discussion 
In this study, we developed a novel analytical description of a simple CPG model for locomotor 
phase timing and further expanded our previous model (Yakovenko et al., 2005) to include not 
only externally-driven asymmetric rhythmogenesis but also the opportunity to internalize this 
asymmetric transformation within the structure of a CPG. Our three central results are: i) the 
model can be solved analytically; ii) the analytical solution converges on the same conclusion 
that the input to the CPG is in the modality of limb forward velocity; and iii) the minimalistic 
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model of a CPG built with coupled oscillating leaky integrators offers multiple opportunities for 
embedding asymmetric control. 

What is the goal of using analytical solutions of neurophysiological models?  

Numerical solutions are usually the preferred option of solving complex models. For example, a 
biophysical CPG model proposed by Rybak et al. (2006) captures the neurological basis of 
activity in detail, often using hundreds of approximated parameters and their reconfiguration 
during failures in the motor execution (Rybak et al., 2006). Complex models with multiple 
estimated transformations may produce ensemble behavior that reproduces the expected 
outcome; however, the role of elements and their network properties are hard to predict and 
analyze. Unlike models that are not analytically solvable, simple models are often insightful and 
capable of identifying specific targets that modify circuit behavior (Tabak et al., 2000; Izhikevich, 
2004; Barnett and Cymbalyuk, 2014b). For example, in the study of Barnett and Cymbalyuk 
(2014) the saddle-note bifurcation of equilibria was manipulated to design rhythmogenic 
regimes with appropriate timing and phase duration characteristics (Barnett and Cymbalyuk, 
2014b). The employed bifurcation control method relies on the manipulation of a controlling 
parameter near a transition between different regimes responsible for spiking and bursting 
properties. Spardy et al. (2011) showed how the dynamical system analysis could identify the 
silent and bursting periods of system's oscillation, the effect of sensory inputs on the range of 
behavior, and the operation of the CPG model in response to simulated spinal cord injury 
(Spardy et al., 2011a). This description was based on the simplified model (Markin et al., 2010; 
Spardy et al., 2011b) that uses two types of neuron implementations consisting of one- or two-
dimensional differential equations for a single limb flexor-extensor CPG. Similar to other much 
more complex implementations, e.g. studies by Rybak et al. (2006), Morris and Lecar (1981), 
and Caplan et al. (2014) (Morris and Lecar, 1981; Rybak et al., 2006; Caplan et al., 2014), even 
this simplified formulation produces a challenging system of equations for 10 neurons with 33 
connections between them. The model did noticeably have problems resolving locomotor 
phases for fast cycle durations (less than 800 ms, see Fig. 3 in (Spardy et al., 2011b)). In 
contrast, our simple model had only 4 parameters within a reciprocally connected system of 2 
leaky integrators and simulated the same behavior without the aberrations at the extremes of 
experimental data (Yakovenko et al., 2005). This basic that we extended in this study was used 
to describe, for the first time, the novel flexibility of extensor- and flexor-dominant phase 
regulation.  

As in other models, we were concerned that expanding the model’s parametric space to 
describe two limbs could introduce an uncontrollable increase in errors associated with the 
corresponding parametric expansion. The bilateral half-centers for two limbs required a system 
of 4 differential equations and the set of either 7 coupled (see Eq.2) or 16 uncoupled intrinsic 
and 4 extrinsic (input) parameters. The results for the expanded model in Fig. 2 showing phase 
modulation over the full range of walking velocities without limitations at the extremes was not a 
forgone conclusion. Overall, the increased parametric complexity in the model did not lead to an 
overfitting problem that could have appeared from estimating too many parameters from a low-
dimensional set of behavioral data. Instead, the model consistently converged on similar 
solutions without the loss of validity indicated by the cost function. 

Overfitting and underfitting are two major concerns in the selection of appropriate levels of 
abstraction for models (Lever et al., 2016). In the words of John von Neumann, “With four 
parameters I can fit an elephant and with five I can make him wiggle his trunk.” Here, our simple 
model relies on 20 parameters to generate low-dimensional output in the form of the phase 
characteristic in normal and asymmetric locomotion. Models based on Hodgkin-Huxley 
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formalism could generate the same phase duration characteristic, albeit with the use of large 
model parameter sets that extend into hundreds and thousands. Remarkably, the solutions from 
these two different representations are similar, supporting the experimental and computational 
observations that the same network activity could be generated by the underlying disparate 
mechanisms (Prinz et al., 2004; Goaillard et al., 2009; Grashow et al., 2009; Caplan et al., 
2014). Still, the convergence of our parameter search on the physiological network solution is 
validated only by the constraining behavioral data and extent of simulated validation using 
parameter sensitivity analysis. Even in this minimalistic model, the exploration of a 20-
dimensional parameter space was challenging and led us to implement the analysis of a 
coupled symmetrical model first, where the parameters representing spinal neural elements 
mirrored across the midline were set to the same values. The perturbations in each parameter 
achieved with different minimization algorithms produced robust solutions, where small changes 
did not lead to large changes in outcome (Fig. 4). Thus, the model may not be overfitting for 
these particular phenomena under study.  

 

{Fig. 8. is about here} 

 

Embedding of asymmetric gait control in extrinsic and intrinsic parameters 

Even in our relatively simple model, there is a complicated relationship between intrinsic 
connections and extrinsic inputs. An indication of this fact is the capacity for representing the 
same behavior within parameters corresponding to different anatomical structures. Thus, it was 
necessary to uncouple the parameters in Eq.2 to further extend the sensitivity analysis with the 
goal of exploring the functionality “hidden” in the complexity to generate falsifiable hypotheses 
or model predictions.  

We chose asymmetric gait as the test task because it results from the normal control of steering 
or heading direction (Yakovenko, 2011; Galbreath et al., 2014), and it may contain indicators of 
long-term adaptations to injury. First, we "forced" the model to internalize the control of 
asymmetric stepping by changing only extrinsic parameters. The mechanism using only input 
gains of flexor half-centers, and less so extensor half-centers, was a robust method of changing 
the interlimb speed differential. This was also expressed as a change in the heading direction in 
this model. In Fig. 6, the tuning of input gains to flexor half-centers led to asymmetric speed 
ratios of 0.9 to 1.1, which corresponds to an estimated heading direction change of ±10° over 
one step cycle (about a 10 m turn diameter). This suggests that a single external input 
representing a heading direction could generate a realistic range of asymmetric gaits in this 
model. Second, we can similarly constrain the solution to the locus of intrinsic parameters 
responsible for the influences among four half-centers in the model. It was intriguing to see the 
capability of this model to embed the asymmetric processing within these pathways. Moreover, 
the simulations suggested that not all parameters are equal targets in that respect. The 
extensor-to-flexor and extensor-to-extensor (ref, ree in Fig. 7) parameters embedded the ability to 
generate asymmetric gaits with a reasonable turn diameter of 10 m, which is consistent with a 
“step turning” strategy, characterized by a wide base of support throughout the turn. It is likely 
that steeper turning would require the transition to a different “spin turning” strategy  (Hase and 
Stein, 1999; Taylor et al., 2005). The alternative CPG configurations are illustrated in the 
schematic in Fig. 8. In studies of spinal segmental connectivity, these parameters would 
correspond to the 'gains' of propriospinal pathways connecting rhythmogenic networks within 
the spinal enlargement (Kiehn, 2011). Given the more rostral distribution of flexors than 
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extensors within the lumbosacral enlargement (Yakovenko et al., 2002; Ivanenko et al., 2008) ref 
and ree pathways would have the network representations shown in Fig. 8B and C. Overall, 
relatively complex behavior, like steering, could be controlled with both extrinsic and intrinsic 
mechanisms available in this simple model.  

The analysis makes specific predictions about the propriospinal pathways that could be involved 
in long-term adaptations to asymmetricity. Human subjects could learn to compensate for the 
external perturbations applied to limbs while minimizing the overall limb impedance (Shadmehr 
and Mussa-Ivaldi, 1994; Dingwell et al., 2002). Even gross cortical inputs, like those generated 
by transcortical magnetic stimulation, can be compensated by the adaptation of transmission 
gains contributing to the regulation of locomotion (Schubert et al., 1999). Our results suggest 
that this adaptation can take place not only within pathways projecting to a CPG, but also within 
the limited locus of interactions between model’s half-centers. While this model has no realistic 
learning dynamics, the examination was limited to the naïve symmetrical and adapted 
asymmetrical states. This learning function could be implemented in future work with the use of 
simple learning mechanisms (Franklin et al., 2008; Wu et al., 2014) where intrinsic parameters 
could be updated under the reinforcement learning dynamics (Mahmoudi et al., 2013; Schultz, 
2013). Overall, the model demonstrated that the general locomotor patterns for symmetric and 
asymmetric gaits may be achieved by the superposition of commands and intrinsic interactions 
within the minimalistic structure of a CPG. This novel flexibility of functional representation for 
asymmetric pattern generation has not been previously demonstrated in models, and it posits 
specific predictions for mal- or adaptations to asymmetry due to peripheral or central 
abnormalities. 

The simple model of locomotor rhythm generation 

This model is not likely producing the overfitting of behavior as indicated by the sensitivity 
analysis. Still, there is the possibility that this model is instead underfitting the locomotor 
patterns associated with asymmetric gait. To discuss the appropriate level of abstraction that 
limits the possibility of underfitting for this task, we need to examine the concept of 
neuromechanical tuning (Prochazka and Yakovenko, 2007; Ting et al., 2015). Specifically, 
locomotor control is a phenomenon produced by multiple elements that combine predictive and 
reactive functions. In analogy with the Smith’s predictor (Smith, 1957), the specific role of the 
CPG is to predict the mechanical interactions between the limb and ground. To this extent, our 
model can reproduce the transformation from input speeds to appropriate inter- and intra-limb 
coordination of multiple muscle groups without the need for molecular level dynamics 
(Yakovenko, 2011). The CPG function could then be specified as a dynamical transformation of 
simple high-level signals into complex granular functional subdivisions of temporal activations 
appropriate for locomotion. Both analytical and numerical solutions of our minimalistic CPG 
model support the hypothesis that the main function of a CPG is the transformation of high-level 
locomotor signals associated with whole limb function, i.e. the speed of locomotion, into low-
level phasic activity patterns of limb muscles. This computational inference agrees with previous 
studies demonstrating that the one-dimensional input to the MLR in the form of stimulation 
magnitude or frequency can be transformed by a CPG into specific velocity-dependent phasic 
activity in vertebrates (Shik et al., 1966; Smetana et al., 2010). Thus, the underfitting for CPG 
models describing the phase duration characteristic would be classified by the inability to use 
high-level signals related to the forward velocity as the control signal for asymmetric gait. We 
demonstrated that this model can readily transform limb velocity-related inputs into asymmetric 
phase characteristics. Moreover, the model can embed these high-level representations within 
its internal structure. As shown previously (Yakovenko et al., 2005), it can also generate both 
flexor-dominated and extensor-dominated phase regulation at different speeds.  
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To conclude, in this paper we report for the first time a model of bilateral CPG with analytical 
and numerical solutions capable of generating symmetrical and asymmetrical gaits appropriate 
for whole body steering. The steering behavior can be generated by either extrinsic limb velocity 
related inputs to left and right half-center oscillators or embedded asymmetry within intrinsic 
propriospinal gains from extensor half-centers to the contralateral flexor or extensor half-
centers. Moreover, these asymmetric changes may correspond to either a natural control of limb 
velocity adjustments regulating the heading direction or pathological changes to the inputs or 
structure of the locomotor CPG. The existence of multiple network states capable of generating 
the same empirical observations is a novel identified challenge for CPG models.  
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Figure Legends 
Fig. 1. Schematic of the bilateral locomotor CPG model. The oscillatory behavior in each half-
center (marked 1-4) was generated through an intrinsic, leaky integrate-to-threshold resetting. 
This process was also under regulation from intrinsic inputs governed by parameters (rff, rfe, ref, 
ree). The flexor half-centers (blue) were reciprocally connected to extensor half-centers (red). 
See Eq. 1-2 for details. 

Fig. 2. Experimental and simulated locomotor phase duration characteristic. Top: The 
relationship between the locomotor phase and step cycle duration is shown with points 
representing the superimposed numerical and analytical solutions that are highly correlated with 
the experimental data lines; flexor (blue) and extensor (red) phases (Halbertsma, 1983). 
Bottom: The corresponding simulated speed (black points) is plotted as a function of step 
duration and compared to the experimental solution (black line) (see Fig. 3, in (Goslow et al., 
1973)). 

Fig. 3. The comparison of analytical and numerical solutions. The measures of numerical (blue), 
analytical (red), and analytical approximations of different orders (shades of gray with order 
numbers) are plotted as functions of numerical precision, where the dashed line indicates the 
most relevant for real-time simulation precision of 1 ms. A. Full cycle error in the estimation of 
phase transition times using the 1% neighborhood of the optimal solution. Because the higher 
orders of approximations provide the same high precision as the cubic approximations, powers 
τ

4-τ9 are not displayed. B. Similar to A, the errors are shown for the random distribution of 
parameters. C. Average CPU time needed to calculate a full step period of 1.25 s (average from 
Halbertsma’s equations) in Python/NumPy implementation. The data presented in all subplots 
was averaged over 105 trials. 

Fig. 4. Analysis of parameter sensitivity. The distributions of model parameters and cost function 
(Jc) are shown for the selection of best optimization sets. Each subplot shows a mean with 
standard deviation of the parameter values in blue (flexor), red (extensor), and green (mixed) for 
4 types of minimization algorithms. The vertical axis range reflects the full feasible range of 
parameters as determined by the examination of intermediate solutions (see step six in section 
“Optimization and parameter perturbation” of Methods), with the exception for the Jc values. 

Fig. 5. The relationship between the simulated CPG command signal to each limb and forward 
velocity. The analytical solution for the full step cycle was calculated over the set of 10 input 
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values for each limb (u). Each value produced simulated step cycle duration values, which was 
then plotted as forward velocity calculated with the experimental relationship from Goslow et al. 
(1972) for each limb. The identity (y=x) is plotted in black. 

Fig. 6. External inputs generate asymmetric gait in the model. The coupled and uncoupled input 
gain parameters (gue, guf) were related to the velocity asymmetry (Left panels) with the 
corresponding cost function outputs (Right panels). A and B. The input gains of flexors and 
extensors were varied together for each limb. C and D. Only flexor input gains (left and right guf) 
were manipulated for each limb. E and F. Only extensor input gains (left and right gue) were 
manipulated for each limb. Inserts in B indicate the steering direction for two selected parameter 
sets. 

Fig. 7. Intrinsic parameters generate asymmetric gait in the model. The uncoupled intrinsic 
parameters (rfe, ref, ree) were related to the velocity asymmetry (Left panels) with the 
corresponding cost function outputs (Right panels). A and B. The flexor-to-extensor weights 
(rfe). C and D. The extensor-to-flexor weights (ref). E and F. The extensor-to-extensor weights 
(ree). 

Fig. 8. Schematic representation of multiple CPG configurations for steering. A. The 
configuration based on the external inputs to CPG. B and C. Two possible configurations of 
intrinsic connections producing the same asymmetric patterns as in A. 
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